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Abstract— Survey agencies in the United States continue to 

move many map-based surveys from paper to handheld 

computers.  With large highly diverse workforces, it is 

necessary to test software with a diverse population.  The 

present work examines the performance of participants 

grouped by their level of spatial visualization.  The 

participants were tested in either the field or in a fully 

immersive virtual environment. The methodology of the study 

is explained.  The performance of the participants in the two 

environments is modeled with least squares regression.  Results 

of the study are presented and discussed.  
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I. INTRODUCTION 

 

     Survey agencies in the United States have been moving 

towards using handheld computers to replace the use of 

paper in their field operations.  Since most field surveys are 

inherently location dependent, a lot of the software used will 

be map-based.  Agencies, like the Bureau of Census, are 

forced to couple this move to map-based software with a 

highly diverse workforce, especially in large scale 

operations like the decennial census.  Due to the wide range 

of individual differences typically encountered in such 

diverse workforces, software testing is a critical component 

of this process.  Ultimately, the software has to be tested in 

the field to fully understand how it will perform.  However, 

a significant issue with testing in the field is the cost.  An 

interesting question is the viability of doing at least the 

initial testing of software in a virtual environment. 

 

     In the present work a study is described that looks at the 

participant’s performance in either the field or in a fully 

immersive virtual environment.  The task chosen for the 

study was address verification, where a census worker is 

given a list of addresses and they are expected to either 

determine the address is correctly located on their map or 

make the necessary corrections. The contribution of this 

paper is the direct comparison of a complex real world 

operation performed in both the field and virtual reality.  

This initial study didn’t show very much difference between 

performance in the field and virtual environments.  We did 

see a significant impact of the role that spatial visualization 

played in both environments. 

 

     In the remainder of the paper we look at related work, 

examine the methodology used in the study, present the 

statistical results, and provide a discussion of what we 

found. 

II. BACKGROUND 

 

      Wobbrock et al. [24] proposed ability-based design as a 

paradigm for constructing individual-centric systems.    

According to Murray & Kluckhohn [18],”Every man is in 

certain respects (a) like all other men, (b) like some other 

men, (c) like no other man” (p.35).  Benyon, Crerar, & 

Wilkinson [3] predicated the prominence of cognitive 

differences in human-computer interaction on the divide 

between physical and digital artifacts and noted that 

cognitive differences may have amplified effects in 

computing contexts (pp. 21-22).   

 

     Spatial ability is a compound factor that has often been 

linked to performance in interactive tasks. Several authors 

have used factor-analytic techniques to decompose spatial 

ability into constituents.  In the nineties, [5] and [16] 

reported that it consists of five parts: spatial visualization, 

speeded rotation, closure speed, closure flexibility, and 

perceptual speed. Earlier publications by [6] and [20] 

suggested other combinations. Spatial visualization ability–

defined by [9] (p. 173) as “the ability to manipulate or 

transform the image of spatial patterns into other 

arrangements”–has been shown to correlate with 

performance with command-line interfaces [11, 4], file 

system navigation [22], searching an information retrieval 

system [8], web browsing [25], simulated driving [1], and 

remote control of robots [15].   

 

      Beyond the combination of software and hardware, we 

also need to consider the field operating environment, which 

presents a multitude of stimuli and a continuously changing 

external context, unlike the traditional computer desktop. 

Whether a field setting can be reasonably approximated in a 

laboratory virtual environment is still an open question. Ref. 

[17] highlights the tradeoff between experimental control 

and ecological validity in traditional research methods and 

suggest that improved-fidelity virtual reality may reduce the 

compromise.  If correct, their claim has practical 

implications, as well: virtual reality may become a low-cost 

alternative for field training.  Two components that 

distinguish reality from a virtual environment are distance 

perception [23] and embodiment [2]. Ref. [10] compared 

environmental learning from the real world, non-interactive 
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video, and a desktop virtual environment, concluding that 

spatial ability is correlated with learning in both the real 

world and virtual environment, with a stronger effect for the 

desktop simulation.  Ref. [21] compared walking patterns in 

reality and on a treadmill in non-immersive virtual setting, 

noting persisting small differences in gait after 20 minutes 

of acclimatization.  Ref. [19] showed that increasing display 

size and resolution improved wayfinding and object location 

performance in a non-immersive virtual setting. The 

outcomes in these publications suggest that as we improve 

visualization and locomotion technologies, we may be able 

to run virtual reality experiments approaching ecological 

validity.  Refs. [13] and [14] used a study design that 

appears similar to ours but was driven by a different agenda.  

