
3D Web-Based Shape Modelling: Building up an Adaptive Architecture

Ali Abdallah, Oleg Fryazinov, Valery Adzhiev and AlexanderPasko
The National Centre for Computer Animation,

Bournemouth University,
Poole, United Kingdom,

Email: ccengineer@gmail.com,{ofryazinov, vadzhiev, apasko}@bournemouth.ac.uk

Abstract—3D web-based shape modelling and rendering is becom-
ing an increasingly important research area. Many applications
have emerged, both established ones, such as collaborativedesign
and new ones, such as heterogeneous objects modelling alongwith
their subsequent fabrication using 3D printing. In this paper,
we explore a crucial issue of the technology, which is building
a proper adaptive architecture for an interactive client-server
based system with a particular emphasis on rendering aspects.
We identify the most probable scenarios of executing modelling
and rendering in terms of server-client communications and
associated decision making, and then describe a number of case-
studies, which allowed us to experiment with different rendering
techniques in the context of various task distribution and com-
munications mode of the adaptive interactive client-server based
system. Finally, we present and analyse the results and suggest
a number of practical recommendations. The main results of the
paper are concerned with consideration of rendering.

Keywords-Adaptive architecture, 3D shape modelling, WebGL,
Collaborative shape modelling, Function Representation

I. I NTRODUCTION

3D web-based shape modelling and rendering is an im-
portant emerging area of recent research, especially in the
context of collaborative computer aided design, distributed
computer games, scientific visualization applications based on
data from a number of sources, and other applications, such
as increasingly popular remote fabrication and 3D printing
on demand. A number of efficient software tools have been
developed, which allow for a wider scope of web applications.
The web browsers make use of languages, such as VRML [1],
WebGL [2], etc., to describe complex 3D scenes.

Despite rapid development of hardware including spe-
cialised Graphics processing units (GPUs) and widening Inter-
net bandwidth, truly interactive applications allowing for near
real-time rendering without loss of a visual quality are yet
to become a reality. Tools outputting models in the standard
format of polygonal meshes have many drawbacks and limi-
tations (especially in a collaborative mode), and inefficiency
of communications through the network and rendering, thus
being at odds with the current cutting edge of the technology
in terms of hardware and networking abilities.

More specifically, in terms of building a proper client-
server architecture for 3D web-based systems, the development
of the collaborative tools for modelling and rendering requires

a flexible and efficient handling of hardware and software
resources of each client to achieve an efficient workflow. In this
paper, we explore in depth the problems of building such an
adaptive environment with a particular emphasis on rendering
aspects, thus defining the most efficient way the content is
transferred between the server and the clients depending on
the available resources.

From the geometric point of view, the most common format
to represent and store 3-dimensional objects is polygonal
meshes that embody the Boundary Representation (BRep).
This format is widely supported by the modern 3D APIs
implemented in web browsers and quite a few methods to
create and process content in this format exist. However,
the polygonal meshes are by definition an approximation
of the mathematically precise model and have well-known
issues concerned with the loss of the shape precision and
visual property definition, limited complexity, large memory
consumption, problems with transferring through networks, etc
[3]. These result in problems with interactivity which are so
important in collaborative web-based projects. An inability to
access the construction history is also an issue [4].

These problems have become increasingly critical in the
context of modelling heterogeneous objects where their inter-
nal structure is to be represented and rendered. One of the
solutions to this fundamental problem is using the Function
Representation (FRep) instead or together with BRep, where
a 3D object is represented by a continuous function of point
coordinates (implicit surfaces are a particular case of FRep).
It allows for dealing with objects as volumes with an internal
structure, keeps the constructive tree of their modelling process
and is compact by its very nature. However, the main problem
with this representation is a need to convert an FRep model
to existing supported representations during a rendering step
which can be an expensive procedure with some difficult
technical issues. In this paper, we focus on the rendering
aspects of collaborative modelling systems with FRep at its
core in the context of building the most efficient client-server
network architecture for an adaptive environment.

