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Abstract—With the growing usage of computer systems in daily
life, a natural and intuitive Human Computer Interaction (HCI)
method to support the embedding of computer systems in our
environment seems necessary. Gestures are of utmost importance
for the design of natural user interfaces. Hand gesture recog-
nition to extract meaningful expressions from the human hand
movements and postures is being used for different applications.
However, the recognition of hand gestures that contain different
hand poses can be challenging. In this paper, we propose a system
(called HANDY) for hand gesture recognition that is flexible to be
trained to recognize a variety of user-defined gestures defined as
sequences of static hand postures. The system has been designed
to be used in uncontrolled environments, to handle dynamic
and cluttered backgrounds, and without the need of using any
wearable sensor or any specific clothing. Evaluation results show
a good average accuracy in gesture recognition.

Keywords-interactive systems; gesture-based interface; natural
HCI; personalizable system

I. INTRODUCTION

Natural User Interfaces (NUI) have attracted considerable
amount of research nowadays. With the growing usage of
computer systems in everyday life and the desire to embed
them into the environment, employing the traditional input
devices (like keyboard and mouse) seems to be a bottleneck
in efficient and intuitive Human Computer Interaction. Hand
gestures are a natural way to communicate in human-human
interactions and can be adopted also in Human Computer Inter-
action (HCI). More recently, devices such as Microsoft Kinect
[1], a low-cost Natural Interaction (NI) device with Red-Green-
Blue (RGB) and Depth sensors, have been used increasingly
in NUI and HCI research for hand gesture recognition. The
most prominent gesture recognition frameworks either use
wearable sensors, vision-based methods, or a combination of
both. While wearable sensors can be costly, inaccessible for
many users and also might cause health problems or fatigue,
vision-based frameworks, like ToF (Time-of-Flight) cameras
[2] or the Kinect, are instead affordable to the majority of the
people.

Many frameworks have been proposed regarding hand pose
and gesture recognition using vision-based techniques. How-
ever, the research on gesture recognition has focused mainly
on static gestures that include a static hand pose estimation or
on dynamic gestures that consider the trajectory of the hands
[3], [4], [5]. Postures of the hand during dynamic gesturing

can be important features in natural communication. However,
only a small number of frameworks have successfully taken
into consideration the hand postures in the recognition of the
dynamic gestures [6], [7]. And still, a limited number of hand
poses are understandable for the gesture recognition system
in these works. Moreover, the posture is usually assumed to
remain the same during the gesturing. Even in sign language
recognition systems, the posture of the hands is usually ne-
glected and other features such as velocity, direction, trajectory,
and position of the hand with respect to the face are considered.
Furthermore, the flexibility of the system to be configured
with user-specific gestures is yet another key aspect that has
received less attention in the recent literature.

In this paper, a system (called HANDY) for gesture recog-
nition is proposed. The framework introduced here is flexible
enough to be able to train and use the system with minimal
effort for a variety of hand poses and gestures that meet the
user’s specific needs. Microsoft Kinect depth sensor is adopted
because of its low cost, availability and ease of installation.
Furthermore, by the usage of depth data, the system can be
adopted in low illumination, dynamic backgrounds and in
uncontrolled environments and also the user would not need
to use any wearable devices, sensors or any specific clothing.
The mentioned aspects make the system appropriate for usage
in different contexts for natural interactions.

Due to the stochastic nature of human including immeasur-
able and hidden mental states along with the measurable and
observable human actions, Hidden Markov Models (HMM)
[8] can be used to model these processes. HMMs have been
successfully used in many applications and studies for speech
recognition [8] and hand writing recognition [9]. Also, they
have been proven effective in sign language recognition and
other complex hand gesture recognition processes [10], [11].
In this approach, HMMs are used for gesture recognition to
enable recognition of gestures composed of sequences of states
with tolerance to the changes in the hand posture, to exploit
patterns, and to evolve recognition capabilities with the help
of learning techniques.

The paper is organized as follows: Section II reports related
work for hand pose and gesture recognition techniques. Then,
in Section III, we introduce the HANDY system and its
implementation details. Section IV focuses on the results.
Finally, in Section V, we draw our conclusions and report
future works.
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II. BACKGROUND AND RELATED WORK

In this section, we introduce the background and review the
state of the art related to the main techniques needed to identify
the hand and its gestures: hand localization, segmentation,
hand pose estimation and gesture recognition.

