
Wasting “Waste” is a Waste:

Gleaning Deleted Text Fragments for Use in Future Knowledge Creation

Hiroaki Ikuta
School of Knowledge Science

Japan Advanced Institute of Science and Technology

Ishikawa, Japan

email: ikuta@jaist.ac.jp

Kazushi Nishimoto
Graduate School of Advanced Science and Technology

Japan Advanced Institute of Science and Technology

Ishikawa, Japan

email: knishi@jaist.ac.jp

Abstract— While creating a document, an author externalizes

his/her thought or idea to text fragments and then organizes

and revises them iteratively to polish up the document. In this

process, the author may partially delete the contents (i.e., text

fragments) from the document because he/she determines that

the fragments are not proper as parts of the document.

However, these deleted text fragments may be valuable in

other future attempts at knowledge creation. This paper

proposes Text ComposTer, which is a document-writing

support system equipped with a function of collecting the

deleted text fragments. We first conduct a pilot study to assess

what kind of deleted text fragments are reusable and

implement Text ComposTer based on the assessment results.

We conduct user studies and confirm that Text ComposTer

can efficiently collect reusable deleted text fragments.

Keywords-intangible waste; knowledge utilization; writing

support system; deleted text fragments.

I. INTRODUCTION

Is it true that objects determined as waste have no value?
In conventional waste management, tangible waste is found
to have value to utilize for other purposes. However,
intangible waste such as ignored ideas, facts, and knowledge
has never been (re)utilized so far. We believe that this
intangible waste is also worth utilizing for other purposes.
Behind this belief, there are our experiences: a text fragment
written in a draft of a document but eventually deleted from
the document is sometimes worth utilizing for other purposes.
For instance, the second author of this paper found that piano
players often press the keys too forcefully when there is
insignificant delay between key pressing and sound emission.
He described this finding in a draft version of [1]. However,
he determined that this finding was inconsistent with the
entire context of [1]. As a result, he deleted descriptions
about this finding and completed the paper as [1]. In later
years, he read the draft version of [1] again when he carried
out research about supporting drumstick control, and he
found a way to apply the finding to this research. Finally, he
completed the research and published [2]. Thus, the second
author found value in utilizing the unused finding described
in the deleted text fragment for other purposes. There may be
a lot of other possibilities like the above example.

There are several models of the document-writing
process [3][4][5]. Each proposed model suggests that writing
involves a number of distinct activities that interact in
complex, interconnected ways [5]. All of these models also

contain an activity corresponding to editing of the contents
of a document. In addition, an author of documents usually
cannot write the completed version perfectly from the
beginning; he/she gradually progresses to the completed
version. In this process, a lot of knowledge (i.e., text
fragments, parts of the document) is merely discarded as
intangible waste in the writing process although it might be
valuable.

Thus, intangible waste in the writing process is worth
saving. Nevertheless, there are few studies on utilizing it. To
the best of our knowledge, there have been no attempts to
collect deleted text fragments (DTFs) to utilize them for
other document writing tasks. Some existing document
writing applications are equipped with functions to keep
DTFs, such as “Track Changes” function in Microsoft Word
and “Snapshot” function in Scrivener. However, these
applications keep DTFs to reuse them in the same document
for version management; not for utilizing them in the
different document composition. Microsoft Word is also
equipped with a function to collect text fragments as
“building blocks” to reuse them in the different document
composition. However, this function requires the users to
intentionally save the text fragments to reuse them afterward;
they are not DTFs. Therefore, there are no applications that
collect DTFs to use them in future knowledge creation.

In this paper, we propose a novel document-writing
support system named Text ComposTer. Text ComposTer
provides functions to compose a document (i.e., Text
ComposTer is a “composer”) and, in addition, functions to
collect DTFs to utilize them for other purposes afterward
(i.e., Text ComposTer is a “composter” of text fragments as
intangible waste).

