
A 3D Interface to Explore and Manipulate multi-scale Virtual Scenes

using the Leap Motion Controller

Bruno Fanini
CNR ITABC
Rome, Italy

bruno.fanini@gmail.com

Abstract — Gesture-based interaction models can be efficient
and simpler to understand if designed to correspond to
common user interactions with the physical world. This paper
presents a 3D interface and its implementation to quickly
perform navigation and manipulation tasks in multi-scale and
multi-resolution 3D scenes using a low-cost consumer sensor:
the Leap Motion controller. The developed system has the goal
of exploring the potential of accurate hands and fingers
tracking alongside mid-air 3D gestures, to investigate specific
design advantages and issues they present in such complex
environments.

Keywords — Gesture-based interaction; 3D manipulation;
real-time; multi-scale

I. INTRODUCTION AND RELATED WORK

Interaction and navigation within complex 3D virtual
contexts, in conjunction with a well-designed graphical user
interface (GUI), are crucial to final user experience. Mouse-
based GUIs have proven their robustness and flexibility, but
a major shift towards "natural" user interfaces (NUIs) during
the latest years is strong: this is not only related to research,
but to applications and tools targeting broader consumer
audiences as well.

A 3D interface is “a User Interface that involves 3D
interaction” and 3D interaction can be defined as a layer that
allows the user to perform different tasks directly in a 3D
spatial context [9]. A widely used approach for 3D interfaces
involves a physical 3D space used as input for the
application: user provides such input by making gestures in
this space. Typically, the software application is equipped
with a gesture recognition system through the use of a sensor
(e.g., Kinect [7] and others) allowing to map such physical
movements into a set of predefined functionalities and
actions. Unlike classic devices such as keyboard or mouse,
these sensors allow to spatially track specific joints of a
human body (e.g., arms, shoulders, hands, fingers, etc.)
within a 3D context, providing for instance 3D positions
<x,y,z>, motion data and orientations of different features.
On the application side, the developer has to provide a
software layer to process incoming data and recognize
specific patterns (gestures) over an observed time slice,
transforming these spatial inputs into direct actions inside the
virtual 3D environment.

These devices and their progress in sensor accuracy,
speed and efficiency [2][19] during the last years are laying

solid foundations to deploy astonishing interaction models.
Furthermore, low-cost systems and devices to detect hand [8]
and body gestures [7] are nowadays becoming widely
available to consumer market. Obviously, there are
limitations of such tracking controllers that have to be
considered for the design of efficient interaction models,
such as device accuracy, noise issues and lighting conditions.

Some of the goals of 3D interfaces are to increase user
engagement (for instance within serious gaming
applications), application usability (natural mapping from 3D
physical space to a 3D virtual space) and even reducing a
few common bottlenecks related to 3D-oriented tasks [12].
Since 3D interaction is a quite recent topic, the maturity of
3D interface design principles lags behind those for standard
GUIs. Given the wide range and diversity of input devices
and interaction models, there isn't actually an established
standard for 3D User Interfaces. While general Human
Computer Interaction (HCI) principles such as Nielsen's
heuristics [1] still apply, they are not sufficient for designing
a usable 3D user interface.

This paper will describe a 3D interface design and its
software implementation applied to a recent consumer
device: the Leap Motion controller. The developed system is
designed to explore and manipulate 3D objects in real-time
within multi-scale and multi-resolution 3D virtual
environments, using OpenSceneGraph framework as 3D
visualization front-end. The following two sections will
briefly introduce the device (II) and the OpenSceneGraph
framework (III) while Section IV will describe the 3D
interface and a test case where the system was applied.

II. THE LEAP MOTION CONTROLLER

The Leap Motion controller [8] is a small and
inexpensive motion sensor available to consumer market
since July 2013, composed of 2 small cameras and 3 infrared
LEDs (Light-Emitting Diode) able to track hands, fingers
and a few tools in mid-air inside a specific field of view,
with sub-millimeter accuracy [2]. This 8 cm long USB
(Universal Serial Bus) peripheral device (Figure 1) is
designed to be placed on a physical desktop, facing upward.
It operates in an intimate proximity, with a very high
tracking frame-rate (when lighting conditions are optimal)
inside a field of view of the shape of an inverted pyramid,
centered on the controller.