Approaches regarding the interpretation of gestures in HCI
either use wearable sensors or employ vision-based methods
[4]. An example of wearable sensors is represented by data
gloves, which can provide accurate measurements of hand
pose and movements. However, wearable sensors are com-
monly costly while they limit the hand movement and are
not very comfortable to be used in everyday life. Mynatt
et al. [12] use a wireless wearable device, called Gesture
Pendant, that uses infrared illumination and a charge-coupled
device (CCD) camera to recognize a simple set of gestures.
P. Trindade et al. [13] propose using an Inertial Measurement
Unit (IMU) sensor for recognizing the hand orientation. Some
other approaches employ, colored hand gloves [14], data gloves
[15], and forearm band or wrist band with accelerometer
and electromyography (EMG) sensors [16] accompanied with
a vision-based approach to simplify the hand localization,
segmentation and tracking.

To avoid the use of any wearable or mechanical device,
vision-based gesture recognition can be used. Vision-based
gesture recognition techniques can be divided into two broad
categories [17]: Model based approaches that focus on taking
advantage of a 3D or 2D model of the hand for hand pose and
approaches based on hand shape appearance which is used to
extract the features of the visual data for gesture recognition.
Model-based approaches usually suffer from high complexity
in implementation and cannot be used in live applications.
Appearance-based approaches use RGB or depth data or both
as the input. Our framework falls into this category.

When only RGB images in the appearance-based approach
are used, the tasks of locating and segmenting the hand from a
cluttered and noisy background can become very challenging,
especially when other skin-colored objects are present in the
scene and in case of occlusions [18]. Moreover, RGB images
can be sensitive to illumination changes and extracting the
sophisticated features from the image to have an accurate
recognition can be very costly regarding the processing time

[4]. To overcome these issues, other approaches have shown
that better results for hand segmentation can be obtained when
using depth data [19]. However, as it is stated in [19], most of
the proposals assume that the hands are the closest object to
the scene. In our system, as we will see in Section III, we will
take advantage of the body tracking information extractable
from Kinect SDKs, so that depth thresholding can be done
regardless of the position of the hand.

Also, Zhu and Pun [20] use Kinect depth data for extracting
the trajectory data sequence of the hand movements, but, do
not consider hand postures. In a similar way, [21] and [7]
introduce a gesture recognition approach that considers the
motion and shape information of the hand using depth data.
However, the hand shape is considered to remain the same
during the gesturing and pose estimation is done once at the
beginning of the gesture. In another study by Chen et al. [6]
HMM continuous gesture recognition is proposed considering
the spatial and temporal features of the gestures. Yet, a small
number of poses is recognized in this approach and the posture
of the hand does not change while performing the gesture.
HMM has been adopted also in the work by Starner et al.
[22] for American Sign Language (ASL) recognition. For
recognizing the sign language they have ignored the detailed
shape and pose of the hand and have only considered, coarse
hand pose, orientation, and the trajectory of the gesture through
time, and used such information as input for the recognition
system. In a more recent work, Molina et al. [23] propose
an approach for static pose estimation and dynamic gesture
recognition. They successfully recognize the gestures that
include the change in the hand postures. They have obtained
an accuracy of 90% for recognition of combination of static
hand postures and dynamic gestures.

Differently from these approaches, we consider hand poses
and gestures composed of their combinations: hand poses are
modeled by their skeleton, and time series analysis algorithms
and HMM techniques are used to recognize sequences of hand
poses. Using these techniques user-defined gestures can also
be defined and more flexibility can be added in case of gesture
evolution.

III. THE HANDY SYSTEM
The architecture of the HANDY framework for gesture

recognition is depicted in Fig. 1. The system extracts from the

Figure 1: The Gesture Recognition Scheme
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Kinect the depth data and the position of the center of the palm:
the OpenNI [24] framework together with NiTE [25] skeletal
tracking middleware have been used to extract the needed
information. Then, the segmented hand is first identified and
its skeleton is calculated as a feature that will be used for
hand pose estimation. Hand poses can be stored in a pose
bank, to be used in gesture recognition. Both static gestures
and pose sequences are considered in our system: in both cases
their recognition is based on the hand pose estimation. In the
sequel, each step of this scheme is explained in detail.

A. Hand Localization and Segmentation
One of the essential components of hand gesture recog-

nition is hand localization and tracking. Hand localization
refers to the positioning of the hand and to its segmentation
from the background. In other words, it means to understand
which pixels of the input image belong to the hand. Using the
NiTE skeletal tracking it is possible to acquire the position
and depth information of the center of the palm. We employ
this information to segment the hand from the background
using depth thresholding. Depth thresholding is an easy and
quick way for real-time hand segmentation and it can be
greatly beneficial for separating the hand from the background
to exclude the effects of cluttered or dynamic backgrounds.
Unlike other approaches that need the hand to be the closest
object to the camera or that need the person to keep his/her
hand in a predefined position, here the depth thresholding is
done automatically by knowing the depth information of the
palm center in each frame. And therefore, no restrictions are
applied for positioning the hands correctly.