The rest of this paper is organized as follows. Section II
presents an overview of several related works. Section III
describes a pilot study for assessing what kinds of DTFs are
worth utilizing for other purposes. Section IV illustrates Text
ComposTer. We show two different user studies in Section
V and discuss the usefulness of Text ComposTer based on
user studies in Section VI. Section VII concludes this paper.

II. RELATED WORKS

Utilizing knowledge via technologies has been the focus
of attention for a long time. One of the main attempts at
utilizing knowledge is an expert system in the artificial
intelligence area. An expert system stores expert knowledge
in a knowledge base, and users call upon the system for
specific advice as needed. Liao [6] showed various kinds of

193Copyright (c) IARIA, 2017. ISBN: 978-1-61208-538-8

ACHI 2017 : The Tenth International Conference on Advances in Computer-Human Interactions

expert systems. Many kinds of knowledge utilization
patterns have been proposed. In addition, Mizoguchi et al.
[7] pointed out problems of the knowledge base for
knowledge utilization (sharing and reuse in this context), and
they proposed a methodology using ontology for enhancing
knowledge utilization. These studies attempted to properly
formalize useful knowledge in order to utilize it.

Some interactive systems have been proposed to utilize
knowledge [8][9][10]. Shibata and Hori [8] proposed a
system to support long-term creative thinking in daily life.
They developed a system that stored personal awareness or
interests in daily life and utilized them for idea generation.
Sharmin et al. [9] proposed a system to support reusing
presentation slides for making slightly different materials
such as a more detailed version of a base material by
changing audiences. Simbelis et al. [10] proposed a system
named Delete by Haiku to utilize existing text messages in a
mobile phone. Delete by Haiku transforms a set of text
messages that the user has selected into a haiku, a traditional
form of Japanese poetry featuring a simple constructive form
with a limited number of syllables [10].

These studies [6][7][8][9] aimed to utilize knowledge
that has been determined to have potential for (re)utilizing.
Simbelis et al. [10] aimed to utilize knowledge whose
usefulness has not yet been determined. In contrast, we aim
to utilize knowledge that has once been determined to be
unuseful.

Therefore, our main research contribution in this paper is
to explore a new paradigm of knowledge utilization by
finding value in deleted creations in the creative process.
Particularly, we start to investigate ways to utilize DTFs
generated in the document-writing process.

III. ASSESMENT OF DELETED TEXT FRAGMENTS

We conducted a pilot study to assess what kinds of DTFs
are worth utilizing for other purposes.

A. Experimental System

We developed a special text editor for the pilot study that
is equipped with a function to collect DTFs as well as
functions of a usual text editor, such as copy, cut and paste,
and find and replace. This editor automatically collects and
stores DTFs when it detects the following three types of user
manipulations:

 Hitting elimination keys (e.g., “Delete key” and
“Backspace key”),

 Inputting some characters while a string is selected,
and

 Executing the replace function.
When the user hits the elimination keys, the text editor
collects the eliminated string as a deleted text fragment.
Similarly, when the user inputs characters while a string is
selected, the text editor collects the selected string as a
deleted text fragment. Also, the text editor collects the
replaced string as a deleted text fragment when the user
executes the replace function.

B. Experimental Setting

We asked four Japanese people (including the first
author) to perform a document-writing task using the special
text editor. Each subject wrote a part of a conference paper in
Japanese as the writing task.

C. Results

The results of the writing task are shown in Table I. We
analyzed the results and found the following three possible
factors of storing DTFs in accordance with user actions.

 Factor 1: Correcting mistypes.

 Factor 2: Revising expression.

 Factor 3: Eliminating sentences that are inconsistent
with the context.

Factor 1 and Factor 2 relate to mere editorial matters. In
contrast, Factor 3 relates to the content of the document.
Therefore, only the DTFs obtained by Factor 3 would be
useful for other purposes.