258Copyright (c) IARIA, 2014. ISBN: 978-1-61208-325-4

ACHI 2014 : The Seventh International Conference on Advances in Computer-Human Interactions

mailto:bruno.fanini@gmail.com

Figure 1. The Leap Motion controller.

Several tests on the device report an effective range of 25
mm to 600 mm above the controller, where hands, fingers
and tools are detected in mid-air with 3D positions, gestures,
and other motion data. The growing community of
developers around the Leap Motion has access to the latest
Software Development Kit (SDK), Application
Programming Interface (API) documentation and forums.
The provided API allows to listen and report real-time data
regarding hands (palm position, normal, direction, etc.)
fingers (tip position, direction, etc.) and tools, alongside a
few built-in recognized gestures such as circle, swipe, tap
gestures, and a few others.

III. THE OPENSCENEGRAPH FRAMEWORK

OpenSceneGraph (OSG) [14] is an open source 3D
rendering middleware and one of the world's leading scene
graph API [3] used by application developers in fields of
visual simulation, computer games, virtual reality, scientific
visualization and modeling. The OpenSceneGraph
framework is widely used within real-time 3D scientific
visualization contexts due to its performance, portability and
scalability, providing a huge set of functionalities that won't
be discussed in detail in this paper. It is based on scene-graph
structures, thus allowing the definition of spatial and logical
relationships among different 3D models (nodes) in a virtual
scene, specifically efficient on large and multi-resolution
datasets. It allows to develop real-time 3D applications
providing:

• Object-oriented functionalities

• Transformation nodes
• Loading of common 3D formats (Alias Wavefront

OBJ [16], Autodesk 3D Studio Max [17],
COLLADA [18], etc.)

• Management of large 3D environments, using
spatial segmentation of the virtual world

• Remote node loading (via URL)
• Efficient management of level of detail (LoD)
• Instancing
• Paging

Transformation node in OSG is particularly useful to
manage an object disposition, since it encapsulates a matrix
transformation (position, rotation, scale) that is being applied
to the entire sub-graph. Multi-resolution datasets are also
fully supported and use appropriate representation (Level of
Detail) depending on current camera view, while instancing
techniques are able to reduce memory footprint through node
sharing. Paging mechanisms in OpenSceneGraph allow
scene portions (or “pages”) to be loaded and unloaded at
run-time from the main scene-graph, reducing system
workload and GPU load, depending on current point of view
and frustum.

Figure 2. Some examples of large-scale and multi-resolution 3D scenes in
real-time using Front-Ends based on OpenSceneGraph framework.

Several test cases and projects (Figure 2) demonstrated
the framework efficiency and performance specifically in
handling and visualizing large, complex and multi-resolution
datasets such as terrains, cities, etc. [4][5]. These are a few
reasons that led to the framework choice as Front-End of 3D
visualization in the current implementation of the proposed
interface.

259Copyright (c) IARIA, 2014. ISBN: 978-1-61208-325-4

ACHI 2014 : The Seventh International Conference on Advances in Computer-Human Interactions

IV. 3D INTERFACE DESIGN AND IMPLEMENTATION

This section will describe the 3D interface with its
components, functionalities and overall design for navigation
and manipulation in a multi-scale, multi-resolution 3D
virtual environment using the Leap Motion controller. The
proposed 3D interface is based on a two-handed input design
[11][15]: in fact, one of the goals is to provide an efficient
and fast interaction model for 3D-oriented tasks [12].

The whole concept takes advantage of the device
accuracy, although several tests during design and
development of first prototypes exhibited some data noise in
special conditions, such as when hands approach the sides of
the controller field-of-view. These issues were mostly solved
at software level by applying special smoothing filters to
received data, in this case to the features specifically
involved in the design, such as palms and fingers. For
completeness, a few definitions are provided:

1. Virtual World (W) encapsulates the scene-graph of
the world (the whole scene or “global space”),
potentially composed by complex/multi-scale 3D
datasets.

