
Software Lifecycle Activities to Improve Security Into Medical Device Applications

Diogo C. Rispoli , Lourdes M.
Brasil

Graduate in Biomedical Engineering
University of Brasília at Gama

Brasília, Brazil
e-mail: drispoli@gmail.com,

lmbrasil@gmail.com

Vinicius C. Rispoli
Faculty of Engineering at Gama

University of Brasília
Brasília, Brazil

e-mail: vrispoli@unb.br

Paula G. Fernandes
Computer Science Department

University of Brasilia
Brasília, Brazil

e-mail: paulag6@gmail.com

Abstract—This work proposes a methodology to include into
Medical Software Development Lifecycle activities that helps
improve security. The methodology uses assessment techniques
and methods, applied to each phase of software lifecycle, that
address security concerns and help to improve software
quality. As a result, a partial analysis using the methodology
proposed was performed in medical software at development
stage to help reduce its gap between safety and security
requirements.

Keywords-information security; security software; hackers;
medical software lifecycle; security risks.

I. INTRODUCTION
In a scenario of constant technological evolution, the

demand for solutions in medical field is constant.
Nowadays, you can find free software available on the
internet which collect vital information of individuals and
can be installed on mobile devices, such as smartphones and
tablet computers [1]. Despite this speed, standards focused
on medical field do not present models that make possible to
assess problems associated with common security
vulnerabilities that may appear in the software development
cycle.

Standards as ISO / IEC 62304:2007 [2] dealing with the
medical equipment software development, although recent,
do not handle with these new technological perspectives. On
the other hand, ISO 27799:2008 [3] deals with security
concerns of health information systems, but it does not
address solutions related to secure software development,
compared to the present moment.

This very moment of technology effervescence opens
doors for hackers to exploit and promote invasions as the
attack on an insulin pump documented and presented in [4].
Based on a simple technique that combines programming
skills and basic electronics, the hacker undertakes an attack
on an insulin pump, used by himself, in order to
demonstrate the innocent perspective that these devices are
built. As a final result, he can apply a lethal dosage of
insulin breaking the authentication security required by the
equipment wireless communication.

Remembering that this was not the first case of attack
documented on medical devices. In 2008, a U.S. team of
researchers published a paper that showed an attack on a

pacemaker, which also exposed security flaws related to
wireless equipments [5].

Evidently, there is a rush in adopting standards, and
actions, to ensure the security of the software built for
medical devices. The exploitation of vulnerabilities in
medical equipment can lead to death or serious injury, fraud,
unauthorized disclosure of information, theft, and other
attacks. For this reason, it is necessary to ensure that
information security requirements (integrity, confidentiality,
availability and non-repudiation of data collected) are met
as well as ensuring that software vulnerabilities are not
included in these devices during its development lifecycle.

This article will discuss requirements for improving the
security of medical applications based on risk assessment of
information security and the correlation of requirements for
software security standards and their mitigation techniques
related to safety in life support. As a result of this work,
activities, also known as touch points, will be shown and
assessed through a software development lifecycle helping to
ensure the security requirements needed to consider software
secure and safe.

This document is divided in six sections. In the next
section, the relationship between risk perspective from safety
and security views will be discussed. In section three, we
will present the importance of software lifecycle and the
incorporation of security activities into software
construction. In the fourth section, the assessed software and
its characteristics will be presented. Software assessment
against the methodology proposes will be shown the in fifth
section. And, in last section, will be discussed the assessment
results.

II. SECURITY RISKS
In order to associate issues that are seemingly

disconnected, it is important to observe how software
security aspects are linked to medical devices construction.
Under the perspective of the software, the risks are paths
through the application where attackers (hackers) can
disrupt business or organizations [10].

Observing this look from the perspective of the
equipment, the risk (or level of concern) is an estimate of
the injury severity which equipment can inflict or allow,
directly or indirectly, in a patient or operator, as a result of
device failure, design flaws, or because of the device
employment for its intended use [9].

280Copyright (c) IARIA, 2013. ISBN: 978-1-61208-250-9

ACHI 2013 : The Sixth International Conference on Advances in Computer-Human Interactions

Figure 1. Applications Security Risks [10].

