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Abstract—Grasping activities are extremely frequent in the
set of activities of daily living. This causes severe impairments
for stroke survivors, whose wrist and hand may suffer from a
variety of symptoms such as spasticity, hypertone and muscular
weakness. Intensive repeated movement performance is at the
base of robot-therapy. Thus, patients may benefit, in terms of
functional recovery, from the integration of grasp gestures in
robot mediated exergaming. In this feasibility study, we developed
and tested three methods for recognizing four different grasp
postures performed while wearing an exoskeleton for hand and
wrist rehabilitation after stroke. The three methods were based
on the statistics of the produced postures, on neural networks and
on support vector machines. The experiment was conducted with
healthy subjects, with no previous injuries on the hand, during
grasping of actual objects and then repeated using imaginary
objects. We compared the three methods in terms of accuracy,
robustness with respect to the size of the training sample, inter-
subjects’ variability, differences between different postures and
evaluating the presence of real objects. Our results show that the
support vector machine method is preferable in terms of both
accuracy and robustness, even with a small training sample, with
training times on the order of milliseconds.

Keywords—grasp posture recognition; stroke rehabilitation; Sup-
port Vector Machines; Neural Networks.

I. INTRODUCTION

Stroke survivors are often unable to perform tasks requiring
fine motor control, which are needed during activities of daily
living, among which grasping is one of the most recurrent.
Robots represent an excellent tool for exercise-based approach
in neurorehabilitation, but in order to increase the functional
outcome of the treatment patients training should consist in the
performance of grasping movements similar to those needed
in daily life [1].

The Supervised Care & Rehabilitation Involving Personal
Tele-robotics (SCRIPT) project aims at delivering an af-
fordable system for home-based rehabilitation of the hand
and wrist for stroke survivors [2]. An exoskeleton has been
developed within the project in order to facilitate the patients’
fingers and wrist extension, due to observed abnormal flexion
synergies often leading to flexed hand and wrist [3]. The
motivation of the participant is enhanced by therapeutic ex-
ercises mediated via interactive games, which subjects control
by wearing the orthosis and performing several movements of
the whole upper limb, from the shoulder to the fingers.

There are numerous types of grasping. Feix et al. refer to
17 gross types of grasping [4]. These are utilised within the
daily life interaction. Our aim is to incorporate the detection
of these grasps in the rehabilitation framework so that they
can be incorporated into human-machine interaction with the
aim of increasing interaction time.

The problem of hand posture detection has been approached
with several methods. A preliminary gross distinction can be
made between vision-based or glove-based approaches. Vision
based approaches allow natural hand gesture recognition, typi-
cally by detection of the fingertips. Detailed information about
such type of technologies can be found on comprehensive
reviews such as Chaudary et al. [5]. Among the vision-based
techniques, a possibility is to use specific color patterns on
a fabric glove in order to facilitate the detection [6]. Glove-
based approaches reduce the need for computational power at
the cost of possibly altering the natural performance of the
movements by making one wear an instrumented glove. This
could not be a concern when the presence of such a device is
however required in order to assist the patient in movement
performance. Several methods have been proposed for hand
posture detection using data gloves [5], [7], including feature
extraction (e.g., principal component analysis, linear discrim-
inant analysis) and learning algorithms (e.g., neural networks,
support vector machines). Specifically, Xu et al. [8] allowed
hand gesture recognition for driving by training and testing a
neural network with a pattern of 300 hand gestures. Other
studies have also compared different approaches for grasp
detection. Palm et al. [9] compared three methods: difference
between the grasp and models grasps, qualitative fuzzy models
and Hidden Markov Models (HMM), concluding that the first
method outperforms the other two in terms of accuracy on
a set of 10 grasps for 15 different grasps primitives. All the
aforementioned studies used a data glove, which measures the
angles of 18 joints in the hand (CyberGlove [10]).