2. Manipulables represent a collection of nodes (3D
objects) subset of the virtual world W, having the
property of being “editable” and able to be
transformed over the time.

3. View Configuration (v) is composed by position
(eye: <x,y,z>) and orientation (quaternion:
<x,y,z,w>) representing a camera view or point of
view into the current virtual world.

4. Transition: vt → vt+1 where v is a View
Configuration that changes through user interaction.

5. Interaction Space (IS) represents the 3D
manipulation domain. It's located into the global
space (W) through a transformation Tis (position,
rotation and scale) and maps the physical space
above the Leap controller.

It is important to mention that virtual world W and
manipulables collection can rely both on local and remote
locations (or mixed) allowing very interesting scenarios for
the interface applied to any OpenSceneGraph-based
application.

Figure 3. Interaction Space (IS) coordinate system and 3D visualization
of both hands, fingers and device field-of-view (bottom).

The implemented system consists of a real-time
visualization Front-End, a gesture listener and a 3D scene
manager. Recognized features by the device, such as hands
and fingers, are visualized and directly mapped inside the IS
using a right-handed Cartesian coordinate system (Figure 3)
with origin centered on the middle IR LED of the device.
The rightmost hand in the developed system is represented in
red while the leftmost hand in blue. Both hands are
luminescent to provide customized real-time lighting of 3D
models. The IS cube (600 x 600 x 600 mm) represents a
reference of the physical space above the controller inside
the virtual space.

The system provides the fundamental functionality to
map local IS coordinates <x,y,z> (Leap Space) to World
coordinates <xw,yw,zw> (World Space) and viceversa (1), for
instance mapping a fingertip into world (global scene)
coordinates.

<xw,yw,zw> = Tis(<x,y,z>)

The next sub-section will describe the navigation model,
how it influences Tis and when.

A. Navigation

A fulfilling exploration of a virtual world is a complex
topic and requires special attention. Using standard
peripherals, there are several well-established and familiar
navigation models, for instance pan-rotate-zoom using the
mouse, just to name one. When dealing with large virtual
environments, there are even additional issues that need to be
addressed. Content rarefaction in particular, is a typically
disorienting aspect, although some solutions based on
hotspots affordance have been proposed to reduce this
phenomenon [13]. In such context, a 3D interface can
provide a more efficient navigation model, allowing to
combine different actions at the same time using a single
gesture (e.g., pan action + zoom action, etc.) although sensor
accuracy clearly plays a crucial role in this scenario. In
general, each exploration session E can be represented as:

v = E(t). 2

where v is a varying View Configuration over time,
depending on user input. Let us suppose the user starts from
a large-scale context, wanting to focus on a detail of a small-
scale 3D object to perform some task: how much time is
required before the user reaches a satisfying view
configuration vf ? One of the goals of the proposed 3D
interface is to minimize the t in (2) required for vf.

The developed navigation model consists of two distinct
phases: stop and drag. When the user is in stop phase, the
system simply visualizes both hands and fingers inside the
Interaction Space, listening for gestures. The user has a
direct mapping of his own hands inside the manipulation
domain since the IS is fixed in global space W (Tis is not
changed) and aligned with the current View Configuration

260Copyright (c) IARIA, 2014. ISBN: 978-1-61208-325-4

ACHI 2014 : The Seventh International Conference on Advances in Computer-Human Interactions

(fixed). When the drag gesture is recognized, user is able to
fully manipulate current View Configuration by “dragging”
the space above the Leap Motion controller using both hands
simultaneously, leading to a fluid bi-manual camera control
model [6] in 3D. Previous work in literature [15] indeed
suggests that specific tasks related to two-handed input can
be performed effectively with a symmetric assignment of
roles to both hands: in this case, camera motion and target
are controlled by the position of both palms in 3D space. The
system allows to combine into a single gesture a 5-DoF
camera manipulation and 3D scale. Denoting Pleft and Pright as
positions <x,y,z> of both palms in IS and C as the center
between the two palms:

• Left/Right, Up/Down and Forward/Back are
controlled by corresponding position of C relatively
to IS.