The authors constructed a high-fidelity virtual reality model 

of a residential area in the United Kingdom and asked 27 

participants to navigate to five locations inside an 

immersive environment designed by [7]. Participants had 

access to schematic maps, detailed maps, and written and 

spoken route instructions on a handheld device that served 

as a pathfinding aid.  The authors described three different 

pathfinding behaviors, noted geographical hot spots for 

handheld device activity and per-destination aggregate 

device activity. The focus of the research was on linking 

location to handheld usage, and the authors did not report 

measures of statistical validity.   In contrast, we set out to 

find statistical evidence for performance differentials on a 

software map task.  Our experiment includes both a virtual 

reality and a field setting.  Additionally, our task is a 

software task that has a navigation component.  Finally, the 

virtual environment in [13, 14] had a lesser degree of 

immersion, because participants navigated with a joystick 

and the virtual model was projected on up to three VR 

walls. 

III. MATERIALS AND METHOD 

 

      The experiment contained a screening phase and an 

exercise phase.   

 

A. Screening phase 

 

      During the screening phase, one-hundred-and-twenty-

four participants were individually assessed on spatial 

visualization, visual memory, perceptual speed, and 

perspective-taking ability. The tests were VZ-2, MV-2, and 

P-2 given in [9], and the perspective-taking assessment 

described in [12]. Participants with spatial visualization 

scores greater than or equal to 15 or less than 9 (out of 20) 

were randomly assigned to one of two treatments in the 

exercise phase.  Pairs from either the low or high spatial 

visualization groups were randomized together, allowing 

each participant a 0.5 probability of assignment to either be 

tested in the virtual reality treatment or the field treatment. 

Thirty-two participants (14 males, 18 females) were 

assigned to the second phase of the experiment. 

 

B.  Field phase 

 

      For the field treatment, 15 participants (8 males, 7 

females) were taken individually to the same spot in a 

residential neighborhood in Ames, Iowa. They were first 

trained on using the handheld device, locating addresses in 

the field, and the think-aloud protocol.  An observer 

provided them with a stylus and a handheld computer: a 

Pharos Traveler 535x with a 240x320, 3.5” transflective 

screen and a 624 MHz Intel PXA270 processor.  The 

observer explained the address verification task. 

 

      Participants would have to physically walk to an address 

in order to answer the question. If the map contained errors, 

they had to use the software’s editing features to position 

the address at the correct location or remove it altogether.  

Four outcomes were possible. An address needed to either 

be added to the map, deleted, moved to a new location, or 

confirmed without changing the map.  Participants were told 

to only correct the addresses in their task list and to ignore 

other possible errors on the map. (The map contained no 

errors outside of scenario addresses.)  Participants were then 

taught how to edit the software map and were also 

instructed to verbalize all their thoughts for a think-aloud 

protocol.  The map software was started in training mode 

and participants were asked to locate and verify three 

training addresses in the immediate vicinity, while the 

observers answered procedure questions and provided 

feedback on the quality of the think-aloud.  At the end of the 

training session, observers answered the participant’s final 

questions, and also explained that observers would not talk 

during the actual exercise, other than to prompt the 

participant to keep verbalizing or to ask about behavioral 

details. Observers then returned the participant to the 

location where all trainees started, switched the map 

software to experiment mode, and started an audio recorder 

(worn by the participant) and a GPS tracker (carried by the 

observer).  The GPS tracker was not given to the participant 

so that they would not be interrupted to time-stamp address 

completions.  