Objectively, these two views are very close because risks

are directly related to software failures or weaknesses in its
control mechanisms. Its natural consequence is the
subversion and many kinds of damage, primarily damage to
life, but also financial and corporate image caused by
malicious people.

Threat agents can use several paths over application in
order to attack organizations. These paths are through
exploration of security weaknesses to bypass security
controls and cause technical and business impacts, as it can
be seen in Figure 1.

From this perspective, raising, mapping and balancing
risks, flaws and vulnerabilities introduced by problems in
the construction of medical software becomes exhausting,
ineffective and away from the current technological reality.
There are many patterns as you can see in Figure 2, dealing
directly (such as IEC 62304:2006) or indirectly with
software development lifecycle and its associated security
risks [11].

Figure 2. ISO/IEC 63304 and its relation to other standards [11].

However, there is a lack of methodologies that address
mitigation aspects for exploitable vulnerabilities in software.
It is important notice that IEC 62304:2006 address security
as concern that manufacturers shall include in software
requirements [2].

The ISO 27799:2008, which concerns to medical
information systems, do not treat or address solutions
related to the process of building secure software.
Notwithstanding, this standard imposes requirements on the
operation of informational systems as secure authentication,
authorization, accountability, use of encryption, secure
information communication and protection against code
injection. These are relevant aspects where the software is
the leading actor or an important supporting actor [3].

Observing the processes of quality assurance employed
in medical applications, the aspects of validation and
verification are only concerned with functional requirements
of the software [10].

 So, it is necessary list interactions with the lifecycle of
the software that shows a path to perform penetration tests
and audits, raise non-functional requirements for safe
operation and deployment of applications, including risk
analysis of vulnerabilities in software design, protect
applications against command injection flaws and buffer
overflow, properly handle errors and exceptions and logging
sanitized records (after removing sensitive information) of
users activity in the equipment operation [3, 8, 10, 12].

It is also important to design efficient mechanisms for
authentication, secure session management, user
authorization, authenticated encryption for secure
transmission, storage of collected data and records of
patients with the goal of increasing the guarantee of the
safety and quality of information systems health and its
related applications, whose assets are devices and their
associated software [3, 10].

III. SOFTWARE DEVELOPMENT LIFECYCLE AND
SECURITY CONCERNS

Lifecycle models organize development software
activities and provide a framework to monitor and control a
building software project and its future operation. Without a

281Copyright (c) IARIA, 2013. ISBN: 978-1-61208-250-9

ACHI 2013 : The Sixth International Conference on Advances in Computer-Human Interactions

model is difficult to say the exact moment of project’s
development or validation phase and how or which
situations control activities must be applied [7, 8].

Despite Quality Systems Regulations (QSRs) do not
establish a specific lifecycle model for medical software,
regulatory standards state that a model adoption is important
and it should contain at least some phases like quality
planning, requirements management, software project
specification, coding, testing, installation, operation, support
and maintenance [7, 9].

Development of checklists with controls to be applied
can aid incorporation of secure coding practices throughout
the construction of medical software. The use of security
software techniques does not necessarily increase the cost of
its development lifecycle, in order to correct problems and
failures of this nature cost more after application
development finishes [8].

Adoption of security techniques is expected since
medical software is able to run into smartphones and other
mobile devices, for example, and all information collected
and transmitted by those devices are sensitive and
confidential.

Software development lifecycle is part of project controls
and these controls are needed to reduce flaws insertion in
medical device [7]. So, to help mitigate medical software
vulnerabilities problem is essential to indicate what
activities must be implemented between software lifecycle
phases. These activities are related to the identification,
development and validation of techniques that difficult
vulnerabilities exploitation in software operation.

An interesting way to improve software security and
quality is perform security activities through software
lifecycle. Those activities are responsible to manage
security concerns and must be applied inside lifecycle
phases instead deal with security concerns only at
requirement phase, as suggested by IEC 62304:2006 [2]. A
correlation between phases and activities can be seen in
Figure 3; they were described for general software projects
in [8].

It is important to notice that there is no specific
methodology to use the described security touch points.
They can be applied in every kind of software development
lifecycle methodology [8].

A. A brief description of each touch point
The touch points are described as follows [8]:
Abuse Cases – Build abuse cases is relevant to do

relationship between problems and risk analysis. At that
moment is important observe if some attack pattern fits the
system or software requirements. This is a good moment to
model vulnerability scenarios that could be exploited in
Code Review Phase and Penetration Testing Phase.