• Yaw is controlled by palms difference along the IS
z-axis.

• Pitch is controlled by average palms normal.
• 3D Scale is controlled by palms distance and Target

spot. This feature, similar to the pinch gesture on
2D multi-touch devices, provides the multi-scale
exploration.

Scale manipulation feedback is provided by the radius of
a ring overlay element that shows the relative scaling factor
being applied and the target spot C', according to the center
of the ring C. During the whole phase, IS is not changed: this
design provides the user with a visual reference of the old IS
state, useful in a multi-scale context since it enhances scale
perception during camera transitions. For instance,
increasing palms distance when a drag gesture is recognized,
will shrink the IS and consequently scale the virtual hands in
comparison to the world scene W.

Figure 4. Drag gesture and target spot C' used in navigation model.

When dragging gesture ends (release), a 3D target spot
C' is directly picked through C using an intersection ray on

3D geometry, as illustrated in Figure 4: the target spot is
used to provide a new View Configuration and thus a new
suitable IS. The system performs a validation of maximum
and minimum length values of the segment C-C' to limit
maximum and minimum scale, respectively. At this point,
the user is once again in a stop phase and can iterate the
whole process. Figure 5 illustrates a fast sequence of drag
and stop to reach a partially occluded spot in a multi-
resolution 3D model: starting from a stop phase (1) with no
hands above the controller and a sample 3D model inside the
IS, a drag gesture is initiated (2).

Figure 5. Stop and drag navigation model.

Notice how in (3) the center point of the ring is used to
aim at the desired 3D target spot and in (4) the rightmost
hand is partially intersecting domain geometries during a
stop phase inside a new IS, with different scale. The
cumulative nature of this approach aims to provide precise
control by taking advantage of the Leap Motion device sub-
millimeter accuracy [2], quickly alternating stop and drag
phases to reach complex View Configurations in short times,
maximizing user control during a transition vt → vt+1. The
scheme shown in Figure 6 is a graph of stop and drag
sequences recorded during a test session on a sample 3D
scene and their relation with Interaction Space scale
magnitude over time. Stop sequences have variable durations
since user is observing scene details, operating on IS domain
(further details in the next Section) or resting (hands exit the
device field-of-view). The phase alternation has also the goal
of reducing fatigue for arms and hands [9][10]. The graph
focuses on scale magnitude: notice how Tis is computed only
at the beginning of a stop phase and at the end of a drag
phase. In the recorded test-case, user session started from a
scene overview (a) with IS mapped on a scale magnitude of
10 mt, moving in to focus on a detail (b) at a scale magnitude
of 1 cm, then scaling up over one meter magnitude (c) and
then focusing on a different 3D detail on 1 mm scale (d). The

261Copyright (c) IARIA, 2014. ISBN: 978-1-61208-325-4

ACHI 2014 : The Seventh International Conference on Advances in Computer-Human Interactions

system also allows to keep track of Interaction Spaces over
the session: this is also useful to roll back to the previous IS
with a simple gesture.

Figure 6. Recorded graph of Interaction Space magnitude (scale) over
time.

The user is also able to record a specific View
Configuration vr for later recall, so that current pair <vr ,
scale> can be stored on demand. The existence of stop phase
in the proposed interface is further explained in the following
sub-section.

