
Towards a Service-based Architecture for Web Accessibility Federated Evaluation

José R. Hilera, Salvador Otón, Carlos I. Martín-Amor

Dept. Computer Science

University of Alcalá

Alcalá de Henares, Spain

e-mail: jose.hilera@uah.es, salvador.oton@uah.es,

carlosivan.martin@edu.uah.es

Cristian F. Timbi-Sisalima

Grupo de Investigación en IA y Tecnologías de Asistencia

Universidad Politécnica Salesiana

Cuenca, Ecuador

e-mail: ctimbi@ups.edu.ec

Abstract— This paper presents a work in progress aimed to

develop a universal architecture based on Web services and

semantic Web technologies, for evaluating Web accessibility by

using a federation of multiple evaluation tools, and

compounding a unique result report combining semantically

the reports obtained by each tool. The definition of a standard

interface for evaluation services is proposed, and its

implementation using RESTful Web API (Application

Programming Interface) is described. Services for automatic

semantic composition of reports are described using W3C

(World Wide Web Consortium) standards as RDF(S)

(Resource Description Framework Schema), OWL (Web

Ontology Language), SPARQL (Sparql Protocol and RDF

Query Language) and EARL (Evaluation and Report

Language).

Keywords-Web accessibility; a11y; Web service; federated

evaluation; semantic Web; Web api; metatool.

I. INTRODUCTION

The accessibility of a Web site is essential to make it
understandable, usable and practical for all users, including
disabled people. To help determine the accessibility of a
Web site, the World Wide Web Consortium has published
the Web Content Accessibility Guidelines (WCAG) [1] that
have been adopted as an international ISO (International
Organization for Standardization) standard [2]. This standard
establishes the minimum requirements for a Website to be
accessible, overcoming barriers of access to any type of user.
Other organizations have published their own Web
accessibility requirements, such as Section 508, by the
United States government; BITV (Barrierefreie Informations
Technik Verordnung) by the Germany Government; or
Stanca Act, by Italy Government. In general all these have
much in common with WCAG that defines 61 accessibility
success criteria to be satisfied by Web applications or
Websites. To quantify the accessibility of a Website, the
standard has created three levels of compliance: level A is
reached by a Web site that accomplishes 25 specific success
criteria, AA level requires meeting other 13 criteria, and
AAA level is obtained when all criteria (61) are satisfied.

Developers and testers of Websites can verify the success
criteria using accessibility evaluation tools. The W3C
maintains a Web page with the list of the most important
tools [3], including online tools. In general, an online
evaluation tool is a Web application that allows the user to
enter the URL (Uniform Resource Locator) of the Website to

be tested obtaining an assessment report, which includes the
accessibility requirements verified, those non-verified
(requiring manual assessment), errors found and warnings.
However, not all the tools have the same efficiency making
essential the execution of different tools to complement the
results. This procedure is tedious, as each tool uses a
different user interface with different options and various
formats for the results. To solve this problem, this paper
presents a work in progress aimed to develop a universal
architecture for evaluating Web accessibility using a
federation of multiple evaluation tools, and compounding a
unique results report combining semantically the reports
obtained by each tool.

The following section describes the proposed
architecture. In Section III, the definition of a standard
interface for the accessibility evaluation services included in
the architecture is presented. Section IV describes the basic
services proposed for semantic composition of results
reports. In the final section, some conclusions and other
related works are presented.

II. SERVICE-BASED ARCHITECTURE

The proposal architecture is for any accessibility
evaluation meta-tool system, which uses other evaluation
tools in a federated way, receiving an evaluation request
from a user, launching calls to a pool of federated tools, and
finally compounding a single assessment report for the user,
based on the results of each of the remote tools invoked. To
implement this system, a service-based architecture with
three layers is proposed (Figure 1). The choice of an
architecture based on Web services is mainly given by the
independence of the implementation details of each of the
assessment tools available online. Each tool is independent
from the rest, establishing its own decisions, and acting
under its own autonomy. The levels proposed are as follows:

Layer 3. It represents the user (person or software) who
wants to perform a simultaneous evaluation of the
accessibility of a Website using multiple assessment tools.
To do this, the user must provide the URL, or HTML (Hyper
Text Markup Language) code, of the page to analyze, the
accessibility evaluation standard to apply (WCAG 2.0,
Section 508, etc.), and data about the federation of tools (at
least, the selection of tools to participate in the federated
evaluation).

