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Abstract—Different approaches to sonification of 3D objects as
part of a sensory substitution system are experimentally inves-
tigated. The sensory substitution system takes 3D point clouds
of objects obtained from a depth camera and presents them to
a user as spatial audio. Two approaches to shape sonification
are presented and their characteristics investigated. The first
approach directly encodes the contours belonging to the object in
the image as sound waveforms. The second approach categorizes
the object according to its 3D surface properties as encapsulated
in the rotation invariant Fast Point Feature Histogram (FPFH),
and each category is represented by a different synthesized
musical instrument. Object identification experiments are done
with human users to evaluate the ability of each encoding to
transmit object identity to a user. Each of these approaches
has its disadvantages. Although the FPFH approach is more
invariant to object pose and contains more information about the
object, it lacks generality because of the intermediate recognition
step. On the other hand, since contour-based approach has no
information about depth and curvature of objects, it fails in
identifying different objects with similar silhouettes. On the task
of distinguishing between 10 different 3D shapes, the FPFH
approach produced more accurate responses. However, the fact
that it is a direct encoding means that the contour-based approach
is more likely to scale up to a wider variety of shapes.

Keywords–Sensory substitution; sensory augmentation; point
clouds; depth cameras; sound synthesis.

I. INTRODUCTION

Sensory substitution is the use of technology to replace
one sensory modality with another. In visual-to-audio sensory
substitution, visual information captured by a camera is pre-
sented to users as sound. Such systems promise help for the
sight-impaired: imagine users navigating using space/obstacle
information, grasping novel objects, eating meals with utensils,
and so forth. By not falling into the trap of many artificial
intelligence-based assistive systems of aggressively abstracting
the data provided to users, user agency is preserved and the
user’s own advanced cognitive data processing capabilities are
leveraged. Sensory substitution systems also provide inter-
esting platforms for exploring synaesthesia and cross-modal
sensory processing [1].

Recent work in utilizing depth cameras for sensory sub-
stitution promises to increase the usefulness of such visual-
to-audio sensory substitution systems [2][3]. Mhaish et al.’s
system [2] uses a 3D depth camera to create point clouds
characterizing the surfaces of objects in a scene and presents
those surfaces to a user using spatial audio. See Figure 1 for a
summary of the information flow in that approach. The present
work extends that system, offering an investigation of different
ways of encoding 3D spatial surfaces as audio, an area ripe
for exploration in the context of sensory substitution systems.

Figure 1. The flow of data in the full sensory substitution system, from
real-world objects, via the depth camera, to a point cloud, and a segmented

tracked object, and finally a sound waveform played to a user.

Figure 2. Left: the system being used “in the wild”. Right: physical set-up
of the experiments described in this paper.

Broadly speaking, the process of encoding information as
(non-speech) sounds is called sonification. Sonification is used
in applications such as medical imaging where it is used for
example to differentiate a healthy brain from an unhealthy one,
geological activity detection, and so forth. In the present paper,
we present two approaches to sonification of object shape.
Object shape is particularly important in providing functional
information about objects, particularly for blind users who
may wish to perceive objects in their environment in order
to recognize them, avoid them, or manipulate them. The first
approach to shape sonification described in the present paper
is encoding based on 2D object contours and the second is
based on a 3D object recognition descriptor called the Fast
Point Feature Histogram.

The rest of this work will be presented in four sections. In
the next section, a short summary of related work is presented.
In Section 3, an overview of the sensory substitution system
is given and two different sound generation approaches are
explained in detail. Then in Section 4, details of experiments
and results are shown. Finally, results are summarized and
further work discussed in Section 5.
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II. RELATED WORK

Sensory substitution systems are systems that map visual
information to audio in an attempt to create an effect like
vision but channeled through a different sense. More broadly,
systems that map any kind of information (including visual and
graphical) to audio are called sonification systems. In general,
there are two kinds of sonification systems, high-level and low-
level sonification systems, where the high-level approaches are
designed to convert information to speech. A significant subset
of these systems are text-to-speech applications, widely used
for visually impaired people. Examples include VoiceOver and
JAWS [1]. In addition to text-to-speech applications there are
some other high-level sonification systems which are more
complex and can detect objects and identify them and return
their names in real-time, like LookTel [4] and Microsoft Seeing
AI project [5] that can read texts, describe people and identify
their emotions. These high-level sonification systems are easy
for users and do not require training, but they can fail in
sonifying complex environment or shapes for which the system
has not been adapted.

