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Abstract—Enhancing HCI systems with the capability to detetc
user's frustration and respond appropriately is a gnificant
challenge. In this line, biosignal features basedhahe theory of
orthogonal Krawtchouk and Legendre moments are asssed
in the present work over their ability to enhance acuracy in
automatic detection of frustration, which is induce& through
HCI, during video-game playing. Experimental evaludion,
conducted over a multi-subject dataset over frustrdon
detection showed that conventional features, typidig
extracted from Galvanic Skin Response and
Electrocardiogram in the past, achieved correct clssification
rate (CCR) of 83.59%. Fusing these conventional feares with
moment-based ones extracted from the same modaliie
resulted to significantly higher accuracy, at the ével of 93%.
Furthermore, moment-based features lead also to owel0%
increase in CCR when the aim was to identify both dred and
frustrated cases, within a 3-classs affect detectigoroblem.

Keywords- automatic frustration detection,
moment-based features, video game-playing

biosignals,

l. INTRODUCTION
Negative emotional states like frustration areljike be
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playing systems, is to provide machines the caipatib
detect frustration effectively.

A. Related Work

During the past years, significant progress has besde
in the field of automatic affect detection (e.g1[®21]). This
progress is important for a large variety of futUd€l
applications, ranging e.g. from affective games [d]
affective intelligent tutoring systems [12] thaihche based
on emotion sensitive e-learning models [8]. In thismtext,
important efforts have been made so far toward®lega
machines to automatically detect frustration. Thetelies
utilized biosignals [11,12,14], video [12], or othdata types
[11,12] recorded during frustration induction, sota build
classifiers appropriate for detecting this negatwaotional
state.

Features extracted from the Galvanic Skin Response
(GSR) and Blood Volume Pulse (BVP) were used in,[14
leading to frustration detection accuracy of 67.3@%ong a
multi-subject (MS) dataset, having a computer gasse
stimuli. In [12], the focus was towards an affeetiearning
companion, and frustration was predicted with aacyirof
79% (MS), by utilizing features extracted from acda

induced during Human - Computer Interaction (HCI).tracker, a posture sensing chair, a pressure mans&SR.

Frustration is an emotional state commonly assediatith
anger. During HCI, it can cause a negative disjpositf the
user towards the machine [1]. In the context oEwigames,
frustration is typically induced when game diffigulis in
mismatch with the capabilities and/or preferencésthe
player [2]. It can lead to player's disassociatfoom the
game, dissatisfaction and resign. This is a caaé ray

Physiological features merged with contextual ones,
extracted during students’ interaction with a tutgrsystem,
lead in [11] to 88.8% frustration detection accyrdan [15],
using features extracted from biosignal (GSR, teatpes
and heart rate) modalities, frustration was recogphifrom
five further emotion classes with accuracy of 78.3%
Focusing on HCI in respect of video games, biosigea.

occur even in modern video-games, which, althouglssRr and Respiration) features were found to cdeé@te[3]

carefully designed, do not take into account thayed's
current emotional state and its specifics [2].

with frustration induced from video-game playingheveas
in [4] frustration was detected from biosignals gjagneplay

Future game-playing systems can be augmented éth t gata with accuracy around 85%.

capability to automatically detect the player’'seaffve state

and monitor user experience [3]. When needed, the

From the above it is clear that in general, biogigmave

Sfood potential towards automatic frustration débect

systems will be capable to adjust playing contextyowever, although affect detection has signifigantl

appropriately [4], so as to maintain entertainménbugh a
closed biocybernetic loop [5]. Frustration is ano&onal
state that can play a key role in this context §ifjce as it
has been shown in the past, machines respondiplgyer’s
frustration can lead to improved gaming experiefice].
However, a pre-requisite for building such futuramg-
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advanced during the recent years [16], frustratietection
accuracy levels as well as in general emotion neitiog
(ER) ones have remained relatively limited, i.elyamrely
exceeding 90%. Therefore, evident is the need faw n
biosignal processing techniques, which will leadnore
effective ER systems. Working towards this dirattifl 3]
proposed biosignal features extracted from GSR latel-
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Beat-Intervals (IBI) time series (calculated fronmet
Electrocardiogram (ECG)), which are based on teerthof
orthogonal Legendre [17] and Krawtchouk [18] morsent
These moments have been widely used in the paghéor
purposes of image analysis and reconstruction. Saich
typical example can be found in [18], where it veéa®wn
that based on weighted Krawtchouk moments, effectiv
image reconstruction and object recognition caadieeved.