In the context of this study, the vision-based approaches are
unsuitable given that the exoskeleton causes the visual occlu-
sion of most of the hand. Therefore, the gesture recognition
should rely on the sensor readings provided by the device. Ad-
ditionally, a basic requirement for facilitating the application
of grasp recognition in the rehabilitation framework, possibly
affecting the future use of the system, is a short setup time.

Another aspect relates to the involvement of real or imag-
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inary objects while performing the grasp postures. Ideally,
patients should mimic the graping posture without interaction
with real objects while playing the games. However, there
could be substantial differences between the hand posture
observed when holding actual objects and its performance
based on motor imagery, which can affect the therapy outcome.
On the one hand, the use of real objects would possibly
enhance the skills transfer from the training activity to the
functional use. Also, grasping real objects would induce phys-
ical constraints on the hand posture, which might facilitate the
gesture recognition, making its performance more repeatable.
However, having real objects also carries disadvantages such
as introducing additional requirements in the device design,
having the participants focusing their gaze and attention on
the objects rather than on the screen and reducing the usability
of the system.

Hence, in this work, we test the trade-off between accuracy
and training sample size of three different approaches: recog-
nition based on statistics, based on neural networks and based
on support vector machines, for three type of grasps, either
using actual objects or imagined objects while performing the
gestures.

The remainder of the paper is structured as follows. We
start with the methods section introducing the passive orthosis
used in the SCRIPT project, the selected grasp postures, the
different methods selected to recognize the postures and details
of the experimental protocol. Then, we report and analyze the
results, and conclude with a brief summary of our findings,
including the best method found for grasp posture recognition
and directions for future work.

II. METHODS

A. Measuring device

The SCRIPT passive orthosis [11] is a passive device
which features five leaf springs, which are connected to finger
caps through an elastic cord (Figure 1). The extension forces
resulting from the parallel of these two elements are applied at
the fingertip. The elastic cord enables the fingers freedom of
movement relative to the leaf spring and also allows to adjust
the level of support provided by the device. The leaf springs
are fitted with commercial resistive flex sensors [12], which
measure their deflexion with a resolution of 1 degree. Because
of the elastic coupling, the deflection of the leaf spring is
not the actual flexion angle of the finger. However, the two
quantities are related by a monotonically increasing function
[11]. Also, movements of lateral abduction/adduction of the
fingers and opposition of the thumb are not restricted nor
sensed by the orthosis. It measures only overall finger flexion
in a range from 0 to 90 degrees and wrist flexion and extension
in a range from 90 to -45 degrees.

B. Hand Gestures

We selected three types of grasps shown in Figure 2. Two
are classified as precision grips: the three-jawed chuck (the
thumb opposes the index and middle finger) and the lateral
prehension (the thumb holds an object against the side of

Elastic cord

Leaf spring fitted with 
bending sensors

Flex sensor 2.2’’

Finger cap

Fig. 1. Bending sensors and the leaf springs of the SCRIPT passive orthosis

the index finger). The third grasp selected is classified as a
power grasp: the cylindrical prehension in which all fingers
make contact with the object. Keller et al. [13] identified
the three-jawed chuck and the lateral prehension as the most
frequently used prehensile patterns for static and dynamic
grasping, respectively. Additionally, the three-jawed chuck and
the cylindrical prehension are tested as part of the Grasp and
Grip sections of the Action Research Arm Test [14], which has
been used as a reliable, valid measure of arm motor status after
stroke. The relaxed posture of the hand was used as the forth
gesture in order to be able to recognize when the patients are
not performing any grasps. Furthermore, these gestures were
selected considering that patients with different levels of hand
impairment should be able to perform them.

C. Methods for Recognition

1) Recognition based on statistics of the training samples:
The method considers the absolute error of each finger with
respect to the average value of the training samples. In the
training phase, the mean value of the flexion measured for each
finger f is calculated for the N number of training samples:

meanf =

∑N
i=1 |Flexionf i|

N
(1)

During the testing phase, the flexion values of each finger
are compared with the mean value of the training phase and
averaging it among the five fingers, identifying then the gesture
only if this value falls below a threshold th:∑5

f=1 |Flexionf −meanf |
5

≤ th (2)

The value of th was empirically set to 10 degrees as this
value allowed to reach an accuracy of 90% when tested on a
single subject during a pilot study.