B. Manipulation

When the user is not adjusting the view configuration
through a drag phase, the system is in stop phase: hands are
free to move inside the Interaction Space and what is
currently contained. The design is specifically conceived to
leave room for object manipulation tasks and other
operations within current domain. During the stop phase, the
user can activate an edit mode: this mode allows to apply
several actions to items belonging to manipulables
collection. Once the edit mode is activated by using a
specific gesture and a visual feedback, user is able to operate
on current domain and 3D objects inside the IS applying
different transformations. Red hand (dominant) is used to
grab a 3D object and move it using the direct IS mapping
from physical space above the device and the virtual world.
A selector is used when user is hovering a manipulable item
to provide visual feedback. Object manipulation is thus
performed by grabbing the virtual item and by moving it
within the current Interaction Space (and its current scale).
Grabbing gesture is recognized by the system on highlighted
item when hand contraction is over a specified threshold and
the item is picked up. When detected inside the IS, the blue
hand (non-dominant) is used to apply additional
transformations (rotation, scale, etc.) to the current selection.
Like the proposed navigation model, in this case, bi-manual
editing allows to apply multiple transformations at the same

time (e.g., rotating and translating a picked object). The user
can also take advantage of the multi-scale concept of the
interface by getting closer to a spot and by operating on 3D
objects using fine grained transformations. For instance,
moving an entire house over a multi-resolution terrain and
then zooming in to place a spoon on a table, since
transformation accuracy is tied to IS scale.

C. Basic arrangement experiment

After the initial prototype, a test case was created using a
basic scene consisting of a ground and a sample collection of
manipulables (Figure 7): table, chair, armchair and a lamp.
In order to test and verify basic usability of the system, a few
internal lab sessions were carried out: users were asked to
create plausible items arrangements through the developed
system, starting from a randomized disposition (a). Initial
observation sessions related to manipulation tasks provided
sufficient data to modify the visual feedback through a white
selector (b), that is shown only when the user hovers the item
using the dominant hand (red). While the grabbed item is
moved, the user can apply yaw rotation using non-dominant
hand (c), finally reaching a plausible disposition of the scene
(d). A second test case was performed to test navigation and
manipulation of remote 3D datasets: the user was able to
operate on grass, flowers and trees, streamed over the net
(Figure 8).

Figure 7. Test case for manipulation of 3D objects inside the Interaction
Space.

Figure 8. Manipulation and navigation of remote 3D datasets

These internal experiments and observations allowed to
test and increase basic usability of the system by:

262Copyright (c) IARIA, 2014. ISBN: 978-1-61208-325-4

ACHI 2014 : The Seventh International Conference on Advances in Computer-Human Interactions

• Adding visual feedback on manipulable hovering
(3D overlay selector).

• Adding constraints to navigation by limiting
minimum-maximum IS scale inside a specific range
and by enclosing allowable target spots (drag
phase) inside global manipulables bounding-box.

• Adding explanatory welcome panels.

The same tasks were performed on the test scene using a
mouse-based interface, providing participants with basic
translation and rotation features.

V. CONCLUSION AND FUTURE WORK

A 3D interface and its implementation were presented to
explore and manipulate multi-scale and multi-resolution
virtual environments. Although few experimental tests and
observations were carried out on a limited number of users to
evaluate interface usability, the following results can be
highlighted:

• A navigation and manipulation model operating on
multi-scale virtual environments.

• Efficient and interactive visualization on large,
complex and even remote 3D datasets provided
through the OpenSceneGraph framework
integration [3][4].

• Use of a small and inexpensive desktop motion
sensor (Leap Motion controller).

• A Stop and Drag design that maximizes the
controller accuracy through relative view
configuration transitions (Drag phase) and reduces
arms fatigue during user sessions (Stop phase).

• Quick, multi-scale bi-manual manipulation (Edit
mode) within the current IS through direct mapping.

The developed system that implements the 3D interface
is based on the Leap Motion API and the OpenSceneGraph
framework, allowing to be easily deployed to consumer
market since the availability of the Leap Motion controller to
the public. In order to obtain more accurate usability results,
an adequate number of participants will be tested and more
than one scene along with complex manipulation tasks will
be provided. The integration with the OpenSceneGraph
framework also provides portability across different
Operating Systems (Windows, Linux, MacOS) and also
inherits a large set of features provided by the framework,
such as paging capabilities introduced in Section III for
management of large scenes and manipulation of remote 3D
scenes or sub-graphs (server-based approach).