On the other hand, low-level sonification systems gen-
erate sound directly based on visual information. The main
difference between these systems and high-level sonification
systems is that users need to be trained before using these
systems to be able to understand the relation between the
generated sounds and properties of observed objects. Though
these kinds of systems can seem difficult to use, they can
be more flexible for new environments and undefined objects
because they produce sounds based on characteristics directly
calculated from input data [6]. One of the most well-known
systems of this group is the sensory substitution system The
vOICe [1], which uses the gray-level image of the scene and
scans the image from left to right and generates and sums
audible frequencies based on pixels’ location with amplitude
based on pixels’ intensity. The disadvantages of the vOICe
system are that it requires 1 second to scan the image. Further,
the image-sound mapping is somewhat abstract if used with
depth images without adaptation and does not explore physical
or metaphorical synergies with shape in particular. However,
our proposed system is conceived as a system for generating
spatial audio generated based on surface and shape information
for helping users to localize objects and identify them in real-
time.

Systems closest to our own include the electro-tactile
stereo-based navigation system ENVS of [7] with ten chan-
nels of depth information calculated from stereo transmitted
to ten fingers, which focuses on navigation but not shape
understanding and uses the tactile pathway, and the depth-
camera visual-to-audio based sensory substitution system See
ColOr of [3] which, though using depth-cameras, concentrates
on bringing color (and not space or shape) to blind users by
mapping different intervals of hue and value to instruments
like violin, trumpet, piano etc. Conversely, finding a proper
method for mapping shape information to audio is a vital step
in many low-level sonification systems. In this area, the work
of Shelley et el. [8] is close to the proposed system, focusing
on sonification of shape and curvature of 3D objects in an
augmented reality environment as part of the SATIN project,
where the user of the system is able to touch and alter the
3D objects using the visual-haptic interface of the system. In
that article, object cross sections (and associated curvature)

are used to modulate the frequency of a carrier signal or the
parameters of physical sound generation [8].

As discussed above choosing a good approach to sonifica-
tion plays an important role in achieving good performance
of low-level sonification systems. Therefore in the current
work, two different sound generation methods are provided for
Mhaish et al.’s [2] system and their accuracies are measured
on the task of synthetic 3D object identification. The idea of
using synthetic objects instead of real objects is to evaluate the
performance of different sound generation methods isolated
from the performance of other components and environmental
noise. In future work, the best approach or mix of these
approaches will be applied in the identification of real objects.

III. TECHNICAL DETAILS

Output from a head-mounted depth camera (DepthSense
325 or ASUS Xtion) is converted to a head-centred point cloud,
which is segmented by curvature and point-distance in real-
time [9] into surface primitives. These surface primitives are
tracked using simple data association, selected using size and
closeness criteria, and presented to the user as spatially-located
audio (played using a wrapper around the spatial audio library
OpenAL [10], the wrapper taking care of time tracking and
interpolation).

Heavy use of the Point Cloud Library [11] is made in
the point-cloud processing steps and particular care is made
to keep processing of point clouds at 15+ frames per second
so as to provide responsive sensory feedback to user probing
motions. An illustration of the system being tested can be
found in the left picture of Figure 2.

Note that this system is designed to segment surface
primitives rather than objects. Although for some applications,
such as tabletop object manipulation, short-cuts can be taken
to extract separate objects, general object segmentation is
an unsolved problem. Since the current paper is focused on
sonification (making sounds to represent data), the focus here
is on the sonification of whole but mostly simple objects.

Figure 3. Software level of data flow diagram.