period; then, the ratio between each feature's evalu
calculated from the first 10 seconds to the cooedmg
value calculated of the last 10 seconds was ertlaas an
extra feature (marked in the rest of the paper wiita
extension “FL"). These ratios were calculated for all
features that were applicable, similarly to [13].tbtal, 37
conventional features were extracted, 9 from 1B, fiom
GSR, and 16 as the feature value ratio betweefirgieand

However, before [13], features based on Legendr@ anast 10 secs of each trial.

Krawtchouk moments had not been considered as tionop
in biosignals-based affect detection. The use dafseh
features, together with conventional, not-momeseldaones
typically utilized in the past, was found in thabnk to
significantly increase effectiveness of automatarelom
recognition.

B. Contribution

Boredom and frustration are both negative emotioins
high significance in the context of HCI applicason
Therefore, the present work aims to enhance effautiss of
automatic frustration detection, by using momersgeola
biosignal features. Moreover, taking a step furfham [13],
we assess whether the moment-based features dawittea
the problem of detecting whether the subject isirgehoth
bored and frustrated during HCIl. As explained ire th
following, it was found that combining moment-based
features with conventional ones can significantijance the
effectiveness of automatic frustration and alsontjoi
boredom/frustration detection, compared to the ealsere
conventional features are used alone.

1. BIOSIGNAL FEATURESEXTRACTION

Various biosignal features were examined in theqme
study over their effectiveness in the given conte
features presented in the following were extra@tech GSR
and IBI time series recorded during rest periods game-
playing trials of the dataset described in Secsion

A. Conventional features

A set of “conventional” features was first extratfeom
all game-playing trials. These features, summarigetable
I, have proved in the past capable to form the shémi
systems targeting automatic frustration detectiord ER in
general. More details regarding the specifics (fgnulas)
for the extraction of these features in the presermty can be
found in [13].

TABLE I. FEATURES EXTRACTED FROM THEGSRSIGNAL AND THE

INTER BEAT INTERVALS (IBl) TIME SERIES

Signal Conventional Features Extracted

Mean, Standard Deviation (SDJ! derivative average ™1
derivative RMS, Number of SCRs, Average Amplitude o
SCRs, Average Duration of SCRs, Maximum Amplitufie ¢
SCRs3(9ST), dnorm{gST), Ynorm{gsT), fi(gsr)

Mean, SD, LF/HF, RMSSD, pNN50§(ibi), Snom{ibi),
Yrom{ibi), fa(ibi)

GSR

1=}

Moreover, all features of Table | were also exwdct
from only the first and last 10 seconds of eadl or resting
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B. Biosignal Features Based on the Theory of Moments
Legendre moments [17] are based on projecting reabkig

onto Legendre polynomials, which form a complete

orthogonal basis set defined over the intervall]-For a 1D

discrete signaf(x), 1<i <N, the 1D Legendre moment of

orderp is given by:

N

RPN

wherex=(2i-N-1)/(N-1) andP,(x) is the ¥ order Legendre
polynomial given by

_2p+1

L= ®

2p—-2K)!

Kl (p—-K)!(p—2k)!

wherex belongs in the span [-1,1]. Legendre polynomials
were calculated with appropriate recursive relat[@s].
Legendre moments of orders 0-39 were calculatedHer
GSR and IBI signals (featuregsr_LgXX and ibi_LgXX
respectively, wherXX is the moment order), taken from the
first 25 seconds of each trial so as to ensureotmity in
the extraction process. Prior to feature extragtgignals
were sub-sampled at 4Hz and normalized to theijestib
specific  global min and max values by
X (i) = (X (i) = X, ) (X0~ X, ), WhereX is either the GSR

or IBI signal,X(i) is a GSR or IBl samplé, andX. are

the GSR or IBI signal's min and max values recorded

during all the specific subject’s game-playing IgiaOnly

the first 40 orders were extracted as features;uthe of

higher ones would increase complexity and was not

expected to provide added value. As shown in [iitdse

orders were capable to capture information conveyed

through signal frequencies approximately up to @.5H
Krawtchouk moments are based on a set of orthorlorma

polynomials; the n-order Krawtchouk classical polynals

are defined as:

