

Combining agile methods and user-centered design to create a unique user

experience: An empirical inquiry

Cynthia Y. Lester

Department of Computer Science

Tuskegee University

Tuskegee, Alabama, USA

cylester@tuskegee.edu

Abstract - With the advent of the Internet and websites, many

people believe that website development is as easy as dragging

an icon here, placing a menu there, and adding a picture.

However, there is more to website design than many people

believe especially if you desire to develop a website that meets

the needs of the user and follows software engineering

principles. While there are many software process models and

human-computer interaction activities that focus on the user,

the integration of these activities is quite difficult, especially as

it relates to website development. This paper presents the

results of an empirical investigation that combined one activity

of human-computer interaction, user-centered design, and one

software engineering method, agile development into a small-

scale development exercise that specifically focused on website

development. The results from the study suggest that using the

hybrid approach for small-scale projects is easy to implement,

but is not without challenges.

Keywords – agile development; human-computer interaction;

software engineering; user-centered design

I. INTRODUCTION

The use of technology and the Internet is commonplace

in today‟s society. In 1990, it was reported that there were

less that 50 million users of the Internet in the U.S.

However, by 2008 the U.S. reported approximately

230,630,000 Internet users [1]. Therefore, it stands to

reason that with more users and more advanced systems, the

user population of today‟s technology would be more

technically savvy than those user groups of yesteryear.

However, the average user is now less likely to understand

the systems of today as compared to the users of a decade

ago. Consequently, the designers and developers of these

systems must ensure that the systems are designed with the

three “use” words in mind so that the system is successful.

Hence, the system must be useful, usable, and used [2]. The

last of the “use” terms has not been a major factor until

recently, thereby making the discipline of human-computer

interaction increasingly more important.

Human-computer interaction (HCI) has been described

in various ways. Some definitions suggest that it is

concerned with how people use computers so that they can

meet users‟ needs, while other researchers define HCI as a

field that is concerned with researching and designing

computer-based systems for people [3], [4]. Still other

researchers define HCI as a discipline that involves the

design, implementation and evaluation of interactive

computing systems for human use and with the study of

major phenomena surrounding them [5]. However, no

matter what definition is chosen to define HCI, the concept

that all these definitions have in common is the idea of the

technological system interacting with users in a seamless

manner to meet users‟ needs. Consequently, system

developers need to further their understanding of the human,

the user, and the interaction.

The aim of this paper is to present the results from an

empirical inquiry that combined one activity of HCI, user-

centered design, and one software engineering method, agile

development, to develop a website for a small-sized

business. The paper also touches on the theme of extreme

programming as the implementation methodology for agile

methods. While there are many different development

strategies specifically for website design and development, a

review by the author revealed that there was little

consistency among the processes and some did not address

user involvement or the user experience. Therefore, a

hybrid approach using agile development and user-centered

design was considered since both focus on the inclusion of

the user throughout the development process.

 The paper is divided into the following sections: the

human, the system, and the interaction; traditional software

methodologies; agile methods; user-centered design; a

practical implementation combining the two methods; a

discussion of the empirical investigation; and concluding

thoughts. It is the desire of the author that the readers of the

paper will see how closely related the two methodologies

are and how they can be used together for small software

development projects that yield high levels of user

involvement while creating an enriched user and developer

experience.

16

ACHI 2011 : The Fourth International Conference on Advances in Computer-Human Interactions

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-117-5

mailto:cylester@tuskegee.edu

II. THE HUMAN, THE SYSTEM, AND INTERACTION

A. The human user

The human user may be an individual or a group of

users who employ the computer to accomplish a task. The

human user may be a novice, intermediate, or expert who

uses the technological system. Further, the human user may

be a child using the system to complete a homework

assignment or an adult performing a task at work.

Additionally, the human user may be a person who has a

physical or cognitive limitation which impacts his/her use

with the computer-based system. No matter who the human

user is, the goal when interacting with a computer system is

to have a seamless interaction which accomplishes the task.

B. The computer

According to the Random House Unabridged

Dictionary, a computer is defined as an electronic device

designed to accept data, perform prescribed mathematical

and logical operations at high speed, and display the results

of these operations [6]. However, as computers become

more complex, users expect more than just a display of the

results of their operations. The term computer system is

used to represent technology and technological systems.