Security Requirements – Security requirements must
cover functional security, safety requirements, raised abuse
cases and attack patterns. In that phase every software
security necessity must be mapped to ensure the correct

implementation. A good example for security requirements
is the correct use of cryptography to protect critical data.

Figure 3. Security touch points inside a lifecycle [8].

Architectural Risk Analysis – Completing risk analysis
oriented by ISO 14971. This analysis is a small part of a
Risk Management Process that every Manufacturer must
apply complying with ISO 14971, according to [2].

Risk Based Security Tests – The testing strategy must
cover at least to major topics: test security requirements
with standard functional testing techniques and risk-based
security testing build from abuses cases and attack patterns.

Code Review – After codification, and before testing
phase, the code review analysis is a good activity to ensure
the security requirements were well implemented and the
vulnerabilities listed in abuses cases analysis are outside the
software. The code review can be automatic or manual and
each strategy has pros and cons. Automated tools do not
enforces all scenarios; some will require manual assessment
[14].

Penetration Testing – This is a set of techniques and
tools used together to test the software application
dynamically against design flaws or vulnerabilities. This
activity is important to guarantee that the software or its
infrastructure do not have any potential problem that can be
exploited in a particular way and change its behavior on the
fly.

Security Operations – It is very important to log the user
activity into software system usage. Even more important is
to maintain that data in a correct and protected manner, to
ensure that the attacker or attack activities can be tracked
down after the attack attempt.

IV. SOFTWARE ASSESSED
The assessed medical device is responsible to monitor

vital signs from a patient and send collected information to
an Android smartphone. This system, showed as a diagram at
Figure 4, is divided into a Body Sensor Network (Figure 5a),
composed by a sensor set that monitor vital signs, a
Coordinator sensor that collects information from body
sensors in a regular basis and re-send that data to the
smartphone and the Monitor software (Figure 5b) that
evaluate patient conditions time to time. For this software /

282Copyright (c) IARIA, 2013. ISBN: 978-1-61208-250-9

ACHI 2013 : The Sixth International Conference on Advances in Computer-Human Interactions

equipment no injury is possible, arranging it into Class A
classification, according to [2].

Figure 4. Monitor System Diagram.

This medical device is developed as a research project of
the Software Engineer Group from Computer Science
Department at University of Brasilia and was provided as a
courtesy for this assessment. The research group responsible
for developing the monitor system is not the same group that
performed the software analysis. Notice that the only part
assessed in this work is the Monitor software. Mechanical
parts, sensors and smartphone hardware are not part of that
analysis. Monitor software was developed in Java Language
to run in Android devices.

This software uses the Software Product Line (SPL)
methodology to build reusable components. In SPL, each
product is a different piece of software that has some
common artifacts in its structure [17]. In medical area, the
use of SPL methodology brings some problematic issues
related to validation and verification of safety characteristics.
So, the research team [17] built Monitor software to verify
the use of a parametric validation checking model to ensure
safety properties (availability, reliability, security, integrity
and maintainability). It was done because all medical device
software must have dependable and reliable characteristics to
guarantee safety.

This device and its related software were a good
candidate to security evaluation since the software was in
early development state and uses an unusual development
methodology for medical devices. It is especially interesting

to see if security activities really fit into a new development
methodology or perspective.

V. ANALYSIS OF THE SOFTWARE BASED ON THE
METHODOLOGY PROPOSED

The analyzed software was not plan or built with any
security touch point in mind. To help improve the software
security and safety was performed an evaluation to propose
and add touch point activities into software lifecycle,
especially into building steps. Those touch points could be
added into software lifecycle at any time, but it is better to do
it when the software contains those activities from the
scratch.

There are some steps to assessment take place. These
steps can be related with one or more touch points each time
and they were performed to track the assessed software into a
security lifecycle.

Just for the record, safety practices listed at ISO
62304:2006 and other standards will not be ignored here but
overlapped by security perspectives. It will be added at
software process to increase safety and establish security.
For example, risk analysis, abuse cases and risk-based tests
are already present in safety related processes and this work
will bring security concerns to these activities.