N
K, p.N) =Y a,, X =,F (-n—x—N;
k=0

p-2k

@

P9 =25 ()"

4
p
wherex,n=0,1...N, N>0, p belongs in the span (0,1) agk}

is the hypergeometric function [18Veighted Krawtchouk
polynomials K (x; p,N)) were introduced in [18]. For a 1D

@)

signalf(x;) of length N, the weighted Krawtchouk moments
Q, are defined as

Q= >R, (-Lp.N-Df(x) @
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wherex;=i-1. In our casep was taken equal to 0.5, in order induction of further emotions, such as irritatiocold anger.
for the region-of-interest of the feature extraotimocess to  Therefore, it was rational to expect the appearaote
be centered at the half of each trial’s first N ptea The 40 frustration in subjects during the session, an &mat state

: that was monitored by self-reports (mid-trials disesaires)
first Krawtchouk moments (0-39) were calculatedhw(4) ; . X
for the GSR and IBI time series (featurgs_KrXX and throughout the experiment. After each trial, thebjsct

o . . answered a few questions directly assessing her/his
ibi_KrXX  respectively, XX is the moment order), by empgtional state. Among these questions were Lieated

following the same specifics as in the afore-déscti (1-5 with labels in the range “Not at all’-“Veryhi¢h”) ones
Legendre moments case. The analysis was restiictéte  regarding the self-assessment of boredom and dtigsirthat
first 40 orders; in this case information conveybtbugh the subject experienced during the last trial, @l @as one
signal frequencies approximately up to 0.8Hz waswad.  asking whether s/he wanted to play the game again.

The moment-based feature variations proposed i [13 Data was collected from 19 subjects (14 male, Safejn
were also extracted and assessed over their effgetis in  Who frequently used computers in their work. Thesze
the present work's context. These moment-basecurieat between 23 and 44 years old, and their averagevage9.
variations have the rationale of suppressing thaticst In total, 221 trials were recorded. The collectéasignals
parameter of the original moments calculation; he. area  data was annotated as “Not Frustrated” (NF) or Skrated”
between the projection polynomial and the x axibictvis ~ (F) on the basis of the subjects answers to therétion self
always identical. By using (5) and (6) instead Bf ¢nd (4) assessment question. Each trial after which theen® this

respectively, these features are defined as: question was “1” or “2” was labeled as belongingtte NF

N class. If this answer was “4” or “5”, the trial wassigned to
L7 = (2p+DD_ P, (%)(f(x)-1) () the F class. Trials after which the respective amsmas “3”

