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Abstract  — Gesture-based interaction models can be efficient
and  simpler  to  understand  if  designed  to  correspond  to
common user interactions with the physical world. This paper
presents  a  3D  interface  and  its  implementation  to  quickly
perform navigation and manipulation tasks in multi-scale and
multi-resolution 3D scenes using a low-cost consumer sensor:
the Leap Motion controller. The developed system has the goal
of  exploring  the  potential  of  accurate  hands  and  fingers
tracking alongside mid-air 3D gestures, to investigate specific
design  advantages  and  issues  they  present  in  such  complex
environments.

Keywords  —  Gesture-based  interaction;  3D  manipulation;
real-time; multi-scale

I.  INTRODUCTION AND RELATED WORK

Interaction  and  navigation  within  complex  3D  virtual
contexts, in conjunction with a well-designed graphical user
interface (GUI), are crucial to final user experience. Mouse-
based GUIs have proven their robustness and flexibility, but
a major shift towards "natural" user interfaces (NUIs) during
the latest years is strong: this is not only related to research,
but  to  applications  and  tools  targeting  broader  consumer
audiences as well.

A 3D interface  is  “a User  Interface  that  involves  3D
interaction” and 3D interaction can be defined as a layer that
allows the user to perform different tasks  directly in a 3D
spatial context [9]. A widely used approach for 3D interfaces
involves  a  physical  3D  space  used  as  input  for  the
application: user provides such input by making gestures in
this space.  Typically,  the software  application is equipped
with a gesture recognition system through the use of a sensor
(e.g., Kinect [7] and others) allowing to map such physical
movements  into  a  set  of  predefined  functionalities  and
actions. Unlike classic devices such as keyboard or mouse,
these  sensors  allow to  spatially  track specific  joints  of  a
human  body  (e.g.,  arms,  shoulders,  hands,  fingers,  etc.)
within  a  3D context,  providing  for  instance  3D positions
<x,y,z>, motion data and orientations of different features.
On  the  application  side,  the  developer  has  to  provide  a
software  layer  to  process  incoming  data  and  recognize
specific  patterns  (gestures)  over  an  observed  time  slice,
transforming these spatial inputs into direct actions inside the
virtual 3D environment.

These  devices  and  their  progress  in  sensor  accuracy,
speed and efficiency [2][19] during the last years are laying

solid foundations to deploy astonishing interaction models.
Furthermore, low-cost systems and devices to detect hand [8]
and  body  gestures  [7]  are  nowadays  becoming  widely
available  to  consumer  market.  Obviously,  there  are
limitations  of  such  tracking  controllers  that  have  to  be
considered  for  the  design  of  efficient  interaction  models,
such as device accuracy, noise issues and lighting conditions.

Some of the goals of 3D interfaces are to increase user
engagement  (for  instance  within  serious  gaming
applications), application usability (natural mapping from 3D
physical  space to a 3D virtual space) and even reducing a
few common bottlenecks related to 3D-oriented tasks [12].
Since 3D interaction is a quite recent topic, the maturity of
3D interface design principles lags behind those for standard
GUIs. Given the wide range and diversity of input devices
and  interaction  models,  there  isn't  actually  an  established
standard  for  3D  User  Interfaces.  While  general  Human
Computer  Interaction  (HCI)  principles  such  as  Nielsen's
heuristics [1] still apply, they are not sufficient for designing
a usable 3D user interface.

This  paper  will  describe a 3D interface  design  and its
software  implementation  applied  to  a  recent  consumer
device: the Leap Motion controller. The developed system is
designed to explore and manipulate 3D objects in real-time
within  multi-scale  and  multi-resolution  3D  virtual
environments,  using  OpenSceneGraph  framework  as  3D
visualization  front-end.  The  following  two  sections  will
briefly  introduce  the device  (II)  and the OpenSceneGraph
framework  (III)  while  Section  IV  will  describe  the  3D
interface and a test case where the system was applied.