Abuse cases are related with vulnerabilities and flaws.
For this analysis were defined SQL injection vulnerability
and authentication and authorization problems as abuse
cases. SQL injection, for example, could reveal validation
problems in application. That is a common vulnerability in
software [10, 14, 15] and must be mitigated. Authentication
and authorization problems could show problems related to
software design flaws [15].

Risks, in a security perspective, are directly related to
software failures or vulnerabilities. The risk for SQL
injection vulnerability is information disclosure and for
authentication and authorization problems are non-
legitimate user accessing and exploring the application. The
risk-based security tests will be related to the risks
specified. In code phase, these risks must be mitigated to
ensure no path for exploitation.

Figure 5. (a) Body Sensor Network (left). (b) Monitor software interface (right).

283Copyright (c) IARIA, 2013. ISBN: 978-1-61208-250-9

ACHI 2013 : The Sixth International Conference on Advances in Computer-Human Interactions

Code review is an important control strategy. This
methodology comprises, at least, the following elements:
Track user-controllable entry point data and review source
code responsible for process it, search evidences to ensure
that there is no vulnerability related to risks in source
code and look for known patterns for common
vulnerabilities and perform a line-by-line review of risky
code to understand application logic and flaws that may
exist [14, 16].

The code review phase could use tools, but it is
necessary keep in mind that tools does not do all work.
Manual review is always required.

Problems related with abuse cases and with risks
specified above were found in Monitor software source
code when performed a detailed code review. Field
validation and authentication controls are not properly
implemented. Examples of vulnerabilities found in source
code review are shown in Table 1.

TABLE I. SOME PROBLEMS FOUND IN CODE REVIEW

Vulnerabilities

Flaws Class Name Line
Number

1
Logging of user
activity Global (Many Classes) N/A

2 No validation on
input field AccountMaintainActivity.java 142

3 Persistent
Command Injection UserDAO.java 119

To confirm that problems found in source code review

could really be exploited, a penetration test must be
performed. There are, at least, three phases involved in
penetration testing: test preparation, test and test analysis
as shown in Figure 6.

First phase is related to scope, objectives, timing and
duration of the test. All legal agreements must be
arranged during this phase. Second phase is considered
the bulk of penetration test process. This phase involves
application information gathering, vulnerability analysis
and exploits. Results are investigated and analyzed in the
last phase. The final report generated must be
comprehensive and systematic [18].

Security operation is concerned with platform
problems that could happen while software is working.
Monitor software must be configured following Android
Platform security specifications and requirements, as
show in [13]. Examples of described requirements are
data protection, cryptographic practicalities and use of
protected communication channels.

This work is not confirming source code review with a
penetration test since application is on early development
stage. As soon as Monitor software development starts
follow a security development plan, regular dynamic
evaluation will be performed as soon as software becomes
mature.

Figure 6. Penetration Test Phases [18].

Despite code review was not confirmed with
penetration test, the common flaws shown in Table 1 are
enough to demonstrate that touch points must be
considered in software development lifecycle. A hacker or
an attacker with moderated knowledge can exploit these
software flaws easily.

VI. CONCLUSION AND FUTURE WORK
This assessment showed the importance of observing

the security aspects in the software development lifecycle.
The standards used for regulation of medical device
software do not take into account security concerns. These
aspects can make all difference in final software security
and also in patient safety.

It is responsibility of QSRs deal with security concerns
clearly. In general, standards for normalization of
validations and verification are worried about functional
aspects of software operation. Security issues are
generally collateral problems that persist in all phases of
software lifecycle, until software finishes its production
life.

The monitor software used in the analysis was not
designed, and as consequence, built with security
concerns. So, every kind of security issue can appear in
assessment. Since assessed software is in earlier stage of
development, it is easier to map problems, flaws, issues
and vulnerabilities and create a plan to mitigate them.

Generally, this kind of assessment produces lots of
confidential results, and it is difficult to show them
without brake non-disclosure agreements and/or reveal
sensitive information about software internal structure.
More relevant results were discussed directly with design
and implementations teams involved in research project.

284Copyright (c) IARIA, 2013. ISBN: 978-1-61208-250-9

ACHI 2013 : The Sixth International Conference on Advances in Computer-Human Interactions

Unfortunately, securities problems are only solved
when entire team involved in software construction are
conscious about how it can affect in software operation.