i=1 were excluded from further analysis. As a resul, a

—od N — annotated dataset (A) consisting of 195 trials, hd®nging
Q. =D K, (i-Lp,N-1(f(x)-1) ®)  to the NF and 46 to the F class, was obtained. Mere one
i= further annotated dataset (B) was deployed, fortimgaa 3-
Based on the first 40 Legendre polynomials, 40ufest class ER problem, where trials were labeled as bawed”
were extracted from GSR and IBI signals (featureqNB), “bored and not frustrated” (B/NF), or “borezhd
gsr_LgmoaXX and ibi_LgmeeXX), by following the same frustrated” (B/F). The idea behind dataset B wasvaluate
procedure as in the original Legendre moment-béesstdres  the given biosignal GSR and IBI features over their
case, and using (5) instead of (1). Similarly, lyng (6)  capability to differentiate between cases of subjedo are
instead of (4), 40 further Krawtchouk-based featuneere 1) not bored, 2) bored, but not frustrated, 3) bpte the
extracted from each signal (featuregsr_Krn,sXX,  extent where frustration has also appeared duriGty For
IDI_Kr moaXX). this purpose, all trials after which the subjeei'swer to the
boredom self-assessment question was “1” or “2hétiag
absence of boredom) were annotated as NB. Thefre&ls
were annotated as B/NF or B/F, in respect to thevan to
All aforedescribed features were extracted fromthe frustration self-assessment question, similadythe
biosignals recorded through the experimental pmcesannotation of dataset A. Trials for which the anseither to
described in [13]. The specific experiment hadgheose of the boredom or the frustration self-assessmenttignesas
naturally inducing negative emotions like boredom t “3” were excluded. As a result, dataset B consisted68
subjects, by the repetitive playing of the sameeeidame. trials in total, 55 NB, 70 B/NF and 43 B/F.
The game utilized was an easy “3D Labyrinth” omeeéch
repetition (trial), the subject started from thensapoint and IV. RESULTS
had to find the exit of the labyrinth, which wasvays Initially, the subjects’ answers to the mid-trials
located at the same place. The “3D Labyrinth” rdslechon  questionnaires were analyzed on the basis of Kkndal
its gameplay basis to modern commercial games glaye correlation coefficient, examining correlations veetn
vast amounts of gamers worldwide (i.e. 3D-basedt fir boredom, frustration and the tendency to resigmfgame
person role playing games). At the same time, teradl  playing. Boredom correlated inversely to the suigec
repetitive playing procedure lacked in all threeMslone’s  willingness to continue playingt (= -0.784, p<0.001,
intrinsic  qualitative factors for engaging game ypla N=195). Inverse correlation was also found betwésn
(challenge, curiosity and fantasy) [19]. As a resalthough latter and the player’s frustrationr & -0.208, p<0.001,
at the beginning the game could be considered stwatew N=195); frustration and boredom were also found to
exciting, as soon as the subject had learned thitesth path  correlate € = 0.325, p<0.001). These results support the fact
to the labyrinth exit, boredom and negative ematidoe to  that boredom and frustration are two negative emnati
loss of interest were naturally induced. states of great importance in the context of vigames.
Taking into account the appraisal theory [20], thain  Their efficient automatic recognition from futurearge-
factor manipulated during the experimental sessims playing systems could contribute towards ensuriagner
novelty, the absence of which is a key factor fordolom  playing quality and player satisfaction.
induction. Furthermore, low novelty may result thet

Ill.  FRUSTRATIONINDUCTION THROUGH REPETITIVE
VIDEO GAME PLAYING
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In order to examine whether the moment-based fesitur
under consideration can improve automatic recogmitf
frustration that is induced during HCI, an LDA-bdse
classifier was utilized, trying to solve classifioa problems
related to frustration detection, which were forated by the
annotated data sets described above. Followingeleae-
out cross validation, the LDA weights as well as thass
centroids were calculated on the basis of the tsain and
each test case was classified as belonging tests distant
class, similarly to [13,21]. Classification accuraevas
assessed in terms of the correct classificatioa (@CR =
number of all cases correctly classified / totamiver of
cases). In order to find features with the bestrdisnation
capabilities between emotional classes, a Sequenti
Backward Search (SBS) [21] feature selection peess
employed, using the CCR as the feature selectiberion.
SBS was applied on several initial feature setsiésof them
described in Table II), as explained in the follogi

TABLE II. DESCRIPTION OFFEATURE SETS WHERESBSWAS
APPLIED, CONSISTING OF BOTHGSRAND IBI FEATURES

Feature Set Features
CONV All conventional features extracted from GSR antl IB
M gsr_KrXXandibi_LgXX features (XX=0-39)
Mmod gsr_KrmeeXX andibi_LgmeaXX features (XX=0-39)
M CONV andgsr_KrXXandibi_LgXX features
(XX=0-39)

M CONV andgsr_KrmeXX andibi_LgmeaXX features

mod (XX=0-39)

A. Frustration Detection with Conventional Features

Using initially only GSR or IBI conventional featg as
initial feature sets for SBS, max average CCRs t©6®%
(132/195; NF: 102/ 149, F: 30/46) and 78.46% (193/1
NF: 115/149, F: 38/46) were respectively achievBg.
fusing the GSR and IBI conventional features, featset

CONV was formed, from which SBS selected features: GSR 75 |

{Mean, SD, f' Deriv avg, f' Deriv RMS, # of SCRs, Avg
SCR Amplitude,d, 8norm fa Ynorm_FL, fo_FL}, IBI {SD,
LF/HF, RMSSD, pNN50ynorm fe» Mean_FL, LF/HF_FL,
RMSSD_FL, d_FL, 8nom_FL}. These features achieved a
max CCR of 83.59% in dataset A (Table IIl). In linéth
findings of previous works, the joint use of contienal
GSR and IBI features was found effective towardsrmaatic
frustration detection, yet at a relatively limitetcuracy
level.