The concept and design of Interaction Space allows great
scalability and further extension. For instance, attached
toolboxes to Interaction Space have been tested to provide
the user with a set of selectable functionalities (duplicate
object, remove object, etc.). Further advancements will be
oriented to extend the manipulation functionalities and to
introduce more constraints, such as axis snapping. The

effectiveness of these additions will be supported by user
testing, observations and experiments.

REFERENCES

[1] J. Nielsen and R. Molich, “Heuristic evaluation of user
interfaces”, Proceedings of CHI 90, pp. 249-256. New York,
NY: ACM, 1990.

[2] F. Weichert, D. Bachmann, B. Rudak, and D. Fisseler,
"Analysis of the accuracy and robustness of the Leap Motion
controller", Sensors 2013, 13, pp. 6380-6393, ISSN 1424-
8220, 2013.

[3] W. Rui and Q. Xuelei, "OpenSceneGraph 3.0", Packt
Publishing 2010 (eBook).

[4] B. Fanini, L. Calori, D. Ferdani, and S. Pescarin, "Interactive
3D landscapes online", International Archive of
Photogrammetry, Remote Sensing and Spatial Information
Sciences, Vol. XXXVIII-5/W16, 2011.

[5] X. Li, D. Kong, Y. Zhang, and Y. Sun, "Mass Models
Dynamic Loading Method Research and Implementation
based on OpenSceneGraph", Journal of Information &
Computational Science 8: 2 (2011), pp. 362-369, 2011.

[6] R. Balakrishnan and G. Kurtenbach, "Exploring Bimanual
Camera Control and Object Manipulation in 3D Graphics
Interfaces", Proceedings of the ACM CHI 99 Human Factors
in Computing Systems Conference, pp. 56-63, 1999.

[7] Microsoft Kinect (Windows): http://www.microsoft.com/en-
us/kinectforwindows. Last accessed: 24th November 2013

[8] Leap Motion controller: https://www.leapmotion.com. Last
accessed: 24th November 2013

[9] D. A. Bowman, E. Kruijff, J. J. LaViola, and I. Poupyrev, "3D
User Interfaces – Theory and Practice". Addison Wesley
Longman Publishing Co., Inc., Redwood City, CA (USA),
2005.

[10] M. R. Mine, "Virtual environment interaction techniques",
Tech. report, Chapel Hill, NC (USA), 1995

[11] W. Buxton and B. Myers, "A study in two-handed input",
Proceedings of CHI 1986, New York, NY (USA) ACM, pp.
321-326, 1986.

[12] M. W. Gribnau and J. M. Hennessey, "Comparing single- and
two-handed 3D input for a 3D object assembly task",
Proceedings of CHI 1998, New York, NY (USA) ACM, pp.
233-234, 1998.

[13] B. Fanini, "Development and Evolution of Natural Interfaces
in Virtual Heritage Applications", MIMOS Proceedings, 2012

[14] OpenSceneGraph: http://www.openscenegraph.org. Last
accessed: 24th November 2013

[15] R. Balakrishnan and K. Hinckley, "Symmetric bimanual
interaction", Proceedings of the SIGCHI conference on
Human Factors in Computing Systems, ACM New York, NY
(USA), ISBN:1-58113-216-6, pp. 33-40, 2000

[16] Alias/Wavefront OBJ file format:
http://www.martinreddy.net/gfx/3d/OBJ.spec

[17] 3D Studio Max file format:
http://www.fileformat.info/format/3ds/egff.htm

[18] COLLADA 3D model format: https://collada.org/
[19] K. Khoshelham, "Accuracy Analysis of Kinect Depth Data",

International Archives of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, Volume XXXVIII-
5/W12, 2011

263Copyright (c) IARIA, 2014. ISBN: 978-1-61208-325-4

ACHI 2014 : The Seventh International Conference on Advances in Computer-Human Interactions

https://collada.org/
http://www.fileformat.info/format/3ds/egff.htm
http://www.martinreddy.net/gfx/3d/OBJ.spec
http://www.openscenegraph.org/
https://www.leapmotion.com/
http://www.microsoft.com/en-us/kinectforwindows/
http://www.microsoft.com/en-us/kinectforwindows/

