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Abstract—We instrumented a car simulator by gathering
low level data and fed it to an artificial neural network in
order to perform blood alcohol content (BAC) estimations.
The results depend on the quality of the data extraction and
processing, and also on the selected inputs. We explain our data
extraction and processing methodology, and how we used it to
generate reliable and comparable features. At last, we describe
the performances of individual features and how they combine.
In the end, the prototype was able to accurately estimate the
BAC value of a subject after being trained with driving samples
of this subject with various BAC values.

Keywords-Blood Alcohol Content; Driving; Interface; Artifi-
cial Neural Networks; Intelligent systems; Machine learning;
Instrumentation; Interface; Regression; Classification; Feature
Selection; Car; Simulator;

I. INTRODUCTION

A. Problematic

Drunk driving is a major cause of accidents on the road.
Alcohol alters people behaviour and ability to drive properly
in many ways that are well known. We are working on a
way to determine whether an user is in condition for driving
or not, and estimate this user’s blood alcohol content. The
most common device for such a task is the breathalyzer. We
however proposed a method for doing so without using a
breathalyzer or any invasive device, by only monitoring how
the user performs in ordinary tasks (the general methodology
was described in [1]). In the current case, we monitor a car
simulator controls and any available data from the embedded
calculators, and analyze the driver’s behaviour (we first
presented the method for ”car” monitoring in [2] with a
racing game, and later with a car simulator in [3]). In order
to do so, we had to train an artificial neural network (ANN)
in order to make it capable of patterns detection within
monitored data in real time. In this paper, we will discuss
the methodology for data extraction and processing in order
to perform this task. We will also discuss the issues that
can impair the results, and present the monitored data. We
will then describe some of the obtained features, along with
results showing the performances of the network for each
feature.

Figure 1. Our realistic car simulator (left) and its “force feedback” steering
wheel with pedals (right).

B. Methodology summary

We will now provide a quick summary of the methodol-
ogy (more on this in [1], [2] and [3]).
Our subject did consume an amount of alcohol, and then
drove in our realistic car simulator (“Stars AF 2011”, pre-
sented in [3] and provided by “ApportMédia”) on a highway
scenario with a countryside road at the end (Fig. 2). The
simulator runs on a personal computer equipped with a
Logitech G25 force feedback steering wheel with pedals
(depicted in Fig. 1)

While the subject was driving, numerous low level data
related to the controls and other parameters have been
monitored. Before driving, the blood alcohol content value
had been measured with a consumer class breathalyzer. We
thereby obtained a set of monitored data associated with
a BAC value. The subject repeated the operation (we call
that a run) multiple times in order to provide examples with
various BAC values so that we could create an example base.

Our final goal was to estimate the BAC value of the
driver by feeding the monitored data to an ANN (a classical
multilayer perceptron with back-propagation learning based
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on the FANN library [5]). Whereas we could monitor
many low level data, not all were suitable for our task.
Furthermore, among the compatible data, we had to make
some processing in order to be able to feed it to the ANN.
We will at first describe how we gathered the low level data
from the simulator. Thereafter, we will discuss how it had
to be processed to produce features (potential ANN inputs),
and afterwards present some of the obtained features. At
last, we will present some results and discuss the impact of
features selection on the ANN results.

C. On the realistic aspect of the simulator

When we use the term “realistic”, we don’t mean that the
prototype used could replace a real car. Visually, we consider
it realistic because it represents what an user would see in a
car. It is not photo-realistic, but the cars are modelled after
real cars, and so are the roads and environment. The software
is considered realistic enough to be used for learning drivers
in driving schools in France and Europe. However, in no
mean we expect neither our prototype nor the software to
replace real cars experimentation. Indeed, the user sees the
virtual world through a screen that lacks the peripheral vision
accessible in a car, and in this version, the controls are
different from a real car controls (this point will howbeit
be addressed in the next experiment, since we will be using
real car controls in a hardware simulator with the same
software). Furthermore, motion sensations are lacking, and
various details too. Nevertheless, our prototype is realistic
enough to analyze driving behaviour alterations caused by
alcohol, and to validate our methodology and hypothesis.

Figure 2. The simulator software features ”realistic” graphics.