II. THE LEAP MOTION CONTROLLER

The  Leap  Motion  controller  [8]  is  a  small  and
inexpensive  motion  sensor  available  to  consumer  market
since July 2013, composed of 2 small cameras and 3 infrared
LEDs  (Light-Emitting  Diode)  able  to  track  hands,  fingers
and a few tools in mid-air inside a specific field of view,
with  sub-millimeter  accuracy  [2].  This  8  cm  long  USB
(Universal  Serial  Bus)  peripheral  device  (Figure  1)  is
designed to be placed on a physical desktop, facing upward.
It  operates  in  an  intimate  proximity,  with  a  very  high
tracking  frame-rate  (when lighting conditions are  optimal)
inside a field of view of the shape of an inverted pyramid,
centered on the controller.
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Figure 1. The Leap Motion controller.

Several tests on the device report an effective range of 25
mm to 600 mm above the controller,  where hands, fingers
and tools are detected in mid-air with 3D positions, gestures,
and  other  motion  data.  The  growing  community  of
developers around the Leap Motion has access to the latest
Software  Development  Kit  (SDK),  Application
Programming  Interface  (API)  documentation  and  forums.
The provided API allows to listen and report real-time data
regarding  hands  (palm  position,  normal,  direction,  etc.)
fingers  (tip position, direction, etc.) and tools,  alongside a
few built-in recognized gestures  such as  circle,  swipe,  tap
gestures, and a few others.
   

III. THE OPENSCENEGRAPH FRAMEWORK

OpenSceneGraph  (OSG)  [14]  is  an  open  source  3D
rendering middleware and one of the world's leading scene
graph API [3]  used by application developers  in fields  of
visual simulation, computer games, virtual reality, scientific
visualization  and  modeling.  The  OpenSceneGraph
framework  is  widely  used  within  real-time  3D  scientific
visualization contexts due to its performance, portability and
scalability, providing a huge set of functionalities that won't
be discussed in detail in this paper. It is based on scene-graph
structures, thus allowing the definition of spatial and logical
relationships among different 3D models (nodes) in a virtual
scene,  specifically  efficient  on  large  and  multi-resolution
datasets.  It  allows  to  develop  real-time  3D  applications
providing:

• Object-oriented functionalities

• Transformation nodes
• Loading of common 3D formats (Alias Wavefront

OBJ  [16],  Autodesk  3D  Studio  Max  [17],
COLLADA [18], etc.)

• Management  of  large  3D  environments,  using
spatial segmentation of the virtual world

• Remote node loading (via URL)
• Efficient management of level of detail (LoD)
• Instancing
• Paging

Transformation  node  in  OSG  is  particularly  useful  to
manage an object disposition, since it encapsulates a matrix
transformation (position, rotation, scale) that is being applied
to  the  entire  sub-graph.  Multi-resolution  datasets  are  also
fully supported and use appropriate representation (Level of
Detail) depending on current camera view, while instancing
techniques are able to reduce memory footprint through node
sharing.  Paging  mechanisms  in  OpenSceneGraph  allow
scene portions (or  “pages”)  to  be loaded  and unloaded at
run-time  from  the  main  scene-graph,  reducing  system
workload and GPU load, depending on current point of view
and frustum.

Figure 2. Some examples of large-scale and multi-resolution 3D scenes in
real-time using Front-Ends based on OpenSceneGraph framework.

Several test cases and projects (Figure 2) demonstrated
the  framework  efficiency  and  performance  specifically  in
handling and visualizing large, complex and multi-resolution
datasets such as terrains, cities, etc. [4][5]. These are a few
reasons that led to the framework choice as Front-End of 3D
visualization in the current implementation of the proposed
interface.
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IV. 3D INTERFACE DESIGN AND IMPLEMENTATION

This  section  will  describe  the  3D  interface  with  its
components, functionalities and overall design for navigation
and  manipulation  in  a  multi-scale,  multi-resolution  3D
virtual environment using the Leap Motion controller.  The
proposed 3D interface is based on a two-handed input design
[11][15]: in fact, one of the goals is to provide an efficient
and fast interaction model for 3D-oriented tasks [12].

The  whole  concept  takes  advantage  of  the  device
accuracy,  although  several  tests  during   design  and
development of first prototypes exhibited some data noise in
special conditions, such as when hands approach the sides of
the controller field-of-view. These issues were mostly solved
at  software  level  by applying  special  smoothing  filters  to
received  data,  in  this  case  to  the  features  specifically
involved  in  the  design,  such  as  palms  and  fingers.  For
completeness, a few definitions are provided:

1. Virtual World (W)  encapsulates the scene-graph of
the  world  (the  whole  scene  or  “global  space”),
potentially  composed  by  complex/multi-scale  3D
datasets.