Consequently, technology or technological systems

encompass many different aspects of computing. Users now

require their systems to be able to provide answers to

questions, to store various forms of information such as

music, pictures, and videos, to create a virtual experience

that physically may be unattainable, and to understand

verbal, visual, audio, and tactile feedback, all with the click

of a button. As the human user becomes to depend on these

technological systems more, the interaction between the

user and the system becomes more complex.

C. The interaction

Interaction is the communication between the user and

the computer system. For computer systems to continue

their wide spread popularity and to be used effectively, the

computer system must be well designed. According to

Sharp, Rogers, and Preece, a central concern of interaction

design is to develop an interactive system that is usable [4].

More specifically, the computer system must be easy to use,

easy to learn, thereby creating a user experience that is

pleasing to the user. Consequently, when exploring the

definition of interaction, four major components are present

which include:

 The end user

 The person who has to perform a particular task

 The context in which the interaction takes place

 The technological systems that is being used

Each of these components has its own qualities and

should be considered in the interaction between the

computer system and the user. In his bestselling book, The

Design of Everyday Things, Donald Norman writes about

these components and how each must interact with the

other, suggesting that the common design principles of

visibility and affordance help to improve interaction [7].

The principle of visibility emphasizes the idea that the

features of the system in which the user interacts should be

clearly visible and accessible to human sense organs, which

improves the interaction between the action and the actual

operation [7]. The principle of affordance as suggested by

Jef Raskin, should accommodate visibility such that the

method of interacting with the system should be apparent,

just by looking at it [8].

Therefore, in order to create an effective user

experience, a designer of an interactive computer system

must understand the user for which the system is being

created, the technological system that is being developed

and the interaction that will take place between the user and

the computer system. However, traditional plan-driven

software engineering methodologies often make integrating

the user into the development process to achieve an

effective user experience difficult.

III. TRADITIONAL SOFTWARE METHODOLOGIES

Software engineering is defined as “being concerned

with all aspects of the development and evolution of

complex systems where software plays a major role. It is

therefore concerned with hardware development, policy and

process design and system deployment as well as software

engineering [9].”

The term software engineering was first proposed at the

1968 NATO Software Engineering Conference held in

Garmisch, Germany. The conference discussed the

impending software crisis that was a result of the

introduction of new computer hardware based on integrated

circuits [9]. It was noted that with the introduction of this

new hardware, computer systems were becoming more

complex which dictated the need for more complex software

systems. However, there was no formalized process to build

these systems which put the computer industry at jeopardy

because systems were often unreliable, difficult to maintain,

costly, and inefficient [9]. Consequently, software

engineering surfaced to combat the looming software crisis.

Since its inception, there have been many methodologies

that have emerged that lead to the production of a software

product. The most fundamental activities that are common

among all software processes include [9]:

 Software specification – the functionality of the

system and constraints imposed on system

operations are identified and detailed

 Software design and implementation – the

software is produced according to the

specifications

17

ACHI 2011 : The Fourth International Conference on Advances in Computer-Human Interactions

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-117-5

 Software validation – the software is checked to

ensure that it meets its specifications and provides

the level of functionality as required by the user

 Software evolution – the software changes to meet

the changing needs of the customer

The activities that formulate this view of software

engineering came from a community that was responsible

for developing large software systems that had a long life

span. Moreover, the teams that used this methodology were

typically large teams with members sometimes

geographically separated and working on software projects

for long periods of time [9]. Therefore, software

development methodologies that resulted from this view of

software engineering were often termed as “heavyweight”

processes because they were plan-driven and involved

overhead that dominated the software process [9].

However, great difficulty occurs when these methodologies

are applied to smaller-sized businesses and their systems,

because these methods lack the agility needed to meet the

changing needs of the user. The next section presents an

overview of an alternative to heavyweight processes, agile

development.

IV. AGILE METHODS

In an effort to address the dissatisfaction that the

heavyweight approaches to software engineering brought to

small and medium-sized businesses and their system

development, in the 1990s a new approach was introduced

termed, “agile methods.” Agile processes are stated to be a

family of software development methodologies in which

software is produced in short releases and iterations,

allowing for greater change to occur during the design [10].