II. INSTRUMENTATION OF THE SIMULATOR AND
MONITORING OF THE CONTROLS.

A. low level data collection

The first task was to monitor low level data by instru-
menting the simulator. Our simulator uses a script language
that enabled us to read data from the physics engine (ac-
celeration, speed ...) of the simulator, the position of objects
(distance between cars, position on the road ...), and the state
of all user controls (steering wheel, pedals, etc.). However,
we can only read the instant value of those data at a given
time. In order to be able to analyze the driver’s behaviour, we
have to be able to work on the evolution of the values of the
variables. Since we had no way of knowing what data may
or may not be useful before running the ANN, we decided

to gather all the accessible values as often as possible. The
simulator refreshes the values 50 times per second (one
computation cycle per frame displayed on screen, and the
frame rate isfixed at 50 per second), and all our variable can
be read at each frame. We thereby obtain a vector of 28
values each 20ms. Gathering data at a constant time interval
is important, since it enables us to compute the variation in
time of each value easily.

B. collected data

An exhaustive list of the 28 variables instrumented is
presented in Table I. The first column indicates the id of
the variable, and the second gives a description of the
value monitored. Although most are self-explanatory, we
will detail those who are not. The ”range” column indicates
the interval of values than can be expected, completed by the
type in the next column to describe the ensemble of possible
values.

The variables 22 to 25 describe the surface under each
wheel. In our scenario, it can be either 1 for road, or 2
for off-road. Other values are used for snow and other
environments that was not present in our scenario.

We also gather the position of all vehicles, including the
user’s, but it is unused for now (other than for computing
the distance to the closest vehicle in variable 14). Obviously,
not all measures are meaningful in each experiment : here
we decided to use an automatic gearbox car in the simulator,
which explains why we don’t use the clutch pedal readings.

C. Creation of suitable inputs from low level data

When the subject has finished driving on a scenario, we
obtain a matrix of data that must be processed in order to be
usable by the ANN. As we are not using a time based ANN
model, we must generate suitable potential inputs (features)
for the ANN. The simplest way to obtain a feature that reflect
the behaviour of the subject on an interval of time is to use
a statistical indicator, such as the average of the value. For
some variable, such as vehicle speed, it provides a suitable
feature whereas for other data (such as variable 20), it would
not provide meaningful or comparable data . Therefore, we
must for each variable study how it can be exploited and
generate the corresponding features.

D. On normalization of features

Since the duration of the monitored run can vary, we had
to ensure that the features used would be comparable. On
the one hand, some features give the number of occurrences
of an event, and must then be divided by the duration of
the run. This provides us the frequency of the considered
event, which does not depend on time (of course, in order
to remain a significant parameter, the duration has to be long
enough). On the other hand, other features were generated
using averaged values, or similar computation. In this case,
there is no need to divide the feature by time, as they are
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Table I
LOW LEVEL MEASURES INSTRUMENTED FROM THE SIMULATOR

ID Name Range Type Notes
0 Accelerator pedal position 0;1 float
1 Brake pedal position 0;1 float
2 Clutch pedal position 0;1 float unused in this experiment
3 Steering wheel position -1;-1 float
4 Vehicle speed 0;60 float
5 Vehicle roll -1;1 float
6 Vehicle pitch -1;1 float
7 Vehicle engine RPM 0-8000 int unused.
8 Instantaneous fuel consumption 0+ float unused.
9 Instantaneous CO2 production 0+ float unused.
10 Instantaneous CO production 0+ float unused.
11 Instantaneous HC production 0+ float unused.
12 Instantaneous PM production 0+ float unused.
13 Instantaneous NOX production 0+ float unused.
14 Distance to closest vehicle 0+ float
15 Front wheel sleep angle -1;1 float
16 Rear wheels sleep angle -1;1 float
17 Vehicle acceleration on ~X axis -1;1 float
18 Vehicle acceleration on ~Y axis -1;1 float
19 Vehicle acceleration on ~Z axis -1;1 float
20 Engine gear ratio {0,1,2,3,4,5,6} int 0=no gear engaged, and 6=back. Unused.
21 Lights state {0,1,2,3} int unused
22 Surface under front left wheel {0,1,2,3,4,5} int 1=road, 3=offroad
23 Surface under front right wheel {0,1,2,3,4,5} int 1=road, 3=offroad
24 Surface under rear left wheel {0,1,2,3,4,5} int 1=road, 3=offroad
25 Surface under rear right wheel {0,1,2,3,4,5} int 1=road, 3=offroad
26 Left indicator state 0 or 1 bool unused
27 Right indicator state 0 or 1 bool unused

already comparable. When needed, we used time as our
divider. But we also could have used the number of measures
used for the considered feature. Some features can have
quite different ranges, so in the end, all values should be
normalized relatively to each other to use the same range
(in our case 0 to 1 or -1 to 1). We did so, and we often
noted an improvement of experimental results when doing
it.