 

     All participants verified the same six addresses off of an 

identical randomized list order (Figure 2), and therefore 

could not benefit from completion sequence hints. The list 

could be viewed at all times in the software by tapping the 

currently selected address.  Errors for each address in the 

task list are shown in Figure 1.  Participants were allowed to 

work on addresses in any order and could return to 

previously submitted addresses as many times as they 

wanted.  Only final answers were evaluated for correctness.      

When finished, participants were then taken to two locations 

on the map and asked to point in the direction of the starting 

spot.  Finally, observers audio-recorded an exit 

questionnaire detailing the participant’s perceptions of the 

study. 

275Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-250-9

ACHI 2013 : The Sixth International Conference on Advances in Computer-Human Interactions



 

 

start 

 
Figure 1. Address errors introduced on the map. 

C. Virtual reality phase 

 

      Seventeen participants (6 males, 11 females) were 

randomly assigned to the virtual reality treatment and were 

taken individually to the VRAC C6 immersive virtual 

reality environment on the Iowa State University campus.   

 

Virtual reality model-The virtual setting loaded in the 

environment was a high-fidelity three-dimensional model of 

the residential area portrayed in Figure 1, with an additional 

block modeled outside the westernmost and easternmost 

extents of the map.  The model was created in SketchUp 

(www.sketchup.com) and imported into the virtual reality 

environment through VR Juggler (www.vrjuggler.org). 

Housing units and streets were georeferenced. However, 

actual housing units were represented by house models of 

similar size and style selected from Sketchup’s repository of 

three-dimensional housing models (sketchup.google.com/ 

3dwarehouse/).  The neighborhood model also incorporated 

notable landmarks in the area, such as, street signs, curbs, 

textured surfaces, a day sky with sun, trees, shrubs, a 

playground, and a large building on the Iowa State 

University campus that was visible in some parts of the 

study area.  The model did not include sidewalks, but did 

represent multi-lane streets and split boulevards, keeping 

throughway widths consistent with reality.  

 

Virtual reality equipment-The virtual reality room is a cube 

with dimensions 3.05 x 3.05 x 3.05 m.  Each of the four 

walls, floor, and ceiling displayed stereo images of 4096 x 

4096 pixels at approximately 16 frames per second.  Video 

projection is driven by a cluster of 48 HP xw9300 

workstations with 96 nVidia Quadro graphics cards sending 

video frames to 24 Sony SRX-S105 digital cinema 

projectors.  InterSense’s IS-900 tracking system tracked the 

participant’s head location and gaze direction, and the stereo 

perspective dynamically shifted with the user’s gaze.  The 

participants wore active stereo glasses.  

 

Moving in virtual reality-Movement in the environment was 

accomplished by stepping towards the desired direction.  A 

circular spot in the center of the floor, approximately 0.6 m 

in diameter, was the “dead zone”. If the participant’s head 

was located in the column of the spot, all movement 

stopped.  Stepping outside the dead zone would start 

moving the virtual reality model in the opposite direction of 

the step, giving the illusion of the participant moving 

through the model in the direction of the step. As the 

participant stepped closer to the walls, movement speed 

increased, from approximately 0.1 m/s to a maximum of 

approximately 2.22 m/s (8 km/h or 5 mi/h).  We fixed the 

maximum speed to a slow trot, because we were concerned 

that a higher speed could not be encountered in the range of 

walking speeds available to participants in the field 

treatment, and a lower maximum speed might bore 

participants, causing them to lose focus. 

 

Protocol changes-Study protocol was exactly the same as in 

the field treatment, but prior to introducing the handheld 

device, participants were trained on moving inside the 

virtual environment.  Participants also started training and 

the exercise at the same geographic spot in the virtual model 

as participants in the field. 

 

Data collection and analysis-We tracked: distance traveled 

via GPS and virtual movement logs, time taken to complete 

the task, and number of addresses incorrectly verified 

(number of task errors). The virtual reality model was 

georeferenced, so travel coordinates within the immersive 

environment reflected actual distances.  Additionally, we 

recorded all handheld software actions and user speech from 

the end of the training session to the end of the exit 

questionnaire. 