Fig. 2a shows the depth data of the user that is taken from
Kinect depth sensor and hand localization using the NiTE
skeletal tracking. Different levels of depth are shown with
different shades of gray to better show how depth thresholding
can be used to segment the hand. The obtained segmented hand
is shown in the upper part of Fig. 2b.

B. Feature Extraction
After hand segmentation, the system needs to extract some

hand features to define and then compare different postures. In
the proposed approach, skeletons are considered as the features
to be used in pose estimation. A skeleton is a graph that

(a) (b)

Figure 2: (a) Depth data and body tracking data, (b) Hand segmentation (top),
application of VD on boundary points (middle) and the resulted skeleton via
pruning (button)

summarizes the shape of an object and can be employed as
an efficient shape descriptor for object recognition and image
analysis. To obtain the skeletons of the hand (skeletonization),
the Voronoi Diagram algorithm [26] is applied on the boundary
points of the segmented hand. Voronoi diagrams (VD) partition
the space in a number of regions based on a set of geometrical
points (called seeds), in such a way that each region consists
of the points closer to its seed. By applying the VD technique
to the boundary points of the segmented hand, a diagram
including also the main skeleton of the hand is obtained as
shown in the middle part of Fig. 2b, which can be cut out by
pruning the extra branches. An example of hand skeleton is
shown in the bottom part of Fig. 2b.

Using this approach, defining new postures can be as easy
as saving a snapshot of the posture into the system. In the
HANDY framework, the user can perform the custom poses
in front of the Kinect and the system saves the skeleton data
of the specified poses for later use in hand pose and gesture
recognition. In Fig. 3, it is possible to view some samples of
hand poses that can be defined with our framework and their
extracted features (skeletons).

C. Hand Pose Estimation
Hand pose estimation refers to the recognition of a single

posture of the hand. This process uses the data provided
by the feature extraction module, and the output will be
the recognized hand pose for the performed posture. In the
proposed approach, it is possible to define a set of hand poses
by saving the extracted skeleton of the specific posture in
a bank of hand poses. After defining hand poses, each of
the performed pose skeletons will be compared with all the
poses available in this bank and the most similar one will be
chosen as the estimated hand pose. Since the skeletons of the
hands can be slightly different even for the same hand posture
performed by the same user, a method for comparing the
skeleton graphs should be adopted. In our approach, to estimate
the similarity of two skeletons, we adopt the Dynamic Time

Figure 3: Some sample hand poses defined in the HANDY framework
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Warping (DTW) algorithm [27], which allows to compare time
series. Our algorithm takes into account the internal order
of the points in the skeleton and, for a fair comparison, it
normalizes the skeletons to make the the hand pose estimation
system invariant to the distance of the hand to the depth sensor
and also to the absolute position of the hand in the camera field
of view. For further details about the process adopted in our
framework the reader may refer to [28].

D. Gesture Recognition
As mentioned before, the goal of the HANDY system is to

recognize both static gestures consisting of a single pose (e.g.,
the poses depicted in Fig. 3) or generic gestures composed of
sequences of different hand postures. Some examples of these
kinds of gestures are shown in Fig. 4. In both cases, it seems
convenient to employ the results of the hand pose estimation
as the input of the gesture recognition system.

The hand pose estimator based on DTW is able to rec-
ognize the saved postures with a reliable accuracy; however,
if we see a gesture as the composition of single poses and
for each sub-pose we try to recognize it by comparing it
with the bank poses, there may be cases in which the hand
pose does not exist in the bank (e.g., for intermediate poses);
moreover, when the hand is moving between the poses, the
ability of the pose estimator degrades and might not be able
to recognize the correct pose. In such cases, the most similar
hand posture (skeleton) will be assigned to the performed
pose. Furthermore, as already noticed, there are variations in
features even when the same gestures are being performed by
the same user. In these cases, machine learning methods such
as HMMs can be applied to handle the variations and also to
recognize the gestures in which the pose estimator is unable
to estimate the correct pose sequences. It is worth noting that
misrecognition of an intermediate hand pose and assignment of
the closest hand pose from the bank is tolerated by the gesture
recognition mechanism thanks to HMMs, which are based on
stochastic processes. Indeed, the HMM is a collection of states
connected by transitions, that can be used to represent the
statistical behavior of observable symbol sequences in terms
of network states. Each observed symbol (an estimated hand
pose) happens corresponding to its probability function in an
HMM state. Once a symbol is observed, the HMM can stay
in the same state or move to another state due to transition
probabilities associated with each state [6].