E. How much pre-processing should be done on the data?

We made a design choice of not introducing human
intelligence in the analysis of data (or as few as possible).
We could indeed probably have simplified the problem for
the ANN by constructing more complex, and higher level
features that would be very specific to the problem of blood
alcohol content. It may thus reduce the amount of work
necessary for ANN optimization. However, doing so would
also make our device dedicated to our current problem,
whereas we wanted it to be usable for a wider class of
problems related to drivers. We still have to provide results
on other problems, but the designed prototype will be usable
with no further modification.

Overall, we tried to create generic and and simple features
in order avoid being specific.

III. PRECISION OF THE MEASURES

Precise measurement is important in order to create an
example base. Indeed, the more precise are the measures,
the less loss of accuracy we can expect on the trained ANN.

A. On instrumented variables

For the instrumented variables, in our case, we had no
problem with the accuracy of the variables instrumented,
as we use a simulated environment. The measures was
therefore completely exact whereas when instrumenting a
real device, the accuracy of the measurements must be taken
into account. However, if we can have access to numerous
variables, it becomes possible to select the most accurate
for features generation. Furthermore, the combination of
multiple features may compensate inaccurate measures.

B. Breathalyzer accuracy issues

The other part of the problem is the measurement of the
BAC of the subject (or the expected output of the network,
in a general case). We conducted tests on several subjects,
and found that our breathalyzer can provide noisy measures,
as shown in Fig. 3. In the first case, the BAC value increases
of +0.11g.l−1 in 7 minutes before and after a decrease. In
the second case, it decreases by −0.09g.l−1 in 5 minutes in
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the second case. The decrease of BAC value in the second
case is 6 times bigger than the average alcohol elimination
value of human beings, and in the first case, the variation is
quite unstable. We can conclude that the variations shown
here depicts an important noise in measures, thus degrading
our device accuracy. In the first case such an increase is not
a problem, however we should have a constant variation,
and not an increase preceded and followed by decreases,
considering that the subject did not consume any alcohol
for 20 minutes. For this subject, we think that an important
part of the variation is noise. This is not the case for all
subjects, but in this experiment, we could not have more
reliable measures with a consumer class device. In the worst
cases presented here, the noise could be up to 0.1g.l−1,
which degrades the accuracy that we can obtain.

Ideally, we should have used a law enforcement class
breathalyzer, but the costs for such a device is considerably
higher than ours. Furthermore, obtaining such a device may
be difficult due to the fact that they are not meant to be sold
to regular citizens.
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Figure 3. Evolution of BAC over time for two subjects.

When excluding some subjects that had excessive varia-
tions, we increased the accuracy of the prototype. However,
we decided to keep as many subjects as possible in order to
have more generalist results.

IV. OBTAINED FEATURES

After processing the low level data collected, we gener-
ated 25 features, that are presented in Table II.

For each feature obtained, we have an identifier (F0 to
F24), and a descriptive name. Most are self explanatory, but
we will describe those who are not. The third row indicates
if this feature is already normalized or not. Then the ”from”
row tells what low level data from the Table I was used to
generate the feature.

For the following rows, we present results that will be
detailed later on. The idea is that we created a training base
using only one feature, trained the network, and then tested

it in generalization. We present regression results (Rx) that
will be detailed in section V.

As mentioned earlier, we did not use the gear controls in
this experiment. We however plan to use the clutch pedal and
gearbox selector in future experiments. It must be noted that
we can generate other features from the car’s controls, but
we decided to start with a few and then expand the list. We
can thus consider the use of sub-features such as the average
variation of a pedal when increasing the pressure, and when
decreasing the pressure, or the duration of an action on the
controls (average brake use duration, average duration of
acceleration pedal increase time, decrease time...)