In this paper, we explore different ways of building the in-
teractive architecture for the modelling system based on FRep
with different types of adaptations to the client needs witha
particular consideration of rendering. The paper structure is
as follows. After a survey of related works, we describe a 3D
shape modelling architecture of Web-bases system considering

96Copyright (c) IARIA, 2014. ISBN: 978-1-61208-325-4

ACHI 2014 : The Seventh International Conference on Advances in Computer-Human Interactions

in detail first a pure client-server one and then an adaptive one.
Having identified four the most probable scenarios of executing
modelling and rendering in terms of server-client communi-
cations and decision making, we then consider a number of
case-studies, where different rendering techniques (based on
Marching cubes, Hybrid WebGL and server based rendering by
using C++) are used depending on the different client abilities.
Finally, we present the results of the experiments with both
simple and more complex models as well as some practical
recommendations reflecting the advantages and drawbacks of
the tested techniques.

II. RELATED WORK

The related works include Web-based scientific visualiza-
tion, collaborative shape modelling, Computer-Aided Design
and Manifacturing (CAD/CAM), and Web 3D concerned with
delivery and interaction with 3D geometric models on the Web.

The overview of methods allowing to handle visualization-
specific representation that consists of registered and merged
points, surface and volume data as well as the corresponding
meta information in order to provide important features for
scientific visualization was presented in [5]. The survey shows
that the information is usually re-sampled onto a structured
regular grid after data acquisition and before filtering thedata
accordingly. However, transmission of vast data arrays prevents
interactive modifications and collaborative work.

Most of the tools allowing collaborative solid modelling
adopt Boundary Representation as the data exchange format
defining an object by a set of surface patches stitched together.
Thus, Kao proposed a collaborative CAD/CAM system CO-
CADCAM that includes surface modelling, tool path simula-
tion and post-processing, and CAD geometry co-editing [6].
Another example is a NURBS modelling system that supports
a multi-user environment for collaborative conceptual shape
design [7]. Sharing and editing of a solid model over the web
can be done by collaborative solid modelling, but requires a
whole modeller installed at each client [8]. Some collaborative
modelling systems restrict the editing to the limited set of
operations, such as modification of specific features of the
model [9].

In web-based modelling, the main question is interaction
between server and the client, i.e., the information that server
sends to the client to render the model. In case of volume data
the amount of information transmitted between a server and a
client can be significantly large and the client is often requires
to install an additional software tool. Thus, in X3D format [10],
3D objects supporting point, surface and volume primitivesare
described, but additional plugins for the browser needs to be
installed. Web-based direct volume rendering with ray-casting
was discussed by Congote et al. in [11] for the purposes of
medical imaging and radar meteorology. Another way to send
the volume information is Bidirectional Texture function that
allows the progressive transmission and interactive rendering
of digitized artifacts consisting of 3D geometry and reflectance
information [12]. The similar approach is used in X3DOM
where a lightweight geometry is compressed and transmitted
with so-called image geometries [13].

Service-Oriented Architecture (SOA) [14] composes sev-
eral low-level services to more complex services with a higher

level of abstraction. SOA utilizes REST, JSON and XML-
based web-service protocols and helps in supporting the col-
laboration between different applications running on different
platforms as discussed in [14]. Koller et al. transfer images to
the client and include a number of active defense methods
to guard against 3D reconstruction attack by providing an
interesting proposal to the protection system with a remote
rendering service [15].

FRep based experimental systems for interactive and col-
laborative modelling on the Web include HyperFun Java
applet [16], EmpiricalHyperFun [17], FVRML/FX3D [18],
XISL [19], Hyperfox plug-in to Firefox [4], and a BlobTree
implementation with websockets [20]. Most of these works had
one solution implemented for rendering, mainly the isosurface
polygonizaion on the client side. Today without the need for
any plug-in installation process, WebGL provides access tothe
native GPU layer for rendering in a browser on the client side,
which provides a basis for adaptive rendering architectures.

III. A DAPTIVE 3D SHAPE MODELLING ARCHITECTURE

As we discussed above, our main motivation in using FRep
models is the reduced complexity of the models allowing to
avoid well-known problem of handling large 3D data files
and vast amount of computational resources. However, the
major drawback of these models is difficulties of handling
them inside a web-browser because of the lack of the native
support of non-polygonal objects in the current standards
for rendering 3D scenes. Modern browsers allow only to
load 3D models defined in the form of polygonal mesh and
interactively manipulate these scenes (translate, rotate, scale)
inside web browser with an input device, such as mouse or
keyboard. Usually, the conversion between an FRep model
and a polygonal model is required with the process called
polygonization. In this section we discuss different ways of
implementing web-based shape modelling with FRep objects.