We found two issues in collecting DTFs using this editor.
One of them is that collected DTFs are very messy. The
reason for this is that the editor did not distinguish the
deleted DTFs based on the three factors. The other issue is
that the number of DTFs generated by Factor 3 was quite
small. One reason for this issue is that the text fragments that
are inconsistent with the context but that are suitable to
utilize for other purposes are not created very often. Another
reason is that the editor was not suitable for the upstream
process of document composition where trial-and-error
frequently occurs. Traditional text editors (including our
special editor) are suitable for making clean copy rather than
for the upstream process. In other words, traditional text
editors cannot save the author’s thoughts that are yielded in
the middle of the document-writing process but that are not
finally adopted in the completed version of the document.

IV. TEXT COMPOSTER

A. Approach to resolving the issues

To resolve the above two issues, we developed a novel
text composition support system named “Text ComposTer,”
which supports all activities in document writing from the
upstream process to the downstream one (e.g., generating,
organizing, composing and revising [5]). Inspired by the Art
#001 system [11], which supports the entire document
writing process, we designed a user interface for Text
ComposTer to make it possible to separately collect two
kinds of DTFs (namely, factors 1 and 2 related fragments
and factor 3 related fragments) in accordance with its usage.

TABLE I. RESULTS OF THE PILOT STUDY

 Subject 1 Subject 2 Subject 3 Subject 4

of characters 4726 2468 535 418

of sentences 72 43 12 10

of DTFs 551 124 16 99

194Copyright (c) IARIA, 2017. ISBN: 978-1-61208-538-8

ACHI 2017 : The Tenth International Conference on Advances in Computer-Human Interactions

B. System Overview

Text ComposTer is a native application on Windows
OSTM and implemented in C# programming language. Figure
1 shows the user interface of Text ComposTer. It is roughly
divided into two spaces: the viewer space and the element
space. The element space is also divided into two spaces: one
is the adopting space and the other is the pending space.
Using Text ComposTer, a user composes a document in any
language by writing sentences in a rectangle object named
“element” in the element space and sequentially arranging
the elements along with the flow of the narrative of the
document. The viewer space shows the entire document by
concatenating the sentences written in the elements that are
located in the adopting space from top to bottom, while the
sentences written in the elements located in the pending
space are not reflected in the entire document shown in the
viewer space. The user interface is equipped with six buttons
(i.e., Generate, Merge, Split, Save, Load, and Done buttons)
on the upper side of the element space. Each button is a
trigger of following functions.

 Generate Function: The user can generate a new
element in the element space by pushing the
generate button.

 Merge Function: The user can merge multiple
elements located in the adopting space. Text
fragments written in the selected elements are
merged from top to bottom and stored in an element.

 Split Function: The user can split an existing element
into two elements by pushing the split button. The
sentences in the original element are divided into the
two new elements.

 Save Function: The user can save the current work
environment of Text ComposTer as an XML-format
file by pushing the save button.

 Load Function: The user can load the work
environment saved previously by pushing the load
button, and then select one of the saved XML files.

 Done Function: The user can output the entire
document shown in the viewer space in a text-format
file, as well as save the entire document by pushing
the done button.

C. Collecting DTFs

Text ComposTer collects DTFs in two different grain
sizes: rough-grain DTFs (R-DTFs) and fine-grain DTFs (F-
DTFs). When the user pushes the done button, the text
fragment in each element located in the pending space is

Viewer Space
Adopting Space

Element Space

Pending Space

Figure 1. User interface of Text ComposTer.

195Copyright (c) IARIA, 2017. ISBN: 978-1-61208-538-8

ACHI 2017 : The Tenth International Conference on Advances in Computer-Human Interactions

regarded as an R-DTF, and each R-DTF is saved in XML
format. An F-DTF is a text fragment deleted by one series of
delete operations in an element. Namely, the F-DTF is the
same as the deleted text fragment collected in Section III.

A user of Text ComposTer generates an element, then
writes text in it and moves it in the element space iteratively.
Finally, when the user finishes writing, Text ComposTer
outputs a series of text fragments in the viewer space as a
text file and also collects and stores the text fragments in the
elements located in the pending space to utilize them as
intellectual resources afterwards.