For now, we will explain some the used features. Many
are related to the steering wheel, and steering wheel actions.
We define a steering wheel action as a sequence of measures
that starts when the steering wheel leaves the neutral (centre)
position, and ends when it comes back to this neutral
position. F0 gives the average duration of those actions.
F6 is a variation in which we consider only the part of
the action where the user turns the wheel in a constant
direction. We stop the timer when he reverts the rotation of
the wheel. F5 gives the count of direction changes operated
on the steering wheel. F3 monitors how often the user was
turning to one side before moving the steering wheel in the
opposite side (e.g. the wheel was turned left, then reverts
to neutral before going into the right half). For F1 and F4,
we use ”proximity alerts”, which means that the distance to
the closest vehicle goes below a fixed value. F1 gives the
amount of measures where it occurred, while F4 counts the
number of sequences where it happened (a sequence begins
when the subject drives below the safety distance and ends
when he goes farther. The set of measures is counted as one
proximity alert sequence).

V. RESULTS

A. Measurement of the ANN success rate in generalization

Using K-Fold cross validation, we test our network in
generalization. When we perform classification tasks, if the
output of the ANN corresponds to the expected class, we
count a valid response, and otherwise we count an error. In
the end, we divide the number of valid responses by the
number of examples tested in generalization.

For regression purposes, we had to introduce a maximal
tolerated error, ε. For each value returned by the ANN,
we compute the distance between this value (N) and the
expected value (E) : dist = |E − N |. If it is below a
fixed epsilon, we count a success. Otherwise, we count a
failure. We then compute the success rate of the ANN in
generalization.

B. Analysis of the individual features results

The subject performed a total of 28 runs, which corre-
sponds to approximately one hour and a half of driving in
the simulator. Due to the fact that most of the examples had
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Table II
FEATURES EXTRACTED FROM LOW LEVEL MEASURES.

The ”source” row gives the corresponding measure used from table I. R1 gives individual success rates for ε = 0.2,
and R2 for ε = 0.1. Both are expressed in percent. ”Avg error” gives the average error of the network in g.l−1.

ID Name Normalized Source R1:ε = 0.2 R2:ε = 0.1 Avg error
F0 Average steering wheel action duration yes 3 75 50 0.126
F1 # of proximity alert measures no 14 92 46 0.124
F2 # of steering wheel actions no 3 92 53 0.108
F3 # of car direction changes no 3 78 50 0.106
F4 # of proximity alert sequences no 14 75 46 0.106
F5 # of changes of rotation direction of steering wheel no 3 89 50 0.122
F6 Avg duration of constant direction steering wheel actions yes 3 78 50 0.124
F7 # of measures with a wheel out of the road no 22-25 78 53 0.108
F8 # of measures with any wheel out of the road no 22-25 85 53 0.117
F9 Average vehicle speed yes 4 85 53 0.118

F10 Average steering wheel shift from neutral pos. yes 3 96 46 0.109
F11 Average roll of the car yes 5 85 53 0.111
F12 Average pitch of the car yes 6 82 50 0.112
F13 Front wheels avg sleep angle yes 15 85 50 0.118
F14 Rear wheels avg sleep angle yes 16 82 46 0.123
F15 Average accelerator pedal position yes 0 85 46 0.119
F16 Average brake pedal position yes 1 82 46 0.119
F17 Average steering wheel position yes 2 82 42 0.113
F18 Average vehicle acceleration on ~X axis yes 17 96 53 0.116
F19 Average vehicle acceleration on ~Y axis yes 18 96 53 0.111
F20 Average vehicle acceleration on ~Z axis yes 19 82 50 0.120
F21 Average accelerator pedal variation yes 0 85 46 0.116
F22 Average brake pedal variation yes 1 78 46 0.120
F23 Average steering wheel variation yes 3 100 50 0.108
F24 Average vehicle speed variation yes 4 50 50 0.121

BAC values below 0.5g.l−1, we could not create an unbiased
classification base, and then only present regression results.
In the R1 column, we present the features individual success
rates for ε = 0.2 and in R2 for ε = 0.1. When looking at the
results of R1 (ε = 0.2), we note important variations, with
a results ranging from 50% for F24 to 100% for F23. Some
features seem to be much more discriminant than other. As
one feature reaches up to 100% of success rate, there is no
point in combining inputs. We therefore decreased ε to 0.1.
In that case, individual results are much lower(42 to 53%),
and little variation exists between most features. It is hard
do discriminate the best features, and we can see that the
best features in R1 are not always the best features in R2.

C. Combining features

Now we will combine features in order to see how the
network performs. When using the 4 best features, according
to the results of R1 (F10,F18,F19,F23), we obtain a 75%
success rate, with an average error of 0.089764 for ε = 0.1
(do note that R1 results are for ε = 0.2). With only one
feature, we obtained at best 53%, and combining features
improved significantly the results.