Layer 2. At this level there are the services that manage
user interface (Front-end management), and process the user

6Copyright (c) IARIA, 2016. ISBN: 978-1-61208-468-8

ACHI 2016 : The Ninth International Conference on Advances in Computer-Human Interactions

data (Back-end management). From these data, a federation
service module is responsible for determining how to
connect with the final assessment tools provided by the user.
Then, launches the requests for evaluation to those involved,
and receives reports with the results. At this level, there are
other support services, explained in Section IV, for filtering
and adapting the format of reports, and the semantic
composition of a single overall evaluation report.

Figure 1. Service based architecture for accessibility evaluation.

Layer 1. It includes remote tools that perform the
evaluation of the accessibility of Web sites, and should
expose its functionality as a Web service (Evaluation
Service) with a standard interface, as it is explained in the
following Section.

III. STANDARD INTERFACE FOR EVALUATION SERVICES

There is a growing number of online Web accessibility
evaluation tools. And some of them expose their
functionality through Web services using RESTful Web
API technology [4]. This is the case of the following free
use tools: AChecker [5], OWA [6], Tenon [7] and WAVE
[8].

Surely, the tendency to offer functionality through Web
services will be extended to other existing online tools,
which are now Web applications with user interface to be
used with a Web browser. The problem is that every tool
creates its own services, and its own input and output
parameters, being different in all cases. As an example,
Table I shows the input parameters of the evaluation service
exposed by the four cited tools. It can be seen that, in
general, at least the address of the Website to evaluate and a
user ID or password are required. But there are tools
offering other optional parameters, such as the evaluation
standard to be applied. This is the case of AChecker with an
optional “guide” parameter, whose default value is
"WCAG2-AA", but that can refer to other standards such as
the American "Section 508", the Italian "Stanca-act" or the
German "BITV1". The other tools do not offer this
possibility, because they only evaluate according to the
WCAG standard.

TABLE I. API REQUEST PARAMETERS OF EVALUATION TOOLS

AChecker
Required: uri, id.

Optional: guide, output, offset.

OWA
Required: format, url, key.

Optional: level, resolution.

Tenon

Required: key, url (or src).
Optional: appID, certainty, waitFor, fragment,

importance, level, priority, ref, store, projectID,

uaString, viewPortHeight, viewPortWidth.

WAVE
Required: key, url.
Optional: format, reporttype.

Also, the information that the tools include in response

to the request made after the evaluation of accessibility is
different in each case. Table II shows the data in response.

TABLE II. API VALIDATION RESPONSE OF EVALUATION TOOLS

AChecker

resultset, summary, status, sessionID,
NumOfErrors, NumOfLikelyProblems,

NumOfPotentialProblems, guidelines (guideline,
results (result (resultType, lineNum, columnNum,

errorMsg, errorSurceCode, repair, sequenceID,

decisionPass, decisionFail, decisionMade,
decisionMadeDate))), errors (totalCount, error

(message)).

OWA

Date, message, result (elements (forms, iframes,

images, links, linksImages, tables, total), image, level,
principles, resolution, summary, url).

Tenon

status, message, documentSize, responseExecTime,

responseTime, sourceHash, request (appID, certainty,
docID, importance, key, level, priority,

priorityWeightissueLocation, ref, responseID,

projectID, uaString, url, viewport, fragment, store),

clientScriptErrors (message, stacktrace), globalStats

(allDensity, errorDensity, warningDensity),

resultSummary (density, issues, issuesByLevel, tests),
resultSet (bpID, certainty, priority, errorDescription,

errorSnippet, errorTitle, position, ref, resultTitle,

signature, standards, tID, xpat), apiErrors (line,
message, sourceId, tID).

WAVE

status (error (code, description)), categories

(description, count, items (count, id, description)),
statistics (creditsremaining, pageurl, pagetitle, waveurl,

time, allitemcount, totalelements).

7Copyright (c) IARIA, 2016. ISBN: 978-1-61208-468-8

ACHI 2016 : The Ninth International Conference on Advances in Computer-Human Interactions

Another problem is the format of the result. AChecker,
OWA and Tenon allow to optionally specify the format as
an input parameter: HTML, XML (eXtensible Markup
Language), JSON (JavaScript Object Notation); while
Tenon always returns the information in JSON format.