To create this kind of conscience lots of actions are
important. But, only organizations that have a security
culture and security personal with secure coding and
assessment skills can address these actions correctly.

In next steps, a complete penetration test will be
performed, trying to exploit vulnerabilities found in code
reviews and confirming that risks mapped were mitigated.

ACKNOWLEDGMENT
The authors would like to thank Software Engineer

Group from Computer Science Department at University
of Brasilia for allowing the analysis performed at Monitor
software. This software is part of a research project
entitled Ambient Assisted Living Product Lines.

REFERENCES
[1] H. Fraser, Y. Kwon, and M. Neuer, The future of connected

health devices, IBM Institute for Business Value, New
York, 2011.

[2] IEC 62304, Medical device software – Software life cycle
processes, 1st ed, Geneva, 2006.

[3] ISO 27799, Health informatics – Information security
management in health using ISO/IEC 27002, 1st ed,
Geneva, 2008.

[4] J. Radcliffe, "Hacking Medical Devices for Fun and
Insulin: Breaking the Human SCADA System", Black Hat
Conference, Las Vegas, 2011,
http://media.blackhat.com/bh-us-
11/Radcliffe/BH_US_11_Radcliffe_Hacking_Medical_Dev
ices_WP.pdf, 01.01.2013

[5] D. Halperin, et al., “Pacemakers and Implantable Cardiac
Defibrillators: Software Radio Attacks and Zero-Power
Defenses”, Proceedings of the IEEE Symposium on
Security and Privacy, Oakland, 2008, pp. 129-142,
doi:10.1109/SP.2008.31.

[6] S. R. Rakitin, “Coping with Defective Software in Medical
Devices”, Computer Magazine - IEEE Computer Society,
v. 39, 2006, n. 4, pp. 40-45, doi: 10.1109/MC.2006.123.

[7] D. A. Vogel, Medical Device Software Verification,
Validation, and Compliance, Boston: Artech House, 2011.

[8] G. McGraw, Software security: building security in,
Boston: Addison Wesley Professional, 2006.

[9] U.S. Food and Drug Administration, Guidance for the
Content of Premarket Submissions for Software Contained
in Medical Devices. 1st ed, New Hampshire, FDA, 2005.

[10] Open Web Application Security Project, OWASP Top Ten
– 2010 The Ten Most Critical Web Application Security
Risks, CC:OWASP, 2010.

[11] K. Hall, “Developing Medical Device Software to IEC
62304”, European Medical Device Technology Magazine,
v. 1, n. 6, June 2010.

[12] R. J. Anderson, Security Engineering: A Guide to Building
Dependable Distributed Systems, 2nd ed, Indianapolis:
Wiley Publishing inc, 2008.

[13] J. Six, Application Security for the Android Platform, 1st
ed California: O’Reilly Media, Inc, 2012.

[14] F. Long, D. Mohindra, R. C. Seacord, D. F. Sutherland, and
D. Svoboda, The CERT Oracle Secure Coding Standard for
Java, 1st ed, Michigan: Pearson Education Inc, 2012.

[15] D. Stuttard and M. Pinto, The Web Application Hacker’s
Handbook: Finding and Exploiting Security Flaws. 2nd
ed Indianapolis: Wiley Publishing inc, 2011.

[16] M. Paul, Official (ISC)2 Guide to the CSSLP, 1st ed,
Florida: CRC Press, 2011.

[17] V. Nunes, P. Fernandes, V. Alves, and G. Rodrigues,
“Variability Management of Reliability Models in Software
Product Lines: an Expressiveness and Scalability
Analysis”, I: SBCARS - Simpósio Brasileiro de
Componentes, Arquitetura e Reutilização de Software,
Natal - Brazil, 2012, pp. 113 - 122.

[18] A. G. Bacudio, X. Yuan, B. B. Chu, and M. Jones , “An
Overview of Penetration Testing”, International Journal of
Network Security & Its Applications (IJNSA), v.3, 2011,
n.6, pp. 19-38, doi: 10.5121/ijnsa.2011.3602.

285Copyright (c) IARIA, 2013. ISBN: 978-1-61208-250-9

ACHI 2013 : The Sixth International Conference on Advances in Computer-Human Interactions