A. Pure Client-Server Architecture

The client/server architecture can be considered as a net-
work environment that exchanges information between a server
machine and a client machine where server is a large-capacity
computer, with a large amount of data stored on it and available
for sharing with different clients. The clients are smaller
computers that are used to perform local computer tasks. The
client/server architecture reduces multiple copying of a single
file and allows an organization to have one centralized point
for every computer to access the same application.

The system we discuss here is platform-independent from
the client point of view. As the client can have very small
abilities to handle geometric data, we consider the server to be
responsible for performing most of the computationally inten-
sive tasks. By computationally expensive tasks, we consider
primarily the point queries, i.e., calculation of the function
value for the given point in space. The point query is mostly
used for rendering purposes. It can be shown that all the
other operations in a shape modelling system based on FRep,
such as modification of the function, adding primitives and
operations to the defining function and others, are very cheap
and can be done on virtually each client. Therefore, in the pure
client/server architecture the user still can create objects and

97Copyright (c) IARIA, 2014. ISBN: 978-1-61208-325-4

ACHI 2014 : The Seventh International Conference on Advances in Computer-Human Interactions

define operations, import and export objects in the appropriate
file format, or import geometry in common file formats.

The proposed three-tier architecture encompasses a client-
side, a server-side and a database. The client side has a copy
of the master 3D model, rendered in the web browser with
one of the techniques discussed below. The web browser
GUI contains a number of tools for creating primitives and
performing operations on the model with using user’s hardware
resources (GPU and local memory). The server side contains
the master copy of the model with all the references to the
external files stored in the database and the kernel modelling
system. The server is responsible, as mentioned above, for
performing most of the computationally expensive tasks. The
task of transferring data through a network medium, such as
the Internet or an intranet, is performed by a communication
layer between the clients and the server.

Depending on the abilities of the client, the data can be
transferred from the server to the client as either polygonal
mesh objects, WebGL texture objects or as pure image files.
In the first two cases the picture is generated with WebGL, in
the third one - by native browser’s image handling. The work
on the server and on the client is connected by a code written
in JavaScript. In the case of WebGL rendering, the client side
utilizes X3DOM, which uses JavaScript with WebGL.

We would like to stress that the resulting system should
be scalable meaning that the client can be either desktop or
mobile with different hardware abilities. For example, mobile
clients can often process only image data and therefore the
server should be able to stream images instead of 3D data.

B. Adaptive Architecture

As we mentioned before, the hardware on the client side
can be very different. Different parameters of the client should
be taken into account to choose the best possible way to
deliver the rendered model from the server to the client. These
parameters include: type of the client machine (desktop or
mobile), CPU and GPU availability and power, amount of CPU
and GPU memory and the supported software (such as WebGL
support in the browser). Therefore, an adaptive architecture is
the one that takes all the parameters into account to process
the objects from the server to choose the best possible way to
deliver model rendering to the client.

From the rendering point of view, the FRep model can be
rendered in two different ways:

• Polygonization, i.e., conversion of an FRep object
surface into a polygonal mesh and then rendering of
the resulting mesh by traditional tools;

• Direct rendering, usually in the form of ray-casting.

In the client-server chain, the client machine potentially
can be more computationally powerful than the server and in
this case the adaptive architecture should take that in mindand
transfer not the result of the rendering to the client but rather
the model itself, such that the client performs the rest of the
rendering tasks. If rendering takes part on the server, different
ways to send the result to the client can be used. These include
delivery of the result as

• images obtained after the direct rendering;

Figure 1. Different Types of Scenarios and Decision Making.

• objects delivered as image slices (voxel array);

• objects delivered as discrete data structures, for exam-
ple point clouds or polygonal meshes;

Therefore, the adaptive shape modelling architecture or
environment is the one that is able to adapt or react and interact
with clients according to the abilities of the client, and uses
different scenarios depending on the needs and the abilities of
the client by choose the most efficient way.