Using HMMs for gesture recognition, training is needed
before the system is able to recognize the gestures. As we will
see in the evaluation section, a little amount of training data
(in our tests, 20 for each gesture) is needed for the system
to obtain an acceptable accuracy in gesture recognition. We
assume that the user needs to wave, for the system to start
looking for meaningful gestures. While user’s hands are in the
rest mode (e.g., hands are on the arms of the armchair) the
gesture recognizer also goes into the rest mode. The gesture
duration is considered to be fixed and we sample the data every
100 milliseconds up to 1 second and the hand pose for each
acquired frame will be estimated. In this way, we will have a
sequence of 10 estimated hand poses which will be used as
the input for training the HMMs and for gesture recognition.
The duration of the gesture and the interval of the sampling
can be increased and decreased when convenient.

Fig. 5 shows a snapshot of the application that has been
developed for testing the introduced system with different

Figure 4: Set of gestures for test

users. In the application, it is possible to define and train
different hand poses and gestures for any user. In the next
section, the results of testing the system are discussed in more
detail.

IV. RESULTS AND DISCUSSION

For the evaluation of the system, 7 subjects were asked
to train and test the system with a set of predefined gestures.
All the subjects were right-handed but two of them used their
left hand (thus, introducing also a lower self-confidence and
fidelity in the performance of the gestures). A set of 20 hand
postures, shown in Fig. 3, were recorded for each user in the
pose bank. In a first experiment, the recognition of the single
isolated poses was tested. In this case, the average accuracy of
the pose estimation system for the sample poses in Fig. 3 was
around 83.52%. The poses that include the rotation of the wrist
showed less accuracy since the pose estimation system is not
rotation invariant and the mentioned poses can vary regarding
rotation even when performed by the same user. The gesture
recognition is tested according to the before mentioned user
specific data. However, as we will see next, when a gesture
defined as a sequence of poses is considered and during the
gesture intermediate hand poses are sampled with a fixed
interval, the accuracy can be increased.

Figure 5: The application for testing the HANDY gesture recognition system
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The poses to be stored in the system should be, however,
defined according to the nature of the gestures. The more poses
are defined in the system, the more similar they get to the
postures that are used in gestures, the more accurate will be
the inputs of the gesture recognition system. However, there
is a trade-off between the accuracy of the input pose sequence
and the number of the poses that are defined, as with a large
pose bank the pose estimation system can get slower.

In our tests, we have used the 20 poses depicted in Fig. 3
and, based on these poses, tried to recognize the five gestures
shown in Fig. 4. These five gestures were chosen taking into
account that:

1) Poses with similar skeletons exist in the gesture.
Having similar poses can confuse the pose estimation
and reduce the accuracy in producing the gesture
recognition inputs. For example, for the first gesture
in Fig. 4, it is possible to see that its beginning and
final poses (pose no. 6 and pose no. 1 in Fig. 3) have
very similar skeletons that are composed of a single
vertical branch.

2) Some of the poses in the gesture might not exist in
the hand pose bank used for pose estimation. For
example, the gesture number 5 in Fig. 4 includes
poses like the closed hand, the final pose in the
sequence, which is not included in the gesture set
recorded in the pose bank (depicted in Fig. 3). If
a pose does not exist in the pose bank, the most
similar pose from the bank will be selected in the
pose estimation step.

3) Gestures contain some intermediate poses with lower
pose estimation accuracy. As an example, in the
gesture number 3 depicted in Fig. 4 the final hand
pose (that corresponds to pose number 15 in Fig. 3)
has shown a low accuracy of only 40% in the pose
estimation system. This is also true for the second
gesture in Fig. 4.

These gestures were recorded by a single user as isolated
gestures and then used for training and testing the system.
In the test, gestures have a fixed length of 1 second, and
are sampled 10 times during their performance. In a real
application, the number of of sampling and the duration of
the gestures can be configured in the system according to the
nature of the gestures and the user specific considerations.
Evaluation of the HANDY was done in two steps: first, the
system is trained for a single user using 20 training data for
each gesture. Later, the system is tested for the same user.

Table I shows the accuracy of each gesture per user: the
first column represents the user; the second indicates if the left
or right hand was used; the next columns represent the five
gestures specified in Fig. 4: for each gesture the percentage
indicates the accuracy in the recognition of 30 performances
of that gesture.