2. Manipulables represent  a  collection of nodes (3D
objects) subset of the virtual world W, having the
property  of  being  “editable”  and  able  to  be
transformed over the time.

3. View  Configuration  (v)  is  composed  by  position
(eye:  <x,y,z>)  and  orientation  (quaternion:
<x,y,z,w>) representing a camera view or point of
view into the current virtual world.

4. Transition:  vt → vt+1 where  v is  a  View
Configuration that changes through user interaction. 

5. Interaction  Space  (IS) represents  the  3D
manipulation  domain.  It's  located  into  the  global
space  (W)  through  a  transformation  Tis  (position,
rotation  and  scale)  and  maps  the  physical  space
above the Leap controller.

It  is  important  to  mention  that  virtual  world  W and
manipulables collection can rely both on local and remote
locations (or mixed) allowing very interesting scenarios for
the  interface  applied  to  any  OpenSceneGraph-based
application.

Figure 3. Interaction Space (IS) coordinate system and 3D visualization
of both hands, fingers and device field-of-view (bottom).

The  implemented  system  consists  of  a  real-time
visualization  Front-End,  a gesture listener and a 3D scene
manager. Recognized features by the device, such as hands
and fingers, are visualized and directly mapped inside the IS
using a right-handed Cartesian coordinate system (Figure 3)
with origin centered on the middle IR LED of the device.
The rightmost hand in the developed system is represented in
red  while  the  leftmost  hand  in  blue.  Both  hands  are
luminescent to provide customized real-time lighting of 3D
models.  The IS  cube (600 x 600 x 600 mm) represents  a
reference of the physical  space above the controller inside
the virtual space.

The  system  provides  the  fundamental  functionality  to
map local  IS  coordinates  <x,y,z>  (Leap  Space)  to  World
coordinates <xw,yw,zw> (World Space) and viceversa (1), for
instance  mapping  a  fingertip  into  world  (global  scene)
coordinates.

<xw,yw,zw> = Tis(<x,y,z>) 

The next sub-section will describe the navigation model,
how it influences Tis and when.

A. Navigation

A fulfilling exploration of a virtual world is a complex
topic  and  requires  special  attention.  Using  standard
peripherals,  there  are several  well-established and familiar
navigation  models,  for  instance  pan-rotate-zoom using the
mouse, just to name one. When dealing with large virtual
environments, there are even additional issues that need to be
addressed.  Content  rarefaction  in  particular,  is  a  typically
disorienting  aspect,  although  some  solutions  based  on
hotspots  affordance  have  been  proposed  to  reduce  this
phenomenon  [13].  In  such  context,  a  3D  interface  can
provide  a  more  efficient  navigation  model,  allowing  to
combine different  actions at  the same time using a single
gesture (e.g., pan action + zoom action, etc.) although sensor
accuracy  clearly  plays  a  crucial  role  in  this  scenario.  In
general, each exploration session E can be represented as:

v = E(t). 2 

where  v is  a  varying  View  Configuration over  time,
depending on user input. Let us suppose the user starts from
a large-scale context, wanting to focus on a detail of a small-
scale 3D object  to perform some task:  how much time is
required  before  the  user  reaches  a  satisfying  view
configuration  vf  ?  One  of  the  goals  of  the  proposed  3D
interface is to minimize the t in (2) required for vf.

The developed navigation model consists of two distinct
phases:  stop and  drag. When the user is in stop phase, the
system simply visualizes both hands and fingers inside the
Interaction  Space,  listening  for  gestures.  The  user  has  a
direct  mapping  of  his  own  hands  inside  the  manipulation
domain since the IS is fixed in global space W (Tis  is not
changed) and aligned with the current View Configuration
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(fixed). When the drag gesture is recognized, user is able to
fully manipulate current View Configuration by “dragging”
the space above the Leap Motion controller using both hands
simultaneously,  leading to a fluid bi-manual camera control
model  [6]  in  3D.  Previous  work  in  literature  [15]  indeed
suggests that specific tasks related to two-handed input can
be  performed  effectively  with  a  symmetric  assignment  of
roles to both hands: in this case, camera motion and target
are controlled by the position of both palms in 3D space. The
system  allows  to  combine  into  a  single  gesture  a  5-DoF
camera manipulation and 3D scale. Denoting Pleft and Pright as
positions <x,y,z> of both palms in IS and  C as the center
between the two palms:

• Left/Right,  Up/Down and  Forward/Back are
controlled by corresponding position of C relatively
to IS.