Before going into detail about the approaches used to
sonify shape, the processing steps used by the system to extract
visual information and process it to audio will be explained.
Figure 3 shows the data flow architecture of the system. The
steps in the architecture are further explained as follow:

1) Preprocessing: RGB and depth information produced
by the time of flight or structured light camera is passed to a
preprocessing step in the form of a point cloud and in this step
normals are calculated from the point cloud “organized” in a
2D array of points, using a real time integral image algorithm
supplied by Holzer et al [12].
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Figure 4. Rotary-contour-based encoding. Left: Original object contour in
x-y image space. Right: Resulting waveform as a plot of amplitude(A)

against time(t).
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Figure 5. Vertical-contour-based encoding. Left: original object contour.
Right: the resulting waveform as amplitude (A) against time (t).
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Figure 6. A simplified diagram of the direct encoding of an object contour
as sound.

2) Segmentation: The 2D organized point cloud is then
segmented by the method of Trevor et al [9] and segments
are obtained characterized by slowly changing surface normal
vectors and no intervening gaps. Further processing can be
applied to find and remove tabletop surfaces for tabletop
scenarios.

3) Feature Extraction: Information to characterize the ac-
quired segments is extracted. In the current work, contour-
based and FPFH-based approaches are explored.

4) Sound Generation: In the system presented by Mhaish
et al. [2], a simple sonification approach was proposed based
on a conversion of principle object dimensions to frequencies.
A circular buffer is used to create, update and interpolate sound
waves and their envelopes and the rate at which frames are
arriving is estimated in order to send the appropriate number
of samples to the OpenAL spatial sound system. In the current
system, FPFH signatures are converted via a recognition step to
different instruments from the STK simulation toolkit [13] and
object contours are converted via interpolation and modulation
data processing steps to sound waves.

The present paper focuses on the feature extraction and
sound generation steps, proposing the contour- and FPFH-
based approaches, explained in the next sections.

The sound is played using the OpenAl library which is
provided as many samples as necessary from the filled circular
buffer and generates spatial-audio based on binaural cues or,
alternatively, Head Related Transform Functions (HRTFs).

A. Contour-based sonification

In the contour-based encoding, object contours are trans-
lated directly into auditory waveforms, and frequency and
amplitude modulations of waveforms.

In the variation on this idea tested in this paper, the rotary-
contour is extracted from the object and used to generate a
carrier signal. In the rotary-contour-based encoding, a path is
traced out around the contour of the object and the distance of
each contour point from the object’s horizontal axis (defined
by the centroid of the points in the object) becomes an
instantaneous amplitude in the sound waveform (normalized to
fit within the range of acceptable sample amplitudes). Spher-
ical or circular objects thus translate perfectly into sinusoidal
waveforms. For instance, the object on the left side of Figure
4 becomes the waveform plot (amplitude vs time) on the right
hand side, with radial distances converted into instantaneous
amplitudes which are then potentially interpolated.

Because the signal waveform depends on the object con-
tour, some timbre properties also depend on the object contour.
The carrier signal is then modulated at a slower (consciously
perceivable) time-scale using frequency and amplitude modu-
lation by another time-varying function which we call here
vertical-contour-based encoding. In this kind of encoding,
which is illustrated in Figure 5, the top to bottom scanned
width of the object silhouette is converted to the amplitude
of a modulating signal which is then applied to the carrier
signal as frequency and amplitude modulation. Thus, multiple
perceptual channels are used to transfer information to the user.
For a sketch of the signal processing flow used to generate the
resulting waveform, see Figure 6.

The contour-based approach is motivated both by the
conceptual clarity of the mapping, but also by the fact that
sounds already arise as vibrations in objects and spaces, and
travel through the objects, reflecting in the resulting waveforms
the shape and size of these spaces; thus, the method, depending
on the exact encoding used, has an analogue in the physics of
real sound generation and consequently natural synergies with
perception.

B. FPFH-based sonification

The FPFH is a feature extracted from point clouds or point
cloud parts, designed for representing information about the
shape of the cloud that is invariant to rotation. It is comparable
to a histogram of curvatures measured in different ways across
the object surface.