With this method, gestures might be recognized even though
one or more fingers are in very different conditions from what
measured in the training phase, provided that other fingers
compensate for this overall difference.

2) Recognition based on Neural Networks (NN): Artificial
Neural Networks (NN) [15] have been extensively used for
supervised learning to solve problems of pattern recognition
(classification) and regression [16]. They have been previously
used for hand posture classification [5], [17].
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(a) Three-jawed chuck (b) Lateral prehension (c) Cylindrical prehension (d) Relaxed posture

Fig. 2. Selected gestures to be recognized. Bottom images show how they are performed wearing the SCRIPT device.

In this work, we used a three layer neural network that
contain five input nodes for the flexion values of each finger,
10 hidden nodes and four output nodes, one for each gesture
to be recognized (the three selected gestures plus one relaxed
postured acquired by instructing the subjects to relax their
fingers). The flexion angles were normalized in a range from
0 to 1, corresponding to 0 to 90 degrees. Similarly, the limits
of the output nodes were set to 0 and 1. We used back
propagation, a learning mechanism that minimizes the error
between target output and the output produced by the network
until it reached an error of 0.01.

After the training phase, a gesture was recognized if the
results given by an output node was higher than 0.7 and the
other gestures has a recognition rate less than 0.3. Otherwise,
no gesture was returned by the model for the given posture.
This method was implemented in Python using the Neurolab
library [18].

3) Recognition based on Support Vector Machines: This
method utilises Support Vector Machines (SVM), which is a
popular machine learning technique for classification [19]. A
support vector machine constructs a set of hyperplanes in a
high-dimensional space that are used to classify the data. A
good separation is archived by the hyperplane that has the
largest distance to the nearest training data point of any class.
The hyperplanes are found solving the following optimization
problem [20]:

min
w,b,ξ

1

2
wTw + C

l∑
i=1

ξi (3)

subject to yi(w
Tφ(xi) + b ≥ 1− ξi) and ξi ≥ 0

where {(xi, yi)|xi ∈ Rp, yi ∈ −1, 1} are the training set
of l instance-label pairs, xi is p-dimensional real vector, w
the normal vector of the hyperplane and C > 0 the penalty
parameter of the error term. The training vectors xi are
mapped into a p-dimensional spaces by the function φ and
in order to create nonlinear classifiers a kernel function is
used. In our work, we used a radial basis function (RBF) as
the kernel function, given that it can handle the case when the
relation between class labels and attributes is non-linear. It is
defined as:

K(xi, xj) = exp(−γ ‖ xi − xj ‖2), γ > 0 (4)

where γ is a kernel parameter.
Therefore, two parameters are needed: C and γ. In order to

find the best values for this parameters, we used a v − fold

cross-validation technique, dividing the training set for one
subject into v subsets of equal size and testing the classifier
on the remaining v−1 subsets. The values found were: C = 4
and γ = 1. The method was implemented in Python using
the LIBSVM package [20]. As with the previous method, the
flexion angles were normalized in the range from 0 to 1. The
selected error to stop the training face was 0.01.

D. Experimental protocol

This work was designed as a feasibility study aimed at
comparing different methods for grasp posture recognition and
selecting one that can be further adopted in rehabilitation. We
decided to perform the experiments of this study on healthy
subjects, while focusing on the recognition capabilities of the
different methods.

Five healthy subjects (age = 31 ± 2.1, 3 males/2 females)
with no previous injuries of fingers, hand or wrist volunteered
to participate in this study. Participants were recruited amongst
faculty staff by advertising on an internal mailing list. All
subjects were right handed.