TABLE III. CONFUSIONMATRIX AFTERSBSON CONV FEATURE SET
Annot Classified Classified Total CCR per
ated as as NF asF Class
NF 126 23 149 84.56%
F 9 37 46 80.43%
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B. Frustration Detection with Moment-based Features
Only

Krawtchouk and Legendre moment-based features were
found in [13] the most descriptive transformatiasfsthe
GSR and IBI modalities respectively. Following tHise,
SBS was applied in the present study to featusekagst and
Libi; the first contained the 4@sr_KrXX features and the
second the 40bi_LgXX ones. WithKgsr, a max CCR of
77.44% (151/195; NF: 123/149, F: 28/46) was acldeive
dataset A, wherealsibi produced a 68.21% (133/195; NF:
104/149, F: 29/46) CCR. Then, feature Igetvas formed by
fusing Kgsr and Libi. With this feature set, a max CCR of
80.51% (157/195; NF: 124/149, F: 33/46) was obthine
@  Applying similar analysis for the moment-based tieat
variations, two further feature sets were fed te 8BS,
KmoddSr and Lpogibi, consisting of allgsr_Krm,gXX and
ibi_LgngXX features extracted respectivelyK,gsr
produced a max CCR of 75.90% (148/195; NF: 122/F49,
26/46) and_ibi achieved 71.79% (140/195; NF: 116/149,
F: 24/46). A further initial feature set was form@d.q) by
fusing the above features, over which the SBS phoee
produced a max CCR of 82.56% (161/195; NF: 129/F49,
32/46). Concluding, by completely replacing conieml
features with moment-based ones, frustration detect
accuracies close to the initial one (of BONV feature set)
were achieved in dataset A.

95

90

CONV M M CM CM

‘mod mod

Figure 1. Max average CCRs obtained over Dataset A from éis¢ b
features selected.

C. Fusion of Conventional and Moment-based Features

SBS was then applied to feature sets built fronnfuthe
conventional features with the moment-based onesatuFe
setCM consisted of the conventional features, togethtr w
all gsr_KrXX andibi_LgXX ones. In theCM,,q feature set,
the gsr_KrogXX and ibi_Lgmn.g XX moment-based feature
variations were fused with the conventional feaur8BS
over CM produced a CCR of 91.79% (179/195; NF:
142/149, F: 37/46), significantly higher (by 8.2%pn the
result obtained fromCONV. Moreover, SBS oveCM
achieved even higher frustration detection accui@aple
IV); the best model built after SBS contained iiis thase
features: GSR{sr_KrgXX; XX=2,4,5,8,9,14,19,20-22,26,
27,39}, IB{Mean, SD, LF/HF, pNN50yqorm fe, Mean_FL,
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LF/HF_FL, 8norm_FL, Ynom_FL, ibi_LgmaXX; XX=3-6,11,20,
27,36,39}.

were examinedCONV_bf and CM,q_bf. For CONV_bf, the
best features selected fro@ONV in Section 4.1 and
F _Set Cin [13] were used for the LDA-f and the LDA-b

TABLEIV.  CONFUSIONMATRIX OF SBSON CMumou classifiers respectively. F@M,,q_bf, the best combinations
(CCR=93.33%182/195) . .
of conventional and moment-based features repoited
Annot | Classified | Classified Total CCR per Section 4.3 and [13] were used for the LDA-f anel tiDA-b
atedas | asNF asF Class classifiers respectively
NF 140 9 149 84.56%
TABLE V. CONFUSIONMATRICES PERFEATURE SET FOR THE3-
F 4 42 46 80.43% CLASSERPROBLEM
Cases| Cases Classified
As shown in Figure 1, fusing conventional featunéth Feature | Anno as ggtsaés CCR
moment-based ones significantly increased the acguof Set tated | 5 | B/ | g | Ny Per Total
frustration detection among dataset A. B&M and CM g as NF Class
feature sets increased the max average CCR compared NB | 41 | 10 | 4 55 | 74.55%
CONV; by a maximum 9.74% in the latter case. The conv BINF | 14 | 44 | 12 70 62.86% 70.83%
significance of this increase in performance wawed by a or | 1 8 a2 | 23 | 7007% 1197168
two-tailed paired t-test (p<0.001). Within the bdatal §
feature set (selected frofBM,.), all conventional GSR NB |45 9 | 1 55 | 81.82% 62,749
features were replaced by moment-based ones, timdj¢ae CMuoq BINF| 8 | 55| 7 70 | 78.57%) D2 74%
significance of the GSR moment-based feature vanatin B/F 1 3 | 39 43 | 90.70% 1397168
the context of automatic frustration detection. fSuen