FPFH is a 33-bin histogram extracted from the points
and normals in the point cloud. This histogram counts 3
different curvature measures with 11 bins for each measure.
The relative position and surface-normal vector of each point
is processed and the bin into which the point falls for each
of the 3 dimensions incremented [14]. Note: the FPFH is not
originally designed as a full object descriptor but it has proved
sufficient for current purposes: other more or less viewpoint-
invariant or object-global descriptors can also be easily adapted
to this purpose. Examples of FPFH descriptors extracted from
point clouds used in experiments in this paper can be found
in Figure 7. As can be seen in the figure, different shapes
generally correspond to different histograms and different sizes
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Figure 7. Sample point cloud views with normalized histogram shapes
(FPFH). Top row: teapot. Middle row: cube. Bottom row: cone. Left:
baseline view. Middle: a different object size. Right: a different view

direction.

TABLE I. THE OBJECT-INSTRUMENT MAPPING IN THE
FPFH-BASED APPROACH.

Object Instruments
Teapot (Tp) Shakers

Cube (Cb) Struck Bow
Cuboid (Cd) Drawn Bow

Cylinder (Cl) High Flute
Cone (Cn) Plucked String

Elipsoid (El) Hammond-style Organ
Icosahedron (Ic) Saxophone

Stretched Cylinder (SC) Low Flute
Sphere (Sp) Clarinet

Torus (Ts) Sitar

and scales generally do not affect the histograms radically.
However, the external contours do not always affect the result,
as can be seen by comparing the bottom view of the cone and
the side view of the cube.

After an object is encoded using FPFH, a database of
existing FPFH descriptors is searched (using an indexing KD-
tree) for the closest descriptor and the resulting object label
retrieved. A mapping (Table I) is provided from object label
to instrument type and the relevant instrument is synthesized
using the Synthesis ToolKit (STK) [13].

3D object recognition techniques are attractive for the
current application since the field of robotic vision has well-
established approaches, and many descriptors are available for
representing shape, having rotational invariance built in for
example [14]. Moreover, synthetic instrument models provide
highly discriminable sounds, which can support a sound-object
mapping approach to the task under consideration.

IV. TRAINING AND EXPERIMENT

To evaluate the ability of the encodings discussed above
to transmit shape as sound, the ability of users to identify
objects under changing conditions was investigated. For a

Figure 8. The set of objects used in experiments. Top: Teapot (Tp), Cube
(Cb), Cuboid (Cd), Cylinder (Cl), Cone (Cn), Bottom: Elipsoid (El),
Icosahedron (Ic), Stretched Cylinder (SC), Sphere (Sp), Torus (Ts).

Figure 9. The set of poses used in the pose-varying experiment. Top: the
object model as seen from different viewpoints. Bottom: the point cloud

resulting from each viewpoint. Colour in the point cloud represents
normalized distance from the camera of the points.

clear evaluation of the relationship between shape and sound,
point clouds presented to the user were based on point-cloud
samplings of views of the ten object meshes shown in Figure
8. Performance of the proposed encodings was measured
by conducting two experiments. In the first experiment, the
location from which objects are viewed was varied among five
different equi-distant viewpoints, illustrated in Figure 9, and
in the second experiment, five different scales of objects were
presented, scale here stands for either size or viewing distance
but only in the context of the encodings used in the present
paper - not all point cloud encodings will confuse size and
distance. The five sizes used are shown in Figure 10.

The main idea of choosing these two experiments is that
these parameters are the most changing parameters in wild.
Other possible parameters include lighting conditions, but our
cameras use active lighting, or material properties, but these
depend on the particular choice of depth-sensing device, to
which our approach is designed to be mostly agnostic.

A. Training session

Each experiment comprises two conditions, the FPFH
condition and the contour-based condition, presented to the
individuals in a random order. For each condition, an indepen-
dent training session was conducted. A single training session
takes 15 minutes, including 2-3 minutes for describing the
principles of the system followed by a free experimentation
period. During the training sessions participants were given
the ability to play sounds for all five different viewpoints of

Figure 10. The set of object sizes used in the size-varying experiment.
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TABLE II. THE VALUES OF RELEVANT PARAMETERS USED IN
THESE EXPERIMENTS.