• Yaw is controlled by palms difference along the IS
z-axis.

• Pitch is controlled by average palms normal.
• 3D Scale is controlled by palms distance and Target

spot. This feature,  similar to the  pinch gesture on
2D  multi-touch  devices,  provides  the  multi-scale
exploration.

Scale manipulation feedback is provided by the radius of
a ring overlay element that shows the relative scaling factor
being applied and the target spot C', according to the center
of the ring C. During the whole phase, IS is not changed: this
design provides the user with a visual reference of the old IS
state, useful in a multi-scale context since it enhances scale
perception  during  camera  transitions.  For  instance,
increasing palms distance when a drag gesture is recognized,
will shrink the IS and consequently scale the virtual hands in
comparison to the world scene W.

Figure 4. Drag gesture and target spot C' used in navigation model.

When dragging gesture ends (release), a 3D target spot
C' is directly picked through C using an intersection ray on

3D geometry,  as  illustrated in  Figure  4:  the target  spot  is
used to provide a new  View Configuration and thus a new
suitable IS. The system performs a validation of maximum
and minimum length  values  of  the  segment  C-C' to  limit
maximum and minimum scale,  respectively.  At this point,
the user is  once again in a stop phase and can iterate the
whole process.  Figure 5 illustrates a fast sequence of drag
and  stop  to  reach  a  partially  occluded  spot  in  a  multi-
resolution 3D model: starting from a stop phase (1) with no
hands above the controller and a sample 3D model inside the
IS, a drag gesture is initiated (2).

Figure 5. Stop and drag navigation model.

Notice how in (3) the center point of the ring is used to
aim at the desired 3D target  spot and in (4) the rightmost
hand  is  partially  intersecting  domain  geometries  during  a
stop  phase  inside  a  new  IS,  with  different  scale.  The
cumulative nature of this approach aims to provide precise
control by taking advantage of the Leap Motion device sub-
millimeter  accuracy [2],  quickly alternating  stop and  drag
phases to reach complex View Configurations in short times,
maximizing user control during a transition  vt → vt+1.  The
scheme  shown  in  Figure  6  is  a  graph  of  stop  and  drag
sequences  recorded  during a test  session on a sample  3D
scene  and  their  relation  with  Interaction  Space  scale
magnitude over time. Stop sequences have variable durations
since user is observing scene details, operating on IS domain
(further details in the next Section) or resting (hands exit the
device field-of-view). The phase alternation has also the goal
of reducing fatigue for arms and hands [9][10]. The graph
focuses on scale magnitude: notice how Tis is computed only
at the beginning of a stop phase and at the end of a drag
phase. In the recorded test-case, user session started from a
scene overview (a) with IS mapped on a scale magnitude of
10 mt, moving in to focus on a detail (b) at a scale magnitude
of 1 cm, then scaling up over one meter magnitude (c) and
then focusing on a different 3D detail on 1 mm scale (d). The
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system also allows to keep track of Interaction Spaces over
the session: this is also useful to roll back to the previous IS
with a simple gesture.

Figure 6. Recorded graph of Interaction Space magnitude (scale) over
time.

The  user  is  also  able  to  record  a  specific  View
Configuration  vr for  later  recall,  so that  current  pair  <vr  ,
scale> can be stored on demand. The existence of stop phase
in the proposed interface is further explained in the following
sub-section.

B. Manipulation

When the user  is  not  adjusting the view configuration
through a drag phase, the system is in stop phase: hands are
free  to  move  inside  the  Interaction  Space  and  what  is
currently contained. The design is specifically conceived to
leave  room  for  object  manipulation  tasks  and  other
operations within current domain. During the stop phase, the
user can activate an  edit mode: this mode allows to apply
several  actions  to  items  belonging  to  manipulables
collection.  Once  the  edit  mode  is  activated  by  using  a
specific gesture and a visual feedback, user is able to operate
on  current  domain and  3D objects  inside  the  IS  applying
different  transformations.  Red hand (dominant)  is  used  to
grab a 3D object and move it using the direct IS mapping
from physical space above the device and the virtual world.
A selector is used when user is hovering a manipulable item
to  provide  visual  feedback.  Object  manipulation  is  thus
performed by grabbing  the  virtual  item and by moving it
within the current Interaction Space (and its current scale).
Grabbing gesture is recognized by the system on highlighted
item when hand contraction is over a specified threshold and
the item is picked up. When detected inside the IS, the blue
hand  (non-dominant)  is  used  to  apply  additional
transformations (rotation, scale, etc.) to the current selection.
Like the proposed navigation model, in this case, bi-manual
editing allows to apply multiple transformations at the same