V. USER STUDIES

We conducted two types of user studies to investigate
characteristics of Text ComposTer.

A. User Study 1: Comparing R-DTF and F-DTF

We asked four Japanese subjects to perform a writing
task using Text ComposTer. Each subject was a master’s
student and wrote a research proposal in Japanese. In this
user study, each subject used Text ComposTer to complete
the first or second draft. We instructed each subject in the
functions of Text ComposTer. We especially emphasized
that, once generated, elements cannot be removed; to delete a
text fragment in an element from the final document, it
should be moved to the pending space. After the writing task,
we asked each subject to evaluate the collected R-DTFs and
F-DTFs. Particularly, we asked them to evaluate whether
each R-DTF or F-DTF was “useful” or “useless” or “neither”
regardless of the context of the research proposal.

Table II presents the number of collected DTFs, average
character numbers of the DTFs, and standard deviation of the
character numbers for grain sizes and for subjects. In user
study 1, it was found that all of the R-DTFs generated by
each subject were fewer, longer and had larger deviation of
character numbers than correspondent values of F-DTFs.

Table III presents statistics (comprising number and
ratio) of evaluation of usefulness for grain sizes and for
subjects. The ratio of evaluation as “Useful” to all
evaluations in R-DTFs is much greater than the
corresponding ratio in F-DTFs. In addition, any R-DTFs and
F-DTFs evaluated as “Useful” tend to be long strings and
include technical terms.

B. User Study 2: Comparing Text ComposTer and the

Special Editor in Section III

We asked eight Japanese master’s students to perform
two writing tasks using Text ComposTer and the special
editor presented in Section III: Text ComposTer for one of
the tasks and the special editor for the other task. The topics
of the writing tasks are as follows.

T1: Please predict form and function of mobile phones 10
years in the future.

T2: Please devise a way to make JAIST (Japan Advanced
Institute of Science and Technology, to which the
subjects belong) widely known to the public. At a
minimum, describe a specific way and assess the
merits and demerits of its execution.

Each writing task was limited to 30 minutes, and the number
of characters of each document was restricted in the range of
100 to 400. We allowed each subject to take a break for
about five minutes in each writing task. For counterbalancing,
each subject was allocated to different combinations of
systems used (Text ComposTer or the special editor), topics
(T1 or T2) and order (first writing task, second task). After
the writing tasks, we carried out semi-structured interviews
in which we mainly asked about usability of each system and
how to use each system in performing the writing task.

Table IV presents the average number of collected DTFs,
average number of characters of the collected DTFs, and
standard deviation of the character number for systems used
and for topics. As shown in Table IV, the average number of
characters of DTF collected by the special editor and F-DTF
are almost the same, but their standard deviations are
different.

We found that usage of Text ComposTer and the special
editor differed depending on the subjects’ writing styles.

TABLE II. STATISTICS OF DTFS IN USER STUDY 1

 Number Avg. length SD

R-DTF

Sub. 1 5 240.6667 233.2600

Sub. 2 8 86.6250 51.8361

Sub. 3 0 － －

Sub. 4 6 97.6667 69.8538

Total 19 106.4737 84.7984

F-DTF

Sub. 1 196 5.3163 14.4821

Sub. 2 309 3.9029 5.7124

Sub. 3 38 10.1842 14.4495

Sub. 4 84 6.5176 28.7859

Total 627 4.6571 10.0065

TABLE III. RESULTS OF EVALUATION OF DTFS IN USER STUDY 1

 Useful Useless Neither

R-DTF

Sub. 1 3 (50%) 3 (50%) 0 (0%)

Sub. 2 5 (62.5%) 3 (37.5%) 0 (0%)

Sub. 3 0 (-%) 0 (-%) 0 (-%)

Sub. 4 3 (50%) 0 (0%) 3 (50%)

Total 11 (55%) 6 (30%) 3 (15%)

F-DTF

Sub. 1 1 (0.5%) 195 (99.5%) 0 (0%)