General parameters
Input point cloud size (width × height) 320 × 240
Object distances to camera (metres) 3
Sound generation: Sample rate (Hz) 44100
Sound generation: Bits per sample 16

Contour-based approach
Pixel-sample ratio: rotary-contour carrier 1:1
Pixel-sample ratio: vertical-contour modulator 600:1
Peak frequency deviation proportion: modulator 1.0
Peak amplitude deviation proportion: modulator 1.0

FPFH-based approach
FPFH database size (num object views) 100
FPFH database size (num objects) 10

all ten objects for the viewpoint experiment and for all five
scales for the scale/size experiment. Users were allowed to
play with the system, choosing objects and viewpoints/sizes
from the training set and playing the sounds as well as viewing
a 3D visual representation from that viewpoint/size and they
were asked to remember the sounds related to each object.

B. Experimental session

Experiments were conducted with 16 non-disabled par-
ticipants with an average age of 24 years, divided into two
groups with each group containing both male and female
participants. Participants of each group performed only either
the viewpoint or the scale experiment. Both sound generation
approaches were tested with each participant. In experimental
sessions, sounds of randomly selected objects with randomly
selected viewpoints/sizes from the training set were presented
and participants were asked to identify the objects. In these
sessions, for each approach 30 trials were conducted with each
participant and the participant was informed after each trial
whether the answer was correct, and when the answer was
wrong, the experimenter informed the participant the actual
object identity. Answers were recorded in confusion matrices.
In these experiments, users were not supposed to guess the
viewpoints or scales; they were asked only to identify the
objects based on the sound that they were hearing. The physical
set-up of the experiment can be found on the right of Figure
2. Parameters of the system used in experiments are shown in
Table II.

C. Results

The complementary properties of the two methods tested
can be observed in the confusion matrices in Tables IV and
III. In these matrices, numbers in cells represent the number
of times the object in the row header was identified by
participants as the object in the column header. Zero values
are left blank. The inability of the contour-based approach to
take account of the depth information in the interior of an
object leading it to confuse objects with similar silhouettes, as
it can be seen in the tables.

With an overall accuracy of 60% and 57% on the two
experiments vs. 36% and 42% for the contour-based method,
the FPFH approach performed better (verified with χ2 tests,
which are applicable when class sizes are balanced, 1 D.O.F.,
p = 0.01). However, the FPFH-based approach was still unable
to account for the contour on the silhouette of an object,
leading it to confuse objects with similar visible curvatures.

TABLE III. RESULTS OF SIZE-VARYING EXPERIMENT. (BOLD
NUMBERS SHOWS THE MOST CHOSEN OBJECT(S) BY

PARTICIPANTS, WHEN THE OBJECT IN THE ROW HEADER WAS
PRESENTED).

Contour- Response
based Tp Cb Cd Cl Cn El Ic SC Sp Ts

A
ct

ua
l

TP 33.3 11.1 11.1 11.1 11.1 22.2
Cb 33.3 25.0 8.3 8.3 8.3 16.6
Cd 16.6 50.0 16.6
Cl 6.6 13.3 13.3 33.3 6.6 13.3 13.3
Cn 10.0 70.0 10.0 10.0
El 11.1 11.1 11.1 11.1 33.3 11.1 11.1
Ic 15.3 15.3 23.0 7.6 7.6 23.0 7.6

SC 11.1 11.1 22.2 55.5
Sp 25.0 25.0 50.0
Ts 33.3 66.6

FPFH- Response
based Tp Cb Cd Cl Cn El Ic SC Sp Ts

A
ct

ua
l

TP 100.0
Cb 76.9 7.6 15.3
Cd 21.4 64.2 14.2
Cl 16.6 33.3 50.0
Cn 11.1 5.5 5.5 55.5 5.5 5.5 11.1
El 7.6 7.6 15.3 7.6 15.3 46.1
Ic 6.6 33.3 6.6 26.6 6.6 13.3

SC 37.5 6.2 56.2 6.6
Sp 16.6 33.3 50.0
Ts 11.1 88.8

TABLE IV. RESULTS OF VIEWPOINT-VARYING EXPERIMENT.
(BOLD NUMBERS SHOWS THE MOST CHOSEN OBJECT(S) BY

PARTICIPANTS, WHEN THE OBJECT IN THE ROW HEADER WAS
PRESENTED).