time (e.g., rotating and translating a picked object). The user
can  also take advantage  of  the multi-scale  concept  of  the
interface by getting closer to a spot and by operating on 3D
objects  using  fine  grained  transformations.  For  instance,
moving an entire house over a multi-resolution terrain and
then  zooming  in  to  place  a  spoon  on  a  table,  since
transformation accuracy is tied to IS scale.

C. Basic arrangement experiment

After the initial prototype, a test case was created using a
basic scene consisting of a ground and a sample collection of
manipulables (Figure 7): table, chair, armchair and a lamp.
In order to test and verify basic usability of the system, a few
internal lab sessions were carried out: users were asked to
create plausible items arrangements  through the developed
system,  starting from a  randomized  disposition (a).  Initial
observation sessions related to manipulation tasks provided
sufficient data to modify the visual feedback through a white
selector (b), that is shown only when the user hovers the item
using the dominant hand (red).  While the grabbed item is
moved, the user can apply yaw rotation using non-dominant
hand (c), finally reaching a plausible disposition of the scene
(d). A second test case was performed to test navigation and
manipulation of  remote  3D datasets:  the user  was  able  to
operate on grass,  flowers  and trees,  streamed over the net
(Figure 8).

Figure 7. Test case for manipulation of 3D objects inside the Interaction
Space.

Figure 8. Manipulation and navigation of remote 3D datasets

These internal experiments and observations allowed to
test and increase basic usability of the system by:
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• Adding visual  feedback  on  manipulable  hovering
(3D overlay selector).

• Adding  constraints  to  navigation  by  limiting
minimum-maximum IS scale inside a specific range
and  by  enclosing  allowable  target  spots  (drag
phase) inside global manipulables bounding-box.

• Adding explanatory welcome panels.

The same tasks were performed on the test scene using a
mouse-based  interface,  providing  participants  with  basic
translation and rotation features.

V. CONCLUSION AND FUTURE WORK

A 3D interface and its implementation were presented to
explore  and  manipulate  multi-scale  and  multi-resolution
virtual environments.  Although few experimental  tests and
observations were carried out on a limited number of users to
evaluate  interface  usability,  the  following  results  can  be
highlighted:

• A navigation and manipulation model operating on
multi-scale virtual environments.

• Efficient  and  interactive  visualization  on  large,
complex  and  even  remote  3D  datasets  provided
through  the  OpenSceneGraph framework
integration [3][4].

• Use  of  a  small  and  inexpensive  desktop  motion
sensor (Leap Motion controller).

• A  Stop and  Drag design  that  maximizes  the
controller  accuracy  through  relative  view
configuration transitions (Drag phase) and reduces
arms fatigue during user sessions (Stop phase).

• Quick,  multi-scale  bi-manual  manipulation  (Edit
mode) within the current IS through direct mapping.

The developed system that implements the 3D interface
is based on the Leap Motion API and the OpenSceneGraph
framework,  allowing  to  be  easily  deployed  to  consumer
market since the availability of the Leap Motion controller to
the public. In order to obtain more accurate usability results,
an adequate number of participants will be tested and more
than one scene along with complex manipulation tasks will
be  provided.  The  integration  with  the  OpenSceneGraph
framework  also  provides  portability  across  different
Operating  Systems  (Windows,  Linux,  MacOS)  and  also
inherits a large set of features provided by the framework,
such  as  paging  capabilities  introduced  in  Section  III  for
management of large scenes and manipulation of remote 3D
scenes or sub-graphs (server-based approach).

The concept and design of Interaction Space allows great
scalability  and  further  extension.  For  instance,  attached
toolboxes to Interaction Space have been tested to provide
the  user  with  a  set  of  selectable  functionalities  (duplicate
object,  remove object,  etc.).  Further  advancements  will  be
oriented  to  extend  the  manipulation  functionalities  and  to
introduce  more  constraints,  such  as  axis  snapping.  The

effectiveness  of  these  additions will  be  supported by user
testing, observations and experiments.