A typical iteration or sprint is anywhere from two to four

weeks, but can vary. The agile methods allow for software

development teams to focus on the software rather than the

design and documentation [9]. The following list is stated

to depict agile methods [9], [10]:

 Short releases and iterations - allow the work to be

divided, thereby releasing the software to the

customer as soon as possible and as often as

possible

 Incremental design – the design is not completed

initially, but is improved upon when more

knowledge is acquired throughout the process

 User involvement – there is a high level of

involvement with the user who provides

continuous feedback

 Minimal documentation – source code is well

documented and well-structured

 Informal communication – communication is

maintained but not through formal documents

 Change – presume that the system will evolve and

find a way to work with changing requirements and

environments

More specifically, the agile manifesto states:

“We are uncovering better ways of developing software

by doing it and helping others to do it.

Through this work we have come to value:

Individuals and interaction over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on the right, we

value the items on the left more.”

While agile methods are considered as lightweight

processes as compared to their predecessors, it has been

stated that it sometimes difficult especially after software

delivery to keep the customer involved in the process [9].

Moreover, for extremely small software projects, the

customer and the user may be one in the same, further

complicating the development process. Therefore it is of

interest to consider HCI, particularly user-centered design

and the benefits it may have if combined with agile methods

for software development. The next section introduces the

concept of user-centered design.

V. THE USER-CENTERED DESIGN PROCESS

A central theme in HCI is to make the focus of design

activity, „user-centered‟. According to human centered

design processes for interactive systems, ISO 13407,

“Human-centered design is an approach to interactive

system development that focuses specifically on making

systems usable. It is a “multi-disciplinary activity” [11].

User-centered design (UCD) tends to lead to fewer errors

during development and lower maintenance costs over the

lifetime of the computer software [12].

In contrast to the traditional methods of software

development, user-centered design aims at understanding

the user and designing the user interaction through an

iterative process. At the center of user-centered design is

the user with requirements emerging from user interaction

with the system. Since the user-centered design process is

an interactive one which allows users to interact with system

designers to design a system, ultimately the needs of the

user are met.

There are four basic components which help to define

interaction [13]. Those components include:

 The end user

 The person who has to perform a particular task

 The context in which the interaction takes place

 The technological systems that is being used

Each of these components has its own qualities and

should be considered in the design of the system. The UCD

process allows for the exploration of each of these

components. As with most methodologies, the UCD

18

ACHI 2011 : The Fourth International Conference on Advances in Computer-Human Interactions

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-117-5

process can be broken down into four steps. These steps are

analysis, design, implementation and deployment, and are

shown in figure 1.

Figure 1. User-centered design model

VI. A PRACTICAL IMPLEMENTATION OF THE AGILE

METHOD AND UCD

A. The project

The purpose of the project was to combine the principles

found in user-centered design with the agile manifesto to

develop a website for a customer who was also part of the

user group.

B. The stakeholders

The stakeholders consisted of two groups: the customer

who commissioned the project and the user group who

consisted of selected parents and students. The customer

was a program manager for a grant obtained to fund a

Research Experience for Undergraduates (REU) in an

integrative biosciences program at a mid-sized university.

The customer has some technical expertise and expressed a

desire to be involved in the entire development process.

Therefore, to ensure that the customer who was also part of

the user group was at the center of the process, bi-weekly

meetings were established where updates were provided and

prototypes were presented.

C. The development team

The development team consisted of two programmers

who have expertise in website development and the

principles of UCD.

D. The implementation

Extreme programming (XP) is probably one of the best

known and most widely used agile methods [14], [15]. It

was originally designed to address the needs of software

development by small teams who faced changing

requirements and system environments. XP was used in this

empirical inquiry because it reflected the four following

principles:

 Incremental development is supported through

small, frequent releases

 Customer involvement is integral and supported

throughout the process

 People are the main focus of the process not the

development process

 Change is embraced as prototypes were constantly

released to the user

 The design for the website was simple

XP was also used because it incorporates the concept of

collaborative working. The most extensively investigated

practice of XP is perhaps pair programming.