In short, it can be seen that it is difficult to combine all
the results and unify the input parameters, so it would be
necessary to create a standard interface to be met by tools
interested in participating in the federation of their services.
Authors of this paper are working on creating a universal
interface proposal, covering all possible input data, and
producing a result with self-descriptive structure, based on
the standard language EARL [9].

TABLE III. EXTRACT OF AN EVALUATION REPORT USING OWA API

@prefix earl: <http://www.w3.org/nss/earl#> .

@prefix ptr: <http://www.w3.org/2009/pointers#>.

@prefix doap: <http://usefulinc.com/ns/doap#> .

@prefix a11y: <http://example.org/a11yResources.owl#> .
@prefix wcag2: <http://www.AccessibleOntology.com/WCAG2.owl#>.

ex:assertion_OWA a earl:Assertion ;
earl:assertedBy a11y:OWA_API ;

earl:subject <http://www.example.org/page.html> ;

earl:test wcag2:SuccessCriterion_111;
earl:result ex:OWAResult .

wcag2:SuccessCriterion_111 a earl:TestRequirement .

a11y:OWA_API a earl:Software;

 doap:name "OWA Web Service API";
 doap:homepage <http://observatorioWeb.ups.edu.ec/oaw/apirest.jsf> .

ex:OWAResult a earl:TestResult;
 earl:outcome earl:failed;

 earl:pointer ex:ptr1_OWAResult .

ex:ptr1_OWAResult a earl:Pointer, ptr:LineCharPointer;

ptr:lineNumber "37";

ptr:charNumber "8" .

Tables III and IV show EARL extracts of reports to be

used in Section IV. In both cases, for simplicity, the reports
are represented using the Turtle RDF serialization syntax
[10], although they could be obtained in other formats such
as RDF/XML or JSON-LD (JSON for Linked Data). The
reports consist of a list of triplets "subject predicate object"
to describe the results. For example, the report in Table III
indicates that a fail has been found, because of the
noncompliance with the success criteria 1.1.1 of WCAG 2.0
on line 37 in the Web page www.example.org/page.html,
using as evaluation tool the API provided by OWA.

IV. SERVICES FOR SEMANTIC COMPOSITION OF REPORTS

A problem to be solved when trying to do a joint or
federated evaluation of the same Website, is how to
combine the results obtained by each tool. It may be the
case shown in Figure 2, in which a user wants to use two
tools, and to evaluate the Web page according to the rule
Section 508 existing in the US. In this case, only the
AChecker tool can evaluate Section 508. However, the other

can make an evaluation according to a similar standard as is
WCAG 2.0.

Figure 2. Basic user interface of a federation based meta-tool.

The solution proposed here is to include in the
architecture a service and a knowledge base, both based on
semantic technologies such as ontologies, able to help
determine the equivalence between both standards. In this
context, semantic technologies refers to technologies that
facilitate the description of the meaning of information, so
that this information can be compared or combined with
other information with similar meaning without the need of
the intervention of a person, using for that a specific
software, such as intelligent agents.

Ontologies are implemented using semantic Web
techniques, such as OWL, RDF (S) and SPARQL [11]. And
they are compatible with the EARL language to describe
individual reports returned by each tool. There are
ontologies to model the WCAG standard, as the one
referenced in Table III, but new ontologies must be created
to conceptualize other standards, as Section 508, and apply
techniques for mapping ontologies to align all involved. The
authors of this paper are collaborating in the creation of
ontologies about accessibility to model standards
(section508.owl in Table IV), but also to model and classify
evaluation tools (a11yResources.owl in Table IV).

TABLE IV. EXTRACT OF AN EVALUATION REPORT USING ACHECKER API

@prefix s508: <http://example.org/section508.owl#> .

ex:assertion_AChecker a earl:Assertion ;

earl:assertedBy a11y:AChecker_API ;

earl:subject <http://www.example.org/page.html> ;
earl:test s508:req_1194_22_a;

earl:result ex:ACheckerResult .

s508:req_1194_22_a a earl:TestRequirement .

a11y:AChecker_API a earl:Software;

 doap:name "AChecker Web Service API";

 doap:homepage <http://achecker.ca/checkacc.php> .

ex:ACheckerResult a earl:TestResult;

 earl:outcome earl:failed;
 earl:pointer ex:ptr1_ACheckerResult .

ex:ptr1_ACheckerResult a earl:Pointer, ptr:LineCharPointer;
ptr:lineNumber "25";

ptr:charNumber "10" .