REFERENCES

[1] J.  Nielsen  and  R.  Molich,  “Heuristic  evaluation  of  user
interfaces”, Proceedings of CHI 90, pp. 249-256. New York,
NY: ACM, 1990.

[2] F.  Weichert,  D.  Bachmann,  B.  Rudak,  and  D.  Fisseler,
"Analysis of the accuracy and robustness of the Leap Motion
controller",  Sensors  2013,  13,  pp.  6380-6393,  ISSN  1424-
8220, 2013.

[3] W.  Rui  and  Q.  Xuelei,  "OpenSceneGraph  3.0",  Packt
Publishing 2010 (eBook).

[4] B. Fanini, L. Calori, D. Ferdani, and S. Pescarin, "Interactive
3D  landscapes  online",  International  Archive  of
Photogrammetry,  Remote  Sensing  and  Spatial  Information
Sciences, Vol. XXXVIII-5/W16, 2011.

[5] X.  Li,  D.  Kong,  Y.  Zhang,  and  Y.  Sun,  "Mass  Models
Dynamic  Loading  Method  Research  and  Implementation
based  on  OpenSceneGraph",  Journal  of  Information  &
Computational Science 8: 2 (2011), pp. 362-369, 2011.

[6] R.  Balakrishnan  and  G.  Kurtenbach,  "Exploring  Bimanual
Camera  Control  and  Object  Manipulation  in  3D  Graphics
Interfaces", Proceedings of the ACM CHI 99 Human Factors
in Computing Systems Conference, pp. 56-63, 1999.

[7] Microsoft  Kinect  (Windows):  http://www.microsoft.com/en-
us/kinectforwindows. Last accessed: 24th November 2013

[8] Leap  Motion  controller:  https://www.leapmotion.com.  Last
accessed: 24th November 2013

[9] D. A. Bowman, E. Kruijff, J. J. LaViola, and I. Poupyrev, "3D
User  Interfaces  –  Theory  and  Practice".  Addison  Wesley
Longman  Publishing  Co.,  Inc.,  Redwood  City,  CA (USA),
2005.

[10] M.  R.  Mine,  "Virtual  environment  interaction  techniques",
Tech. report, Chapel Hill, NC (USA), 1995

[11] W. Buxton  and  B.  Myers,  "A  study in  two-handed input",
Proceedings of CHI 1986, New York, NY (USA) ACM, pp.
321-326, 1986.

[12] M. W. Gribnau and J. M. Hennessey, "Comparing single- and
two-handed  3D  input  for  a  3D  object  assembly  task",
Proceedings of CHI 1998, New York, NY (USA) ACM, pp.
233-234, 1998.

[13] B. Fanini, "Development and Evolution of Natural Interfaces
in Virtual Heritage Applications", MIMOS Proceedings, 2012

[14] OpenSceneGraph:  http://www.openscenegraph.org.  Last
accessed: 24th November 2013

[15] R.  Balakrishnan  and  K.  Hinckley,  "Symmetric  bimanual
interaction",  Proceedings  of  the  SIGCHI  conference  on
Human Factors in Computing Systems, ACM New York, NY
(USA), ISBN:1-58113-216-6, pp. 33-40, 2000

[16] Alias/Wavefront  OBJ  file  format:
http://www.martinreddy.net/gfx/3d/OBJ.spec

[17] 3D  Studio  Max  file  format:
http://www.fileformat.info/format/3ds/egff.htm

[18] COLLADA 3D model format: https://collada.org/
[19] K. Khoshelham, "Accuracy Analysis of Kinect Depth Data",

International  Archives  of  the  Photogrammetry,  Remote
Sensing and Spatial Information Sciences, Volume XXXVIII-
5/W12, 2011

263Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-325-4

ACHI 2014 : The Seventh International Conference on Advances in Computer-Human Interactions

https://collada.org/
http://www.fileformat.info/format/3ds/egff.htm
http://www.martinreddy.net/gfx/3d/OBJ.spec
http://www.openscenegraph.org/
https://www.leapmotion.com/
http://www.microsoft.com/en-us/kinectforwindows/
http://www.microsoft.com/en-us/kinectforwindows/