To make a decision regarding the appropriate scenario,
the adaptive architecture gets the information about the client
machine while communicating in the background to retrieve
the data about the characteristics of the hardware and the
browser and to calculate the bandwidth download rate. The
retrieved information helps the environment to analyze each
client or user and decide which scenario it should use for
this particular client. It can be seen that lots of various
combinations of the types of rendering, machine for rendering
and others can lead to large number of different combinations
(Fig. 1). However, in practice we identified four most common
scenarios. They are the following:

1) The request from the server identifies a client with
low bandwidth and low computational resources, the
server renders the model and sends the result as a
low-resolution static image.

2) The client has sufficient bandwidth, but the browser
is not capable to render 3D object, the server renders
the model from different points of view and sends the
result as set of mid-resolution static images to allow
transformation of the object on the client.

3) The client has sufficient bandwidth and is capable
to render 3D objects, however, it has low computa-
tional resources comparing with the server. The server
performs polygonization of the model and sends the
resulting polygonal mesh to the client. The client
renders the polygonal model using its own resources.

4) The server identifies the high performance machine
on the client side, it sends the complete model to the
client, such that the client can render the model using
local resources. In this scenario, the server performs
only the model data transfer, because no rendering
takes place on its hardware resources.

In the following section, we present implementation and

98Copyright (c) IARIA, 2014. ISBN: 978-1-61208-325-4

ACHI 2014 : The Seventh International Conference on Advances in Computer-Human Interactions

experiments with some of the identified scenarios of FRep
models rendering on adaptive architectures.

IV. I MPLEMENTATION AND RESULTS

Leaving questions of collaborative editing of FRep objects
within a shape modelling system beyond the scope of this
paper, we want to focus more on the rendering aspects of such
a system. The core of this system is the adaptive architecture
we described above. For our experiments, we implemented a
prototype of this adaptive environment that allows to work
with pre-defined FRep models of different complexity. Below
we discuss some aspects of the prototype and the experimental
results.

A. Adaptive architecture implementation

Being a web-oriented system, most of the tasks for adap-
tation take part in the browser, meaning in the JavaScript
code. Thus, at the start of the work, the server requests the
information about the client by running specialised JavaScript
module. The client sends the requested information (connec-
tion speed, machine info, browser info detection, OS info,
screen resolution info) to the server as XML messages. Of
course, there is no need to re-send information, such, as
OS info and IP address, that is not going to change. The
server selects one of the above mentioned scenarios based
on the information requested from the client. This process is
periodically repeated during the work while client is connected
to the server to ensure that the selected scenario needs to be
continued.

As it can be seen from the scenarios we discussed in the
previous section, most critical information that server gets from
the client is the connection speed and the browser ability to
use WebGL. The connection speed detection begins when the
client starts downloading a certain file with predefined sizein
kilobytes from the server in the background; a timer starts
as soon as the downloading process starts, the duration is
obtained as soon as the download process stops, the transfer
bit rate is then calculated by dividing the size of the file by the
duration. The duration is calculated by subtracting the endtime
from the start tame and dividing the result by one thousand
(to convert from milliseconds to seconds), the number of bits
loaded is calculated by multiplying the downloaded file size
by eight, the speed of download is obtained by dividing the
number of bits loaded by the duration obtained. The diagram
(Fig. 2) describes the machine info detection process starting
by determining the agent of the user and check whether
it is a portable device or not. Determining other mobile
devices can be performed by the operating system detection
process. Detection of WebGL abilities can be done either from
the canvas initialisation, meaning that successful initialisation
indicates that the machine supports WebGL, or by analysing
web browser information. For example, information that the
browser is Internet Explorer of version 10 and early means
that WebGL is not supported.

B. Rendering techniques comparison

For our tests, we implemented three rendering techniques
corresponding to three different scenarios. All the tests were
done on the same machine running Chrome web browser

Figure 2. 3D simple objects created using marching cubes, with low quality
(resolution) and sharp edges.

Figure 3. 3D simple objects rendered using WebGL library (Three.js) for
rendering, objects are with smooth edges and higher resolution.