example is the GSR SD, which although selected from
CONV, it was discarded from SBS in tl@&M, .y case and
replaced by moment-based GSR features, despitdathe
that the specific feature has been found in the pés
particularly significant towards automatic frustoat
detection. Regarding the IBI signal, several montersted
features were selected in the final best modet;buiwever
they were not capable to totally replace conveafiames.
Some of the latter (e.g. pPNN50) were kept in thet beodel,

Following this approach allowed conventional featuro
achieve an average CCR of 76.19% (128/168) amoa@ th
classes, significantly increased (by 5.36%) congbaoethe
respective result shown in Table V. Similarly, ire tcase of
CMoq_bf, accuracy reached a CCR of 88.69% (149/168),
increased by 5.95% compared to Table V. These tsesul
further depict the contribution of moment-basedusss in
the domain of automatic ER; automatic multi-clasR E
and this underlines their significance towards mnattic systems.based on c.onvennonal fgatures can be ezthan
towards increased efficiency by various techniquegposed

frustration detection. Nevertheless, it has to beesd that . th i 21 d ting th X :
another such feature, RMSSD, was replaced by memeng] e past (e.g. [21]), and augmenting them withrmant-
ased features can lead to even increased effeetise

based features in the best final model built.

D. Joint Automatic Detection of Boredom and Frustration V. CONCLUSIONS

The effectiveness of moment-based features wassesse In this work, experimental evaluation showed that
also on the basis of a three-class ER problem, ritsva augmenting conventional biosignal features with rentn
building a system capable to detect either notdyobered, based ones, significantly enhances the efficierfchimary
or subjects being bored and frustrated as welbrtter to do ~ frustration detection (NF vs. F), which is inducédring
so, SBS was applied over feature S2BNV and CM g, in HCI. Moment-based features were also found effectiver
respect of the afore-described dataset B. As shivam @ joint frustration and boredom detection ER prohle
Table V, the joint use of moment-based featuresh wit regarded from a 3-class perspective (NB vs. B/NFBVE).
conventional ones significantly increased (by 1%9the When this problem was split into simpler binary snthe
total accuracy of the LDA-based classifier over gseen 3-  accuracy of conventional features increased. Howete
class ER problem. highest CCR was once more obtained by conventional

It has been shown in the past that more-than-tasscl features fused with moment-based ones.

ER problems can be effectively split down into sienp Biosignal sensors are anticipated to become wsgles
binary ones, so as to increase ER efficiency [Bdllowing ~ smaller and less obtrusive in the future. This wélve the
this line, the afore-described original 3-class nfjoi Wway for future practical HCI systems augmented with
boredom/frustration recognition problem was alstit $pto ~ biosignals-based automatic affect detection caipiasil Such
two binary ones; boredom and frustration detectibwo @ case could be an affective game playing systetnifi be
binary LDA classifiers were used in cascade, thwstfi Capable to understand in real-time whether negative
regarding boredom (LDA-b) and the second regardingmotions like frustration have appeared and sulesety
frustration recognition (LDA-f). Cases were firtassified as adapt, so as to ensure game-playing quality. Simalionale
B/NB by LDA-b. Then, cases classified as B were fed can be followed in further HCI constructions as Iwéte e-
LDA-f, which decided whether the subject was alsolearning systems etc. It has to be noted howehat,ib the
frustrated (B/F) or not (B/NF). Again, two featwset types ~present study, the real-time monitoring of frustratvas not
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the immediate target, and off-line processing wadied to
biosignals. Nevertheless, the on-line calculatibbiosignal
features based on the theory of moments can bededjas

feasible in future developments, since the proogspbwer [10]
of modern PCs, along with multi-threading technijue
already allow the simultaneous real-time extractibriarge
sets of biosingal features. [11]

The results of the present analysis clearly shoat th
moment-based features are significantly helpful s
enhancing effectiveness in automatic detection efative  [12]
emotions like frustration induced during HCI, whighin
turn expected to be of great importance towardsiréut [13]
affective game-playing systems and other HCI appbas
as well.
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