This study was carried out at the University of Hertford-
shire and approved by the university ethics committee (Ethics
protocol number COM/ST/UH/00008).

The participants were asked to wear a medium sized left
hand SCRIPT passive orthosis while sitting in front of a PC.
Participants were instructed to grasp one out of three objects
(a ball, a mug and a notepad) by showing on the screen
the picture of the appropriate grasp (Figure 2). The subject
then confirmed with a click that he/she achieved the desired
gesture and the flexion angles of the fingers were saved. After
confirmation, they were asked to release the object, relax the
hand and press a button. At that moment, the flexion angles
of the fingers of the relaxed posture were also saved.

Each subject performed six repetitions of each gesture in
a pseudo-random sequence grasping the real objects. Subse-
quently, participants repeated the same procedure but mimick-
ing the required gesture without actual objects (the difference
is shown in Figure 3 for the first grasp).

Data were then post-processed by Python ad-hoc applica-
tions implementing the three methods. Each technique was
evaluated based on its computational time and accuracy of
recognition, defined as the total number of correctly classified
gestures over the total number of gestures.

The data acquired for each subject was divided into two
sets for training and testing purposes. The number of training
samples (N) was varied between 2 and 5 samples per gesture
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(a) (b)

Fig. 3. Example of performing a gesture while: a) grasping a real object or
b) grasping an imaginary object

type. The training set was then used to train the model
according to each method, which allows us to provide insights
into what is the minimum number of samples required to
achieve a given accuracy. Results were considered taking into
account all possible permutations of the training samples, for
each training sample size N. Data analysis was done using
IBM SPSS for Windows version 21.0.

III. RESULTS

A. Recognition methods

Figure 4 shows the results in terms of accuracy for the three
methods, averaging all subjects. Regardless of the training
sample size, the SVM approach outperforms the other methods
in terms of accuracy, with median values greater than 90%
already with two repetitions of a gesture. While the method
based on statistics did not allow achieving comparable accu-
racies, neural networks can potentially be used. However, this
would happen at the cost of increasing the training sample.

Fig. 4. Accuracy for each method tested over all subjects.

The computational times taken for each method is presented
in Table I. The method based on statistics took less than 1 ms
regardless of the training sample size, given that it involves
only simple arithmetical and logical operations. Similarly, the
method based on SVM needed a small training time (below
56 ms for all conditions). On the contrary, the method based

on NN required much higher durations, ranging from 0.1 s to
several hours.

TABLE I
TIME REQUIRED TO TRAIN THE DIFFERENT METHODS

Computational time (sec)
Method Mean Maximum Minimum

Based on statistics <0.001 <0.001 <0.001
Based on NN 89.543 >10000 0.110
Based on SVM 0.005 0.056 0.001

Therefore, although the method based on NN was able to
reach median recognition accuracies higher than 90% with
more than 3 training samples, the long training time, and
particularly its high variability, suggested to drop it in favour
of the method based on SVM, which was used to perform the
further analyses evaluating the presence of real objects and the
variability among subjects.

B. Grasping real vs. imaginary objects

The results of comparing the accuracy of gesture recognition
using real or imaginary objects are shown in Figure 5 for
the method based on SVM. The gestures performed without
objects are systematically less recognized than the ones using
objects.

Fig. 5. Comparison of the accuracy of gesture recognition when grasping
objects or imagining them, using the method based on SVMs.

This result was expected as the gestures grasping a real
object are performed in a more consistent manner than when
the objects are imagined. However, performing the gestures
using real objects while playing a game is not practical,
therefore the use of imaginary objects is advisable as the
median accuracies of recognition are no lower than 90%.

C. Number of training samples required

It is important to determine the number of required training
samples needed to achieve a good accuracy of recognition.
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As the patients need to perform the training procedure before
starting the games, the less number of samples required to
train the model the better.