Figure 4. 3D simple objects rendered at the server side (using C compiler)
and sent to the client as images.

with high-speed network connection to the server. The first
technique is rendering on a server (Fig. 5) by using C++
code and sending still images to a client. The second one is
polygonization on the server and rendering the resulting mesh
on a client by using WebGL (three.js library) (Fig. 4). The
third one is performing polygonization on a client by applying
marching cubes technique implemented as JavaScript code
(Fig. 3). Note that in the second scenario the polygonization is
done with C++ code on a server while in the third scenario the
polygon mesh is being created on a client side implemented
in JavaScript.

Models with different complexity were used in our tests
(Figs. 5,7,8). We show the timings of the rendering by using
different methods in the Table 1. To achieve similar perfor-
mance rate, low resolution was used for rendering on a client
side that resulted in visible edges and lower quality of the result
(Fig. 3). The resolution can be increased, but in this case more
computational resources from the client are required.

It can be seen that for simple models different rendering
techniques showed no major difference in timings. However,
as the complexity of the object increased, the difference in
timings becomes more clear. In general for the same initial
conditions, the best timings were achieved in case of rendering
purely on a server side and sending the result as an image to
the client. At the same time it can be seen that the ability to
work with model in interactive way is limited, as we have to
re-render the model for each new camera position.

The chart in Fig. 9 shows the performance for the three
rendering techniques with respect to shape models of different
complexity. The green curve represents the 3D objects ren-
dered using C++ at the server side. It shows that complex

99Copyright (c) IARIA, 2014. ISBN: 978-1-61208-325-4

ACHI 2014 : The Seventh International Conference on Advances in Computer-Human Interactions

Figure 5. Android Robots redered using different techniques, the robot to the
left was created using marching cubes, the robot in the middle was rendered
using WebGL library (Three.js) and the robot to the right wasrendered at the
server side using rhinoceros and sent as image to the client.

Figure 6. Image slicing showing the different rendering phases the complex
Hemi-sphere model took after applying different functionsusing marching
cubes.

Figure 7. Hemi-Sphere models (Complex Models) were rendered using
different techniques, the complex model to the left was created using marching
cubes, the one in the middle was rendered using WebGL library(Three.js) and
the one to the right was rendered at the server side using C Language (C++
in our case) and sent as image to the client.

Figure 8. Sake pot models (Complex Models) were created using different
techniques, the complex model to the left was created using marching cubes,
the one in the middle was rendered using WebGL library (Three.js)and the
one to the right was rendered at the server side using C++ and sent as image
to the client.

objects (Hemi-sphere and Sake Pot models) were rendered
in a fraction of a second. The blue curve represents objects
rendered using polygonization with the Marching Cubes. The
rendering time stayed almost constant when rendering simple
objects, and rose when rendering complex objects. The ren-
dering time for the hemi-sphere and the sake pot objects was
less than half a second. The red curve representing rendering
with hybrid WebGL started to rise up sharply when rendering
complex objects, this indicates the amount of time and the

TABLE I. COMPARING DIFFERENT RENDERING

TECHNIQUES(MARCHING CUBES, WEBGL USING THREE.JS, AND SERVER

SIDE RENDERING), THE TABLE BELOW SHOWS THE TIME NEEDED IN
MILLISECONDS FOR EACH TECHNIQUE IN ORDER TO CREATE A SIMPLE3D

OBJECT

3D Object Marching Cubes WebGLThree.js Server Rendering

Sphere 0.006 0.003 0.0013

Semi-Sphere 0.005 0.03 0.0013

Cylinder 0.003 0.02 0.0012

Closed-Cylinder 0.007 0.025 0.0013

Android Robot 0.021 0.196 0.178

Hemi-Sphere 0.168 1.782 0.0012

Sake Pot 0.507 4.597 0.0018

Figure 9. Chart diagram shows the time taken by each 3D model when
applying different rendering techniques.

power of GPU needed to perform such rendering,

As a result, the objects rendered with Marching Cubes are
ten times lesser in rendering time and GPU power, and it
is perfect for users with low GPU performance, and/or low
Internet bandwidth, while clients with high GPU performance
can rely on hybrid WebGL. Users with low GPU performance
and high Internet bandwidth can use server side rendering
where objects with high resolution can be rendered (Fig. 6).