We will now combine features according to R2. How-
ever, the results of the features are close, so we can have
multiple configuration of 4 of the best features. When

using F2,F7,F8,F9, we reach a 71.43% success rate and
an average error of 0.091848. With another configuration,
F2,F7,F11,F18, we reach 78.57% and an error of 0.080105.
In both cases, we kept an ε of 0.1.

When we use the 4 best features according to the average
error (F2, F3, F4, F23), we obtain a 78.57% success rate, and
an average error of 0.077460. This configuration reaches the
best success rate until now, and obtains the lowest average
error.

We tried to combine various features, without considering
if they are among the ”best” or not, but rather by using fea-
tures related to varied controls or data. A good combination
was F2 F7 F13 and F18, with a 82% success rate and an
average error of 0.085317. Using various sources provided
to offer good results, so we tried with more inputs (F2 F8
F13 F18 F19 F22) and reached 85.71% with an average error
of 0.088704.

VI. CONCLUSIONS

Our prototype showed that it could reliably estimate the
BAC of a subject. We were able to obtain success rates up
to 85% in generalization, when training the device with less
than one hour and a half of driving. If integrated in a real
car, it means that we could quickly gather data to create a
learning base. Of course, for blood alcohol content estima-
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tion, there would be some practical complications for the
creation of the base. For all that, the described methodology
can be applied to many physiological parameters estimation.

When a simple and cheap solution is available, it may not
be interesting to use our method. However, some physiolog-
ical parameters of a subject are quite complex to acquire,
requiring invasive, pricy or long procedures. In such cases,
our method could prove to be quite useful : the cost of
the device in both time and money only has to be spent
once to create a large enough example base, and won’t
require invasive procedures when used in real life situation.
Furthermore, on contrary to some methods that provides a
measure with a delay, we can provide estimations in a short
time, and continuously, so that the variation of the monitored
parameters could be considered.

The main downside of this method is that it may require a
long search for the most suitable features. The quality of the
features used must also be ensured : whereas the ANN won’t
use bad features, including those makes the selection of good
inputs longer. Creating the system can be quite complex, but
it should provide a reliable, transparent, fast, non-invasive
and economic way of estimating user parameters. Of course,
the more precise are the measures, the more accurate the
prototype should be. This implies that increasing the initial
investment in both cost of used measurement hardware and
number of examples monitored should provide an improved
device while maintaining exploitation costs at constant level.

The selection of features can’t be done by only using
the individual success rates of features for a fixed ε. As
a matter of fact, the best features changed from a ε to
another. When combining the best features according to the
individual average error, we obtained the lowest average
error, but not the best success rate. It seems hardly feasible
to obtain a simple metric to establish the performance of a
feature, considering that individual scores may not reflect the
potential effectiveness of combined features. A more com-
plex solution could be to use something like the saliency of
Optimal Brain Damage [6] : after having trained the network
with all features, we could study how the suppression of an
input cell corresponding to a feature impacts the network’s
performances. This value could provide a good metric.

VII. PERSPECTIVES

In this paper, we presented the results of a single user
example base, but we will try to create multi-user bases in
order to determine if the system could learn from multiple
subjects so that it could estimate the BAC of an unknown
subject. Although it was not the scope of this paper, it will
be interesting to see how multi-user bases impacts the results
presented here.

Our next goal will be to proceed with experimentation on
tiredness and attention using the same software, but in an
hardware simulator, with realistic car controls. Instrumenting
will be done on the same basis, but with more available

data (such as gear ratio, pedal...). The use of the simulator
hardware should provide a driving experience closer to real
cars, and enable us to collect more accurate data. We are also
considering the use of data related to events rather than the
average behaviour of the subject, like variation of various
parameters when specific events occur (e.g. an accident, a
dangerous situation, a change of the driving conditions...).

In the long term, we are looking forward to conduct
similar experiments into real cars or trucks. However, we
need to keep improving our prototype in the simulator in
order reduce the number of experimentation needed in real
cars, so that we can reduce the potential cost of development.

We are also looking forward to determine whether or not
a subject is able to drive, and if not, what impairs his skills
up to the point that he or she should not drive. This will
be much more complex and require a collaboration with
researchers in medical science. It should however be a good
illustration of a complex to establish diagnostic about the
subject that can’t yet be done automatically.

Overall, we want to be able to detect various causes that
alters the ability to drive of a subject.
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