8Copyright (c) IARIA, 2016. ISBN: 978-1-61208-468-8

ACHI 2016 : The Ninth International Conference on Advances in Computer-Human Interactions

Table V shows Turtle RDF code for declaring in the

knowledge base that the success criterion 1.1.1 of WCAG
2.0 is semantically equivalent to the requirement 1194.22
(a) of Section 508. Both standards require that in an
accessible Web page, a text equivalent for every non-text
element shall be provided. Thus, a combined report can be
composed using SPARQL [12] and a software reasoner that
can make inferences from rules in ontologies. The authors
are using for this Jena, an open source Java framework that
allows programming SPARQL queries and has integrated
reasoning, but also it allows us embed external reasoners as
Pellet, or FaCT Racer [13].

As an example, Table VI shows a possible query and
Table VII the result. It can be seen that through the
mechanism of reasoning in the knowledge base, it has been
inferred that the requirement 1.1.1 detected by OWA is
equivalent to 1194.22 (a) of Section 508, and appears as
such in the report, since the user had indicated (Figure 2)
that he/she wanted to evaluate accessibility according to
Section 508.

TABLE V. EXTRACT OF THE KNOWLEDGE BASE

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix s508: <http://example.org/section508.owl#> .
@prefix wcag2: <http://www.AccessibleOntology.com/WCAG2.owl#> .

s508:req_1194_22_a a s508:Requirement;
s508:hasDescription "1194.22(a) A text equivalent for every non-text

element shall be provided"@en .

s508:req_1194_22_a owl:sameAs wcag2:SuccessCriterion_111 .

wcag2: SuccessCriterion_111 a wcag2:SuccessCriterion;

wcag2:hasDescription "Non-text Content: All non-text content that is

presented to the user has a text alternative that serves the equivalent

purpose, except for the situations listed below."^^xsd:string .

wcag2:SuccessCriterion_111 owl:sameAs s508:req_1194_22_a .

TABLE VI. SPARQL SENTENCE TO OBTAIN A COMBINED REPORT

prefix earl: <http://www.w3.org/nss/earl#>

prefix ptr: <http://www.w3.org/2009/pointers#>

prefix doap: <http://usefulinc.com/ns/doap#>
prefix s508: <http://example.org/section508.owl#>

SELECT ?tool ?desc ?line ?char
WHERE { ?a a earl:Assertion .

?a earl:assertedBy ?tool .

?a earl:test ?req .
?req a s508:Requirement .

?req s508:hasDescription ?desc .

?a earl:result ?res .

?res earl:outcome earl:failed .

?res earl:pointer ?pt .

?pt ptr:lineNumber ?line .
?pt ptr:charNumber ?char . }

TABLE VII. RESULT OF THE SPARQL QUERY

tool desc line char

AChecker_API “1194.22(a) A text equivalent . . .” 25 10

OWA_API “1194.22(a) A text equivalent . . .” 37 8

Another problem that arises by combining results is the
possibility of inconsistencies between the results of different
tools for the same accessibility requirement. For example, a
tool can determine that the success criterion 1.1.1 is satisfied
because all images have an alternative text, whereas another
more advanced tool could determine that the goal was not
met because it has detected as alternative text images the
filename of the image archive, which is not suitable to
describe an image. The proposed architecture includes a
filtering service to help resolve these cases. This service
must also manage preferences expressed by the user on how
to resolve conflicts, but can also access the knowledge base
and a database with statistical results of previous
assessments that help determine the reliability of each tool
for each requirement. This is in line with what other experts
proposed [14].

V. CONCLUSIONS

This is a work in progress that provides a solution to the
problem of interoperability between tools for evaluating
Web accessibility, and allows automatic composition of
evaluation reports from different sources. No other
proposals have been found to solve this problem. There are
studies that address part of the problem, as is the case of
[15], which also proposed an architecture and use of EARL
format to compare results from different tools, but neither
combining results nor using Web services. There are also
tools that reuse open source available from other evaluation
tools, is the case of QuickCheck [16], reusing specific
functionality of the tools Chrome Developer Tool, Axe
Engine and HTML Code Sniffer, but without the possibility
of combining the results or federation, as it is not based on
Web services.