The bar chart in Fig. 10 compares the rendering time taken
to obtain the same object using the three rendering techniques,
it is clear that the hybrid WebGL rendering method came
in the first place in terms of GPU high performance, and
high rendering time, the Marching Cubes came second with
considerable performance on the GPU and rendering time, and
last came the server side rendering method using C++, which
is very efficient in both GPU power and timing.

V. CONCLUSIONS AND DISCUSSION

In this paper, we have considered the features of a Client-
Server adaptive architecture to establish the most convenient
and efficient way of 3D Web-based modelling and rendering
with a particular emphasis on the latter. We started from out-
lining some advantages of using the Function Representation
over polygon meshes for modelling system; then we described
the specifics of an interactive client-server architecturefor
modelling and rendering, and identified four most common
scenarios of executing those processes along with the neces-
sary communication and decision making using that adaptive
architecture.

The main results of the paper are concerned with consider-
ation of rendering. To explore the specifics of the proposed
architecture with varying client and server abilities in the
context of the outlined scenarios we have implemented three

100Copyright (c) IARIA, 2014. ISBN: 978-1-61208-325-4

ACHI 2014 : The Seventh International Conference on Advances in Computer-Human Interactions

Figure 10. Bar chart diagram comparing the rendering time taken by each
complex model when rendered using three different techniques.

different rendering techniques, namely: Server-based rendering
using C++ code (with sending still images to the client);
polygonization on the server and rendering the resulting mesh
on a client using WebGL; Marching Cubes based polygo-
nization implemented as JavaScript code on the client side.
First, we showed as a prove of concept that rather simple
objects can successfully be rendered using different techniques.
Then, two more complex models (Hemi-sphere and Sake pot)
were rendered using the three identified methods. The detailed
comparative numerical and visual results have allowed us to
make the following conclusions:

1) Gathering information about a client requesting the
service is a key factor in determining what kind of
service (i.e., rendering technique) to deliver

2) Different scenarios should be considered, the pro-
posed architecture allows for reliable and efficient
rendering process

3) Different rendering techniques can be applied over
objects of various degree of complexity, although
the required GPU power and the necessary rendering
time can vary in a significant extent for simple and
complex models.

4) Rendering at the server side using C++ implemen-
tation can be very efficient in terms of processing
power and rendering time; however, the problem is
that objects are delivered to clients as still images

5) Rendering using Marching Cubes is very efficient in
both rendering time and GPU power as it is done at
the client side; however, this method properly works
only for low resolution objects.

6) Rendering using hybrid WebGL and Marching Cubes
techniques allows for high resolution objects and
proved to be the optimal solution on machines with
high GPU power.

7) Building up an adaptive environment, which is capa-
ble to interact and deal with different kinds of users
is a challenge, and still needs further research.

The following recommendations reflecting the advantages
and drawbacks of the tested rendering techniques provided by
the adaptive environments can be stated:

• More experiments on more complex objects should

be executed to further analyze the behavior of these
objects in terms of their modelling and rendering
within the proposed environment.

• Other rendering techniques, such as ray casting and
volume rendering should be investigated.

• Implementation of an intelligent engine in the core of
the adaptive environment promises more functionality
for making decisions and thus for providing better
rendering services.

Future work will include exploration of collaborative web-
based modelling and rendering of heterogeneous objects with
a complex internal structure in the context of a flexible interac-
tive adaptive architecture including testing different scenarios
of modelling and rendering with taking into consideration
different multiple platform configurations.

REFERENCES

[1] R. Carey and G. Bell, The annotated VRML 2.0 reference manual.
Addison-Wesley Longman Ltd., 1997.

[2] “OpenGL ES 2.0 for the web,” http://www.khronos.org/webgl/.

[3] R. Balan and G. Taubin, “3d geometry compression and progressive
transmission,” Computer-Aided Design, no. 32, 2000, pp. 825–846.

[4] T. Vilbrandt, O. Fryazinov, C. Stamm, and A. Pasko, “A weboriented
function-based volume modeling framework,” Computer Graphics &
Geometry, vol. 12, 2010, pp. 41–51.

[5] R. Bürger and H. Hauser, “Visualization of multi-variate scientific data,”
in EuroGraphics 2007 State of the Art Reports (STARs), 2007,pp. 117–
134.

[6] Y.-C. Kao and G. C. Lin, “Development of a collaborative cad/cam
system,” Robotics and Computer-Integrated Manufacturing, vol. 14,
no. 1, 1998, pp. 55 – 68.