Sub. 2 5 (1.6%) 303 (98.1％) 1 (0.3%)

Sub. 3 5 (13.2%) 12 (31.6%) 21 (55.3%)

Sub. 4 0 (0%) 84 (100%) 0 (0%)

Total 11 (1.8%) 594 (94.7%) 22 (3.5%)

196Copyright (c) IARIA, 2017. ISBN: 978-1-61208-538-8

ACHI 2017 : The Tenth International Conference on Advances in Computer-Human Interactions

Subject 1 started to write a document after he had
finished composing the narrative of the document in his
mind. In other words, he only used both systems to make a
clean copy; thus the number of DTFs from subject 1 using
both Text ComposTer and the special editor was quite small.

The writing styles of Subjects 2, 3, 4, 5, and 8 were as
follows. First, they enumerated keywords and ideas for a
document, then selected some of these keywords and ideas,
and wrote the document based on the selected ones. When
using Text ComposTer, they generated an element and
described a keyword set or an idea in the element. Then, they
arranged the elements in the adopting space and the pending
space and completed the document. Finally, some elements
remaining in the pending space were collected as R-DTFs.
When using the special editor, on the other hand, they first
wrote down a list of ideas and keywords in the special editor;
then they wrote the body of the document while referring to
the list. They finally deleted the list and completed the
document.

Furthermore, the process of the writing task with Text
ComposTer differed between subjects 2, 3, 8 and subjects 4,
5. Subjects 2, 3, 8 first generated the elements in which ideas
and keyword sets are described, and then moved all these
elements to the pending space. They subsequently generated
an element for a clean copy of the document, and described
the body of the document in the element referring to the
elements located in the pending space. Subjects 4 and 5, on
the other hand, first generated the elements of keyword sets
and ideas in the same manner as subjects 2, 3, 8. Then, they
selected some elements, put them in the adopting space,
added text in these elements, and merged them into one
element by using the merge function to complete the
document.

In contrast, the writing styles of subjects 6 and 7 changed
depending on the system. They used Text ComposTer in the
same manner as subjects 2~5 and 8, while they used the
special editor in the same manner as subject 1.

From these observation results, we can assume that most
people who have peculiar writing styles (like subjects 1~5
and 8) tend to adhere to their own writing styles regardless of
the text-writing system.

We got replies in the interview about comparison
between Text ComposTer and the special editor. As an
affirmative response about Text ComposTer, subjects 3, 4, 6,
7 reported that they could create many more ideas with Text
ComposTer than with the special editor. They could also

write the document systematically because they could
organize their thoughts better using Text ComposTer.
Contrarily, as a negative response about using Text
ComposTer, subjects 3, 8 reported that they felt
uncomfortable writing down the body of the document in the
element.

VI. DISCUSSION

This section discusses the usefulness of Text ComposTer
based on the results of the user studies. At first, we discuss
usability of Text ComposTer, and then we discuss whether
Text ComposTer can efficiently collect R-DTFs, mainly
focusing on the two issues shown in Section III.

A. Usability of Text ComposTer as a document-writing

support system

There are two significant differences between Text
ComposTer and usual text editors, including the special
editor: 1) similar to the Art#001 system [11], the user writes
a part of the document (text fragments) in an element and
composes the entire document by sorting the elements based
on the storyline; and 2) if the user judges that certain text
fragments in an element are not necessary, he/she moves (not
deletes) the element to the pending space for elimination
from the final document. These differences may cause
incorrect usability as a document-writing support system.

Evaluation on the usability varied depending on the
writing styles of the subjects and on whether the subjects
could change their styles or not. Most of the existing text
editors are based on the WYSIWYG concept: the users are
always viewing the final image of the document while
writing it. They are familiar with this style and they often
unintentionally attempt to make the final document from the
beginning. However, Text ComposTer requires users to use a
totally different writing style from such ordinary text editors:
it requires them to make parts at first, then to assemble them
to compose the final document. Therefore, the users are
required to change their document-writing style when using
Text ComposTer.