 The basic premise of pair programming is that a pair of

developers, work together during the development process.

The developers sit as the same computer and develop the

software. There have been several studies that have

confirmed that pair programming is effective and can lead to

better quality software [9]. However, some studies suggest

that with more experienced programmers there is a loss of

productivity [16]. Further in a study of nearly 500 students

it was found that the stronger of the pair did most of the

work, while the weaker of the pair did not improve in

programming skill [17].

Yet, it was decided that pair programming would be

used because it fosters communication between the team

members working on the website and it supports the idea of

collective ownership and responsibility. Moreover because

the team consisted of only two members with similar

programming backgrounds, pair programming proved to be

a natural fit.

The first step in the project was to design user stories.

User stories are requirements which can be implemented

into a series of tasks [9]. User stories are often thought of as

high-level requirement artifacts. There are several things to

consider when developing user stories which include [18]:

 Stakeholder/customers write the user stories

 Simple tools like index cards to capture

thoughts should be used

 The stories can be used to describe a variety of

requirements

 Time for the pair programmers to implement

the story should be considered

 Priority regarding implementation should be

considered

In order to develop the user stories, the team met with

the user group who supplied the information and the content

19

ACHI 2011 : The Fourth International Conference on Advances in Computer-Human Interactions

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-117-5

for the website. An example of a user story that was created

for the website is found in figure 2.

After the user stories were developed, the story cards

were broken into tasks and the user group was asked to

organize the tasks according to priority of what should be

implemented first. The objective of this step was to

determine the resources needed for implementation. At the

completion of this planning process, there were

approximately twenty story cards with varying requirements

which were organized according to priority.

In the next phase of the project, the development team

began implementing the stories according to priority. It was

imperative to the customer that the application for the

program be the first item implemented. Once this was

implemented, the prototype was delivered to the user group.

The following is a timeline for the releases provided to the

users. The project began September 2009.

TABLE 1. RELEASE TIMELINE

RELEASE DELIVERY WEEK

Application 2

Homepage 3

Revised homepage 4

Sample project page 6

Revised sample project page 9

Pictorial from previous REU

program

12

Resources/contact page 14

Delivery of completed website 16

VII. DISCUSSION

In this instance, the hybrid approach using the agile

method and user-centered design for this small project was

easy to implement. This section discusses the results from

the study.

An exit interview with the user group revealed that they:

 Enjoyed being involved in the process

 Felt that their needs were being met

 Liked the idea of incremental releases

However, it was also noted that:

 The process was time consuming

 While there was some level of satisfaction with the

progress of the project as the incremental releases

were being delivered and the prototype was being

used, after many weeks of meeting and seeing only

a release, it was stated that it would be good “just

to see the finished product”

 Confusion was also expressed with many technical

aspects of the implementation

An exit interview with the development team revealed

the following:

 Development was easier as they received

immediate feedback from the user group

 Liked the interaction with the user group

 Appreciated the concept of pair programming

However, the team also stated:

 It was difficult to schedule meetings with the

customer because of busy and conflicting

schedules

 The users did not always communicate their ideas

correctly which required rework of the prototype

 It was time consuming to meet for the pair

programming experience due to busy and

conflicting schedules as the website project was not

the only project on which the individuals were

working

VIII. CONCLUSION

The aim of this paper was to present the results from an

empirical inquiry that focused on answering the question of

how the concepts of agile methods and user-centered design

could be combined to heighten user involvement in a small-

scale software development project (i.e. website

development). The author acknowledges that while there are

many website development processes, there is inconsistency

concerning the steps of the processes and many do not focus

on a formalized method for actively involving the user.

Consequently, the goal of the paper was to identify the

broad steps involved in both agile methods, especially

extreme programming, and in user-centered design and to

explain how these steps could be used to create a valuable

user and developer experience.

Results from the study revealed that using the agile

method and user-centered design for small-scaled projects is

easy to implement; however, there are certain challenges.

While the user group enjoyed being a part of the process,

they were overwhelmed by the involvement and certain

technical aspects of development activities. Additionally,

Figure 2. Story card

A student has decided to apply for the REU program.
The application is an editable .pdf file that the student
should be able to edit, complete, and submit online.