 We used least squares regression to explore 

statistical relationships among the data.  Our response 

variables were distance traveled, time taken to complete the 

task, and number of errors.  Predictor variables included 

spatial visualization category (low or high); field/virtual 

environment category; gender; perceptual speed, visual 

memory, and perspective-taking scores; and zoom, pan and 

map reset actions.   

 

We hypothesized that: 

 
Hypothesis 1: High-spatial-visualization participants would 

travel significantly shorter distances than low-spatial-
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visualization participants in both the field and virtual 

environments. 

Hypothesis 2: High-spatial-visualization participants would 

take significantly less time than low-spatial-visualization 

participants in both the field and virtual environments. 

 

  

              
  

Figure 2. Edit screen with address list extended. 

    
 

Figure 3. Participant in the virtual reality treatment. 

       In addition, we expected that there would be some 

impact on the participants between treatments, especially 

the participants with low spatial visualization in the virtual 

environment. 

 

IV. RESULTS 

 

     The results reported in this paper are based on least 

squares regression models.  The focus has been to look at 

two slightly different sets of variables.  The first model 

looks at how a set of variables based on the environment 

and the participant impact performance measures (e.g., time 

and distance), while the second model adds a software 

flavor to the analysis by adding a variable that incorporates 

map resets and pans. 

 

A. Regression based on Environment and Participants 

 

      The first model examines the impact of the environment 

(E = 0 Field or 1 Virtual), spatial ability (S = 0 High 

Visualization or 1 Low Visualization), and gender (G = 0 

Female or 1 Male) on time and distance.   

 

      In particular we looked at Y = E + S + E*S + G, where 

Y is the prediction of either log(time) or log(distance) and 

E*S is the interaction of the environment and the 

participant’s spatial ability assignment. 

 

     The regression results for log(time) and log(distance) are 

shown in Tables I and II, respectively.  

 

TABLE I. REGRESSION RESULTS FOR LOG(TIME). 

 

 Estimate Std.Error t-value Pr(>|t|) 

(Intercept) 3.338 0.112 29.814 0.000 

Env 0.083 0.159 0.524 0.605 

Spatial 0.398 0.152 2.622 0.014 

Gender 0.005 0.107 0.050 0.961 

Env:Spatial 0.014 0.209 0.068 0.946 

 

TABLE II. REGRESSION RESULTS FOR 

LOG(DISTANCE). 

 

 Estimate Std.Error t-value Pr(>|t|) 

(Intercept) 0.021 0.117 0.177 0.861 

Env 0.268 0.166 1.617 0.117 

Spatial 0.373 0.159 2.355 0.026 

Gender 0.029 0.111 0.261 0.796 

Env:Spatial -0.425 0.218 -1.944 0.062 

 

      The most interesting aspect of the results shown in the 

two tables is the significance of the participants’ level of 

spatial ability in both results (Pr(>|t|) = 0.014 and 0.026, 

respectively.  The regression model for distance (Table II) is 

suggestive that the interaction of E and S is important with 

Pr(>|t|) = 0.062.   

 

      The box plots for log(Time) and log(Distance) mediated 

by the interaction are shown in Figures 4 and 5, 

respectively.  While the box plots don’t provide too much 

information, they do provide some insight.  First, in Figure 

5 it appears that high spatial participants in the virtual 

environment traveled greater distances than the high spatial 

participants did in the field.  The log(Time) boxplot (Figure 

4) is suggestive that spatial ability is important in terms of 
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the time taken (log(Time)).  Such a result makes sense in 

light of the significance of spatial ability seen in Table I.   

 
Figure 4. Boxplots for log(Time) vs E*S. 

 
Figure 5. Boxplots for log(Distance) vs E*S. 

 

B. Including Software Operations in the Regression 

 

      To bring the software performance of the participants 

into the regression model, we defined a variable (Resetpan) 

as a measure of how many times a participant interacted 

with the map on the handheld device.  Formally, ResetPan is 

defined by 

Resetpan=0.5(Resets-mean(Resets)/sd(Resets) + 

Pans-mean(Pans)/sd(Pans)). 