[7] C. V. Foster, Y. Shapirstein, C. D. Cera, and W. C. Regli, “Multi-
user modeling of nurbs-based objects,” in ASME Design Engineering
Technical Conferences, Computers and Information in Engineering
Conference (DETC 2001/CIE-21256), ASME, 2001.

[8] S. Chan, M. Wong, and V. Ng, “Collaborative solid modeling on
the www,” in Proceedings of the 1999 ACM Symposium on Applied
Computing, ser. SAC ’99. New York, NY, USA: ACM, 1999, pp.
598–602.

[9] R. Bidarra, E. Berg, and W. F. Bronsvoort, “Interactive facilities for
collaborative feature modeling on the web,” in Proc. of the Tenth
Portuguese Conference on Computer Graphics, 2001, pp. 43–52.

[10] “X3D - extensible 3D, New-Generation Open Web3D Standard,” http:
//www.web3d.org/x3d/.

[11] J. Congote, A. Segura, L. Kabongo, A. Moreno, J. Posada,and O. Ruiz,
“Interactive visualization of volumetric data with webgl in real-time,”
in Proceedings of the 16th International Conference on 3D Web
Technology, ser. Web3D ’11. ACM, 2011, pp. 137–146.

[12] C. Schwartz, R. Ruiters, M. Weinmann, and R. Klein, “Webgl-based
streaming and presentation framework for bidirectional texture func-
tions,” in The 12th International Symposium on Virtual Reality, Arche-
ology and Cultural Heritage VAST 2011, Eurographics Association.
Eurographics Association, Oct. 2011, pp. 113–120, best Paper Award.

[13] J. Behr, Y. Jung, J. Keil, T. Drevensek, M. Zoellner, P. Eschler, and
D. Fellner, “A scalable architecture for the html5/x3d integration model
x3dom,” in Proceedings of the 15th International Conference on Web
3D Technology, ser. Web3D ’10. New York, NY, USA: ACM, 2010,
pp. 185–194.

[14] T. Erl, Service-Oriented Architecture: Concepts, Technology, and De-
sign. Upper Saddle River, NJ, USA: Prentice Hall PTR, 2005.

[15] D. Koller, M. Turitzin, M. Levoy, M. Tarini, G. Croccia,P. Cignoni, and
R. Scopigno, “Protected interactive 3d graphics via remoterendering,”
ACM Trans. Graph., vol. 23, no. 3, Aug. 2004, pp. 695–703.

101Copyright (c) IARIA, 2014. ISBN: 978-1-61208-325-4

ACHI 2014 : The Seventh International Conference on Advances in Computer-Human Interactions

[16] P.-A. Fayolle, B. Schmitt, Y. Goto, and A. Pasko, “Web-based construc-
tive shape modeling using real distance functions,” IEICE -Trans. Inf.
Syst., vol. E88-D, no. 5, May 2005, pp. 828–835.

[17] R. Cartwright, V. Adzhiev, A. A. Pasko, Y. Goto, and T. L.Kunii,
“Web-based shape modeling with hyperfun,” IEEE Computer Graphics
and Applications, vol. 25, no. 2, 2005, pp. 60–69.

[18] Q. Liu and A. Sourin, “Function-defined shape metamorphoses in visual
cyberworlds,” Vis. Comput., vol. 22, no. 12, Nov. 2006, pp. 977–990.

[19] J. Parulek, P. Novotny, and M. Sramek, “Xisla development tool for
construction of implicit surfaces,” in In SCCG 06: Proceedings of the
22nd spring conference on Computer graphics, Comenius University,
Bratislava, 2006, pp. 128–135.

[20] H. Grasberger, P. Shirazian, B. Wyvill, and S. Greenberg, “A data-
efficient collaborative modelling method using websocketsand the blob-
tree for over-the air networks,” in Proceedings of the 18th International
Conference on 3D Web Technology, ser. Web3D ’13. New York, NY,
USA: ACM, 2013, pp. 29–37.

102Copyright (c) IARIA, 2014. ISBN: 978-1-61208-325-4

ACHI 2014 : The Seventh International Conference on Advances in Computer-Human Interactions