The student may choose to print the application and
mail the application to the program manager.

The system should allow for online submissions as well
as printing the hard copy for mailing.

Submitting the application

20

ACHI 2011 : The Fourth International Conference on Advances in Computer-Human Interactions

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-117-5

the hybrid approach proved to be time consuming for both

the user group and the development team.

Future work from this study includes adapting the hybrid

approach to other small-scale software projects to ascertain

if the type of software being developed determines the

outcome of the project. Furthermore, the author intends to

develop a case study specific to implementing XP and UCD.

The impact from this empirical inquiry is far reaching.

It expands the dialogue that already exists among HCI

researchers on how to effectively involve the user in

development activities so that it is an enriched experienced.

Furthermore, the study provides a foundation for future

work on how light-weight software development

methodologies and HCI activities can be combined for use

in small-scale projects. In conclusion, as systems become

more complex and user skill level decreases, it is important

that designers of technology find more ways to create

unique development experiences that meet both the needs of

the user and the development team.

REFERENCES

[1] Internet users as percentage population.

http://www.geohive.com/charts/ec_internet1.aspx (Accessed

December 20, 2010).

[2] A. Dix A., J. Finlay G.B. Abowd and R. Beale. (2004).

Human-Computer Interaction. Prentice Hall, 0130-461091,

Boston, MA.

[3] Benyon, D; Davies, G; Keller, L.; Preece, J & Rogers, Y.

(1998). A Guide to Usability, Addison Wesley, 0-201-6278-

X, Reading, MA.

[4] Sharpe, H.; Rogers, Y. & Preece, J. (2007). Interaction

design: beyond human-computer interaction 2nd ed. John

Wiley & Sons Ltd, 978-0-470-01866-8, England.

[5] Preece, J.; Rogers, Y.; Sharp, H.; Benyon, D.; Holland, S. &

Carey, T. (1994). Human-Computer Interaction. Addison

Wesley, 0-201-62769-8, Reading, MA.

[6] “Computer.” Def. 1. (2005). Random House Unabridged

Dictionary. 0-375-40383-3, New York, NY.

[7] Norman, D. (1998). The Design of Everyday Things. MIT

Press, Cambridge, MA.

[8] Raskin, J. (2000). The Humane Interface. Addison Wesley,

0-2-1-37937-6, Boston, MA.

[9] I. Sommerville. (2011). Software Engineering 9th Ed.

Addison Wesley, 13:978-0-13-703515-1, Boston, MA.

[10] Tsui, F. and O. Karam. (2011). Essentials of Software

Engineering 2nd Ed. Jones and Bartlett Publishers, 13:978-0-

7637-8634-5.

[11] International Standard ISO 13407 (1999). http://

zonecours.hec.ca/documents/A2007-1-1395534.

NormeISO13407.pdf. (Accessed on October 1, 2009).

[12] Schneiderman, B. 2005. Designing the User Interface 4th ed.

Boston: Addison Wesley.

[13] H. Sharpe, Y. Rogers and J. Preece. (2007). Interaction

design: beyond human-computer interaction 2nd Ed. John

Wiley & Sons Ltd, 978-0-470-01866-8, England.

[14] Beck, K. (1999). Extreme programming explained: Embrace

the change. Addison Wesley.

[15] Jefferies, R., A Anderson, C. Hendrickson. (2000). Extreme

programming installed. In: The XP Series. Addison Wesley.

[16] Parrish, A. R. Smith, D. Hale, and J. Hale (2004). “A field

study of developer pairs: Productivity impacts and

implications.” IEEE Software 21 (5), 76-9.

[17] J. Schneider and L. Johnston. (2005). “eXtreme Programming

– helpful or harmful in educating undergraduates?” The

Journal of Systems and Software 74, 121-132.

[18] Agile Modeling (AM) Home Page: Effective Practices for

Modeling and Documentation http://www.agilemodling.com

(accessed February 15, 2010).

21

ACHI 2011 : The Fourth International Conference on Advances in Computer-Human Interactions

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-117-5