The subjects who responded affirmatively in the
interview would be able to change their styles, or their
writing style was originally similar to that of Text
ComposTer. Subjects 6 and 7 actually changed their styles
depending on the tool. Subjects 3 and 4 first enumerated
keywords and ideas even when they used the special editor.
This style is potentially similar to that of the Text

TABLE IV. STATISTICS OF DTFS IN USER STUDY 2

 T1 T2

 Avg. number Avg. length SD Avg. number Avg. length SD

Text ComposTer

R-DTF 5.75 40.2727 50.1789 2.25 63.3333 47.8774

F-DTF 74.75 4.7715 9.2677 42.25 4.5444 6.8937

Special Editor in Sec. III 41.5 6.0663 19.1707 97 6.4897 13.2141

197Copyright (c) IARIA, 2017. ISBN: 978-1-61208-538-8

ACHI 2017 : The Tenth International Conference on Advances in Computer-Human Interactions

ComposTer. Therefore, they could quickly change the style
when using Text ComposTer. Although subjects 2, 5, and 8
did not respond affirmatively, they also enumerated
keywords and ideas first. This means that their writing style
is similar to that of subjects 3 and 4, although they did not
recognize this as an advantage of Text ComposTer. In
contrast, subject 1 used both tools in the WYSIWYG editor
manner. For such users, it should be necessary to give them
some instructions about the writing styles beforehand.

Consequently, as for the users who are potentially
familiar with the writing style of Text ComposTer, its
usability is acceptable. However, as for users who adhere to
the WYSIWYG writing style, its usability is not good and
some instructions to change their style are necessary.

B. Can Text ComposTer efficiently collect R-DTFs?

In this subsection, we discuss whether Text ComposTer
can efficiently collect meaningful R-DTFs. Furthermore, we
would like to inspect whether the following two issues
revealed in the pilot study were solved: 1) collected DTFs
are very messy using the special editor and 2) the number of
DTFs is quite small.

In Text ComposTer, only text fragments written in the
elements that are finally located in the pending space are
collected as R-DTFs; DTFs generated by correcting mistypes
(Factor 1) and revising expressions (Factor 2) that often
cause the messiness are excluded from R-DTFs. Therefore, it
became able to automatically and selectively obtain
meaningful R-DTFs that are text fragments generated only
by Factor 3. In addition, from the results of user study 1 (see
Table II), users of Text ComposTer said that R-DTFs are
more useful than F-DTFs. Consequently, we can conclude
that Text ComposTer can efficiently collect meaningful R-
DTFs separated from F-DTFs and can also solve the first
issue.

Although Text ComposTer also has the potential to solve
the second issue, whether meaningful R-DTFs can be
obtained depends on the usage of Text ComposTer. We
designed Text ComposTer to support the entire text-writing
process from the upstream to the downstream. Namely, in
the beginning of the text-writing process, the author is
required to create a lot of diverse ideas regardless of the
context and then composes the document in a convergent
manner while gradually establishing the context. In this
process, each idea is evaluated and selected if it is necessary
in the context. As a result, unused ideas are usually wasted,
but Text ComposTer gleans them as seeds for future
knowledge creations. Therefore, we expected that the users
of Text ComposTer described each keyword set or idea in an
element one-by-one in the beginning, then arranged the
elements to compose the documents. Finally, several unused
elements were moved to the pending space.

Thus, supporting and enhancing the initial divergent
process of idea creation is important for increasing the
number of R-DTFs and solving the second issue. Text
ComposTer is equipped with this function. However, as
shown in Table IV, the numbers of R-DTFs is still small and
useful ones are similar to those obtained by the special editor
(see Table III). Moreover, as with the usage of subjects in

user study 2, Text ComposTer can be used in different ways
of text-writing. To effectively increase the number of R-
DTFs, some functions and/or restrictions should be added to
let the users use Text ComposTer based on our expected way
of text-writing.