Table II demonstrates the average accuracy of the same
results for the left and right-hand users: from the results, no
considerable differences can be concluded in the accuracy of
the system in the two cases.

Finally, Table III reports the average confusion matrix
for the tested gestures with the different users: for example,
gesture G1 was recognized correctly in the 94.28% of the
cases, it was confused 3.33% with gesture G2 and 2,86% with

gesture G4. The average accuracy of 95.57% was concluded
during these tests which is acceptable for many applications.

In this first evaluation for each user, we considered the
hand poses and the gestures previously defined and trained
by the user him/herself. In a second evaluation, we tried to
evaluate the accuracy of gesture recognition considering the
case of a new user who has not trained the system before. For
this evaluation the system was trained with the data from all
the subjects except the user who is going to test the system.
Only the data from right hands were used since we did not
have enough training data for left hands. The results of this
evaluation are reported in Table IV. The average recognition
accuracy of 96.26% was obtained. This suggests that with
more training data some universal gestures could be recognized
without initial training.

While testing the system the users reported that they did
not feel any delay in the gesture recognition system and
therefore that the system is able to respond in real-time.
Moreover, subjects were asked to rank the gestures based on
their difficulty. Those involving difficult hand manoeuvres like
wrist rotation (gestures 2 and 3, see Fig. 4) were commented
to be the most difficult ones. However, in general, they found
the system easy to use.

V. CONCLUSIONS AND FUTURE WORKS

In this work we have presented an approach for a flexible
and configurable hand pose and gesture recognition system that

TABLE I: RECOGNITION ACCURACY OF TRAINED GESTURE RECOG-
NITION SYSTEM FOR SINGLE USERS

Users R/L-hand G1 G2 G3 G4 G5
U1 R 100% 90% 100% 96.67% 100%
U2 R 100% 100% 100% 100% 100%
U3 R 100% 100% 96.67% 96.67% 100%
U4 R 90% 100% 100% 100% 100%
U5 R 83.33% 100% 100% 76.67% 96.67%
U6 L 86.67% 80% 100% 100% 100%
U7 L 96.67% 100% 100% 96.67% 93.33%

TABLE II: AVERAGE RECOGNITION ACCURACY OF TRAINED GES-
TURE RECOGNITION SYSTEM FOR SINGLE RIGHT-HAND AND LEFT-
HAND USERS

R/L-hand G1 G2 G3 G4 G5
R 94.66% 99.95% 99.33% 94% 93.33%
L 91.67% 90% 100% 98.33% 96.66%

TABLE III: AVERAGE CONFUSION MATRIX OF GESTURE RECOGNI-
TION SYSTEM FOR SINGLE USERS

Gestures G1 G2 G3 G4 G5
G1 94.28% 3.33% 0% 2.86% 0%
G2 0% 95.71% 0.48% 0.48% 2.86%
G3 0% 0% 99.59% 0% 0.48%
G4 0% 0.95% 0% 95.24% 3.81%
G5 0% 0.48% 0.48% 0.48% 98.57%

TABLE IV: RECOGNITION ACCURACY OF TRAINED GESTURE
RECOGNITION SYSTEM FOR SINGLE USERS

Users G1 G2 G3 G4 G5
U1 100% 90% 100% 100% 93.33%
U2 100% 100% 100% 96.67% 100%
U3 100% 100% 100% 86.67% 96.67%
U4 100% 96.67% 93.33% 80% 90%
U5 96.67% 93.33% 93.33% 100% 100%
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could be adapted to the specific needs of the user. Specific
hand postures can be defined and recognized in this system
according to the needs of the user, the application and nature
of the dynamic gestures that are based on these postures. In
our tests, 20 different hand poses have been considered: the
comparison of the performed pose with the skeleton stored in
the pose bank led to accurate results in 83.52% of the cases.
In addition, the system can be trained with dynamic gestures,
considered mainly as a continuous sequence of hand poses,
with small number of training gestures (20 to 30) to achieve
a good recognition accuracy. We obtained a good accuracy of
95.57% in our tests, involving even gestures with intermediate
poses having lower estimation accuracy.

As future work, we plan to improve the hand pose es-
timation to be able to also recognize the postures in which
the fingers might not be visible. The gesture recognition
considered in this paper can be extended to consider also hand
trajectories, to be able to recognize a larger variety of gestures.
We have in mind also to do a comparative evaluation of our
recognition system with the similar ones. Further extensions
of this system may include also facial expression recognition
and vocal orders to support an even wider set of applications
that use natural user interfaces.
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