Contour- Response
based Tp Cb Cd Cl Cn El Ic SC Sp Ts

A
ct

ua
l

TP 56.2 6.2 25.0 6.2 6.2
Cb 29.4 17.6 17.6 7.6 7.6
Cd 69.2 7.6 7.6 7.6 7.6
Cl 9.2 28.5 14.2 14.2 4.7 9.2 9.2 4.7 4.7
Cn 9.0 9.0 4.5 4.5 36.3 9.0 4.5 18.1 4.5
El 8.3 8.3 8.3 41.6 8.3 25.0
Ic 6.6 20.0 20.0 20.0 20.0 13.3

SC 50.0 25.0 25.0
Sp 5.2 5.2 5.2 15.7 10.4 10.4 36.8 10.4
Ts 11.1 22.2 11.1 22.2 33.3

FPFH- Response
based Tp Cb Cd Cl Cn El Ic SC Sp Ts

A
ct

ua
l

TP 100.0
Cb 37.5 37.5 25.0
Cd 23.5 52.9 11.7 11.7
Cl 15.3 53.8 7.6 15.3 7.6
Cn 36.3 9.0 36.3 9.0 8.0
El 12.5 12.5 50.0 12.5 12.5
Ic 28.5 14.2 57.1

SC 5.5 11.1 11.1 66.6 5.5
Sp 9.0 9.0 9.0 18.1 54.5
Ts 7.1 92.8

Figure 11. Five different view points of cube and their histograms.Top: Left:
Top view. Middle: Frontal view. Right: Right front top corner view. Bottom:

Left: Right Front edge view. Right: Front bottom edge view.
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Figure 12. Five different view points of cuboid and their histograms.Top:
Left: Top view. Middle: Frontal view. Right: Right front top corner view.

Bottom: Left: Right Front edge view. Right: Front bottom edge view.

Figure 13. Similarity in histograms (FPFH) causes the system to mis-classify
the objects. Left: FPFH for third view of cone. Right: FPFH of largest

stretched cylinder(with second viewpoint)

For the FPFH-based approach, the natural user strategy to
the identification problem is to learn a sound-object mapping.
This worked as long as the system could find the correct
mapping, but the system itself did not always use all available
information. For instance, the flat bottom of a cone and cube
or cuboid produce the same FPFH signature - see Figure
7. The same confusion occurred between cube and cuboid.
Participants using the system frequently misclassified cube
as cuboid in all the of 5 viewpoints of cube, as is shown
in Figure 11 and Figure 12. The FPFH of the cube is so
similar to cuboid as to cause the system to mis-classify the
cube. This is sufficient to explain why in Table IV the cube
is classified as a cuboid almost as much as it is a cube.
The lack of distinguishability of FPFH signatures between
the top view of the cylinder, the stretched cylinder and the
cube is apparent because they all have a single flat surface
visible. There are also some unexpected confusions such as
the recognition system itself wrongly identifying third view
of cone as largest scale of stretched-cylinder (see Figure 13).
Since the frequency of occurrence of this confusion was low,
participants were able to hear the related sound for the cone
more frequently, so it did not affect their performance and they
could treat the second sound as noise.

There were some objects that the system did not have any
difficulty in identifying, such as the icosahedron, ellipsoid,
sphere, teapot and torus. However, their classification accuracy
varies from one-in-two to near-perfect. For example, ellipsoid,
sphere and icosahedron are correctly identified in 50.0%,
54.5% and 57.1% of trials, while teapot and torus were
identified perfectly (100% for teapot and 92.8% for torus-

Figure 14. Example of objects contours for which the proposed contour
based approach can not generate sufficiently distinguishable sounds(red lines

around the objects represent objects contours). Left column: Top: sphere
contour. Bottom: icosahedron contour. Right column: Top: cylinder(front

view). Bottom: rectangle(front view)

Figure 15. Similar contours of multiple objects used in experiment(red lines
around the objects represent objects contours). Top: Left: sphere, Middle:

cone, Right: icosahedron. Bottom: Left:torus Right: ellipsoid

see Table IV). This high difference in confusion rates is due
to the choice of instrument corresponding to each object, a
fact that was mentioned by most of the participants during
the experimental session. They believed that identifying the
teapot and torus was easy because their sounds (shakers and
sitar) are more distinct than the others. Hence, putting similar
sound for shapes that are geometrically similar to each other
may not be a good idea or work should be done to ensure
that instruments are more distinguishable from each other.
However, using dissimilar instruments for similar shapes can
defeat any attempt to sonify subtle differences in shape.