For the method based on SVMs, Figure 5 shows the results
of the accuracy for different number of training samples
acquired per gesture. The results show that the accuracy of
recognition increases with the number of training data, as
expected. We performed a contrast test between the different
number of samples used for training (Table II). The results
show that for grasping both real and imaginary objects the
means of the groups are significantly different (<0.05) and
that there is no significant difference increasing from 4 to 5
samples (p > 0.05), therefore we recommend using 4 samples
per each gesture.

TABLE II
CONTRAST TEST OF THE EFFECT OF THE NUMBER OF TRAINING DATA

OVER THE GESTURE RECOGNITION ACCURACY

Object Means of Contrast significance
groups sig-
nificance

2 vs. 5
samples

3 vs. 5
samples

4 vs. 5
samples

With 0.007 0.004 0.048 0.375
Without <0.001 0.000 0.004 0.174

D. Variation of recognition per gesture

In this section, we considered the variation of accuracy
among gestures. The results of the accuracy using the method
based on SVMs and 4 samples for training are shown in
Figure 6. It can be seen that the relaxed posture is always
correctly recognized. The three-jawed chuck has also very high
accuracy, despite the presence of a few outliers. The cylindrical
and lateral prehension appear as those more difficult to be
recognized, specially when using imaginary objects. This is
likely because of their similarity, particularly enhanced by the
constraints on movements imposed by the orthosis.

Fig. 6. Comparison of the recognition accuracy obtained for each of the
selected gestures using the method based on SVMs.

E. Variation between subjects

In order to study the variation between subjects, we have
first analyzed the differences in the flexion angles for each of

the gestures performed by the 5 subjects while imagining the
objects and then we analyzed how this variation on the flexion
angles inter subjects affected the gesture recognition.

The finger flexion angles for each subject varied in most
of the cases less that 12 degrees, except for the small finger
that presents variation up to 21 degrees performing the lateral
prehension for subject 3 and the thumb for subject 5 with a
standard deviation of 19 degrees. Figure 7 shows a summary
of these results over all subjects per grasp gesture. As it can
be expected, the relaxed posture is the most consistent over
all the gestures. For the 3-jawed chuck, the ring and small
fingers present high variation (> 60 degrees) as they were
not directly involved in the gesture as well as the thumb,
which flexion reading can vary according to the abduction
position which is not measured by the device. The cylindrical
prehension shows approximately the same variation over all
fingers and the lateral prehension show the highest variation
since the flexion of the fingers is not highly constrained by
the grasp, as long as all the fingers are flexed and the thumb
is above the index finger. These results are correlated with the
recognition accuracies of each gesture presented in Figure 6,
which shows that the cylindrical and lateral prehension could
have low recognition accuracies (up to 50%) given their high
variation inter-subjects.

Fig. 7. Variability of the different finger flexion produced by all subjects
while performing the different gestures

Finally, Figure 8 presents the accuracy of recognition for
each subject (using SVM, without objects). The results shows
small variation between subjects and an accuracy higher than
90% for all of them using 3 or more training data per gesture.

IV. CONCLUSION AND FUTURE WORK

In this paper, we evaluated three different methods to
classify hand gestures while wearing a passive orthosis capable
of measuring the angle of flexion of the fingers. By using
support vector machines we could achieve an overall accuracy
of more than 90%, with this methods being preferable to
statistics and neural networks because of recognition accuracy
and computational time.
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Fig. 8. Accuracy for each subject using the method based on SVMs.

This accuracy can be achieved already with only 4 training
samples, thus allowing very short preparation time and making
this approach suitable for home-based rehabilitation. In this
sense, we also showed that the the fact that subjects pretending
to grasp objects (instead of actually grasping them) had small
effects on the recognition rate, suggesting that the proposed
approach can work with imagined postures.

In future work, we will evaluate the performance of the se-
lected method with data collected for post-stroke patients and
compare the results with this study using healthy participants.
Additionally, the set of grasps in this study was kept small in
order to highlight the suitability of different algorithms, but the
method could be tested including a larger number of grasps.
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