The main contributions of this work are mainly two:
first, a new standard API for online accessibility evaluation
tools that serves as a single and common interface through
which it can access all the functionality offered by any of
the current tools, and flexible enough to support new
functionality to appear in the future. A second contribution
is a new mechanism based on this interface that, using
federation of services and semantic technologies, allows
combining the results of evaluations of the same Website by
different tools, applying different criteria or preferences
established by the user.

The idea of federating services and sematic combination
has been proposed and applied previously by the authors of
this paper, having implemented similar architectures in
other application areas, such as the federation of search
results in distributed learning objects repositories [17]. This
previous experience is now been applied to implement the
proposed architecture for the case of Web accessibility
evaluation.

We are currently working on implementing a first
version of a prototype that meets the architecture and basic
functional requirements that reflect the main ideas described
in this paper. The goal is that it can be useful especially for
evaluators who know standards such as WCAG or Section
508. In the future, additional requirements will be
considered, such as those relating to the usability of the tool

9Copyright (c) IARIA, 2016. ISBN: 978-1-61208-468-8

ACHI 2016 : The Ninth International Conference on Advances in Computer-Human Interactions

and ease of interpretation of the evaluation results, so that it
can be used even by people who do not have a thorough
understanding of Web accessibility standards.

ACKNOWLEDGMENT

Thanks to ESVI-AL EU project, and “Master on
Software Engineering for the Web” of the University of
Alcalá.

REFERENCES

[1] Web content accessibility guidelines (WCAG) 2.0. World
Wide Web Consortium, 2008.

[2] ISO/IEC 40500:2012, information technology -- W3C Web
content accessibility guidelines (WCAG) 2.0. International
Organization for Standardization, 2012.

[3] Web Accessibility Evaluation Tools List. Wide Web
Consortium, 2014. http://www.w3.org/WAI/ER/tools/.
[retrieved: 03, 2016]

[4] L. Richardson and M. Amundsen, RESTful Web APIs,
O'Reilly Media, 2013.

[5] AChecker Web Service API. Inclusive Design Research
Centre, 2011.
http://achecker.ca/documentation/web_service_api.php.
[retrieved: 03, 2016]

[6] Observatorio de Accesibilidad Web (OWA). Universidad
Politécnica Salesiana, 2016.
http://observatorioweb.ups.edu.ec/oaw/apirest.jsf. [retrieved:
03, 2016]

[7] Tenon API Documentation. Tenon, 2015.
http://www.tenon.io/documentation/. [retrieved: 03, 2016]

[8] WAVE API. WebAIM, 2015. http://wave.webaim.org/api/.
[retrieved: 03, 2016]

[9] Evaluation and Report Language (EARL) 1.0. World Wide
Web Consortium, 2011.

[10] RDF 1.1 Turtle. World Wide Web Consortium, 2014.

[11] Semantic Web. World Wide Web Consortium, 2015.
http://www.w3.org/standards/semanticWeb/. [retrieved: 03,
2016]

[12] SPARQL 1.1 Query Language. World Wide Web
Consortium, 2011.

[13] Reasoners and rule engines: Jena inference support. Apache
Software Foundation, 2015.
https://jena.apache.org/documentation/inference/. [retrieved:
03, 2016]

[14] Automated WCAG Monitoring Community Group. World
Wide Web Consortium, 2015.
https://www.w3.org/community/auto-wcag/. [retrieved: 03,
2016]

[15] N. Fernandes, R. Lopes, and L. Carriço, “Architecture for
Multiple Web Accessibility Evaluation Environments”. 6th
Int. Conf. UAHCI 2011, July 2011, pp 206-214, ISBN: 978-3-
642-21671-8.

[16] P. Nawaz. QuickCheck, 2015.
https://github.com/mpnkhan/quickcheck/. [retrieved: 03,
2016]

[17] S. Otón et al. Service oriented architecture for the
implementation of distributed repositories of learning objects.
Int. Journal of Innovative Computing, Information and
Control. Vol. 6(3A), 2010, pp. 843-854.

10Copyright (c) IARIA, 2016. ISBN: 978-1-61208-468-8

ACHI 2016 : The Ninth International Conference on Advances in Computer-Human Interactions

https://jena.apache.org/documentation/inference/