In the contour-based approach, it was also observed that
some participants preferred the abstract learning strategy of
learning identity-sound associations rather than understanding
the sound-shape mapping representation as well. For this
approach, participants reported that some important object
properties were not available to them, leading them to confuse
objects like the sphere with the icosahedron or the front view of
the cuboid with the same view of the cylinder (see Figure 14).
For these two pairs of objects, the output of the system does
not produce exactly the same result but similar results which
makes it hard for users to distinguish them from each other and
they need to put in more effort to understand the differences.
However, it should be noted at this point that visually similar
objects should be expected in any successful system to pose a
larger challenge. Moreover, as discussed before, this approach
is viewpoint-variant and for some viewpoints of different
objects which have similar contours, it generates identical or
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too-similar sounds which causes the user to choose the wrong
object. For instance, as shown in Figure 15, the top view of
cylinder, cone, torus and sphere all have a circular contour
which makes their sounds exactly the same.

V. CONCLUSION AND FUTURE WORK

Two different encodings of 3D shape into sound were
presented, i.e., contour-based and FPFH-based. The contour-
based approach presented maps directly from shape to sound.
This is an advantage in that any new object can be represented
in sound, and that similarly shaped objects produce similar
sounds. However, the encoding attempted here only transmits
the image-contour of the object and is not robust to viewpoint.
Some participants also preferred to learn the abstract object
mapping, suggesting that work is needed on making this
approach more intuitive when it comes to the relationship
between shape and sound.

The FPFH-based approach solves these problems by using
data about the full 3D object shape and by representing
features that are somewhat invariant to viewpoint (though
only to the extent that surfaces are visible). The FPFH-based
approach also has the advantage when creating distinguishable
sounds of using a mature sound-synthesis system with highly
recognizable objects. However, again, the use of discrete
instruments reduces flexibility in encoding different shape
properties. In order to make the system work, object exemplars
must be paired with sounds, restricting the generalizability of
the system to new objects and abstracting some of the user’s
agency, not fully utilizing their cognitive capacity.

The next step in this work is to extend these approaches
to reduce the above-mentioned limitations. In the case of
the contour-based approach, a more sophisticated encoding
is needed, that takes into account 3D aspects of the object.
Adding some viewpoint invariance may be desirable, but it
would be a subject of empirical investigation as to whether
this viewpoint invariance would actually be helpful when
considering other tasks that users might want to do with
objects, such as manipulation, in which users need to perceive
also the orientation of the object. In the case of the FPFH-based
approach, a way is needed of generalizing from the exemplars
in an appropriate way, for example by using machine learning
techniques in conjunction with user input. Other point cloud
features with different properties also should be systematically
investigated.

Further work also involves testing these sonifications “in
the wild” and with multiple objects, which will require work
on more aggressive noise elimination and object (or surface
primitive) tracking. In both approaches, it is important to
exploit and extend the intuitive mappings from shape to sound
whose exploration was begun here, for quick learning and
application of the system, as well as for recruiting the advanced
cognitive capabilities of users.

ACKNOWLEDGMENTS

This work was supported by the Scientific and Techno-
logical Research Council of Turkey (TÜBITAK), Project No
114E443.

REFERENCES

[1] M. Auvray, S. Hanneton, and J. K. O’Regan, “Learning to perceive
with a visuo-auditory substitution system: Localisation and object
recognition with ‘The vOICe’,” Perception, vol. 36, no. 3, 2007, pp.
416 – 430, URL:http://www.perceptionweb.com/abstract.cgi?id=p5631
[retrieved: 2017-02-04].

[2] A. Mhaish, T. Gholamalizadeh, G. İnce, and D. Duff, “Assessment of
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