The choice of map resets and pans was motivated by the 

experiment observers’ experience in both the field and 

virtual environments.   Tables III, IV, and V show the 

regression results for the least squares regression models for 

log(Time), log(Distance), and Errors, respectively. 

 

TABLE III. REGRESSION RESULTS FOR LOG(TIME). 

 

 Estimate Std.Error t-value Pr(>|t|) 

(Intercept) 3.111 0.12 25.979 0.000 

Env 0.041 0.138 0.297 0.769 

Spatial 0.301 0.134 2.235 0.034 

Gender 0.039 0.093 0.424 0.675 

Resetpans 0.036 0.011 3.213 0.003 

Env:Spatial -0.005 0.181 -0.026 0.979 

 

TABLE IV. REGRESSION RESULTS FOR 

LOG(DISTANCE). 

 

 Estimate Std.Error t-value Pr(>|t|) 

(Intercept) -0.200 0.128 -1.563 0.130 

Env 0.227 0.148 1.541 0.135 

Spatial 0.278 0.144 1.932 0.064 

Gender 0.062 0.099 0.626 0.537 

Resetpans 0.035 0.012 2.915 0.007 

Env:Spatial -0.443 0.193 -2.292 0.030 

 

TABLE  V. REGRESSION RESULTS FOR ERRORS. 

 

 Estimate Std.Error t-value Pr(>|t|) 

(Intercept) 2.219 0.772 2.875 0.008 

Env -0.123 0.888 -0.138 0.891 

Spatial 1.811 0.867 2.089 0.047 

Gender 0.338 0.597 0.565 0.577 

Resetpans -0.029 0.073 0.000 0.696 

Env:Spatial -0.919 1.164 -0.790 0.437 

 

       From the results in the three tables, it appears that the 

spatial ability levels of the participants was again an 

important variable as it is significant for log(Time) (Pr(>|t|) 

= 0.034 in Table III) and for Errors (Pr(>|t|) = 0.045 in 

Table V).  It was also suggestive for log(Distance) (Pr(>|t|) 

= 0.064 in Table IV).  As expected, Resetpans showed up as 

significant for both log(Time) and log(Distance) results.  

Interestingly, it doesn’t show up as a factor in the number of 

errors made by the participants.  Finally, as in Table II, the 

interaction between the environment and the level of spatial 

ability was significant for log(Distance) (Pr(>|t|) = 0.031 in 

Table IV).   

V. DISCUSSION 

 

      The spatial visualization ability level of the participants 

was a significant factor in the regression models for all but 

the regression model for log(Distance) using the Resetpan 

variable and was suggestive there. The boxplots in Figures 4 

and 5 show some support for the hypotheses given earlier 

except for the virtual environment participants in the 

log(Distance) boxplot.  Somewhat surprising was how little 

impact the environment (and the interaction between the 

environment and spatial ability) had in the experiment.  

Beyond the suggestion of a difference in the distance 
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traveled between high spatial visualization ability people in 

the field versus high spatial visualization ability people in 

the virtual environment (Figure 5), we did not find a 

separation based on the environment.   

 

Two issues that made it difficult to work with the data 

were the number of participants used in the study and the 

high level of variation that we found in the performance of 

low spatial participants, especially in the virtual 

environment.  The number of participants that we used in 

the experiment was a function of the difficulty that we had 

in finding participants with a low level of spatial ability.  In 

spite of testing a large pool of subjects in Phase I, we 

struggled to find a sufficient number of low spatial ability 

participants to increase the size of the experiment.   

 

VI. CONCLUSION AND FUTURE WORK 

 

The experiments provided support for the development of 

map-based user interfaces that work with both high and low 

levels of spatial ability.  Since we were unable to find a 

significant difference due to environment, testing software 

in the virtual environment remains a realistic possibility.  

However, we expect that we will have to do more testing 

with an increased Phase II sample size in order to validate 

such an approach.  
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