Such additional functions and/or restrictions are
necessary from the viewpoints of improving usability and of
accurately gleaning R-DTFs. We need to consider
improvement of the interface of elements because the
negative responses from the interviews related to the
elements; subjects 2, 3, 8 in user study 2 generated elements
for making a clean copy of the document, which is an
unexpected usage. One reason for this problem is that the
element allows different usages. It allows the user to take
memos of ideas and keywords, to write a part of the body of
the document, and eventually to write a clean copy of the
document. This feature causes the unexpected usage where
the user writes the body of the document into the elements in
the adopting space by referring to the ideas or keyword sets
in the elements in the pending space. This causes the
problem that useful knowledge and intangible waste are
mixed and cannot be distinguished.

Furthermore, we need to consider eliminating the merge
function from editing functions of Text ComposTer. In user
study 2, subjects 4 and 5 completed the document by
merging elements into one element. Text ComposTer
enables users to support the text-writing process by sorting
and arranging elements in the element space. However, if the
elements are merged into one element once, users of Text
ComposTer become unable to easily revise the document by
sorting the elements. Besides, when users want to delete a
part of a document (i.e., text fragment) in the merged
element, Text ComposTer collects it as an F-DTF, not an R-
DTF. To collect it as an R-DTF, the user needs to split the
text fragment from the original element and move the split
element to the pending space. Such a manipulation
introduces a high cognitive load for collecting R-DTFs.
Therefore, we conclude that the merge function should be
eliminated from the viewpoints of both usability and of
efficiently collecting R-DTFs.

One limitation of the user studies is that the number of
subjects was too small to obtain statistically significant
results. Additional experiments are necessary. However, the
characteristics of R-DTFs and F-DTFs collected by Text
ComposTer and DTFs collected by the special editor were
evidently different. Therefore, by conducting the additional
experiments, we would obtain statistically significant results
that are almost similar to the results of the user studies
shown in this paper.

VII. CONCLUSION AND FUTURE WORK

This paper described a novel writing support system
called Text ComposTer that is equipped with functions to
efficiently collect DTFs as a resource for supporting future
knowledge creation. Text ComposTer was designed based on
the findings of a pilot study that investigated what kinds of
DTFs are proper to utilize. Text ComposTer has an
advantage of collecting (re)utilizable DTFs because it can
collect R-DTFs and F-DTFs separately. This advantage was

198Copyright (c) IARIA, 2017. ISBN: 978-1-61208-538-8

ACHI 2017 : The Tenth International Conference on Advances in Computer-Human Interactions

confirmed in user studies. Consequently, Text ComposTer is
an effective system for collecting intangible waste that has
the potential to be utilized.

Our contribution of this paper is to propose a document
writing application that is equipped with an effective
collection function of DTFs, in particular R-DTFs. Such
applications have not ever existed because of lacking a
perspective of utilizing intangible waste so far. On the other
hand, this paper has not yet investigated whether the
collected DTFs are actually useful or not. To totally claim
the usefulness of Text ComposTer, we need to carry out
investigation of utilization of collected DTFs.

In near future, we would like to improve the design of the
elements to more clearly separate out useful knowledge. We
would also like to create an environment for utilizing DTFs
(mainly R-DTFs) for future knowledge creation, and to
conduct user studies to confirm the usefulness of collected
DTFs. Through these studies, we would like to create a
future where people know that wasting “waste” is a waste.

ACKNOWLEDGMENT

 The authors sincerely thank all of the research
participants who willingly cooperated in our experiments.
This work was supported by JSPS KAKENHI Grant Number
JP15K12093.

REFERENCES

[1] C. Oshima, K. Nishimoto, and N. Hagita, “A Piano Duo

Support System for Parents to Lead Children to Practice
Musical Performances,” ACM Transactions on Multimedia
Computing, Communications and Applications (ACM
TOMCCAP), vol. 2 issue 2, Article 9, pp. 1-21, 2007.

[2] A. Ikenoue, K. Nishimoto, and M. Unoki “iDAF-drum:
Supporting Practice of Drumstick Control by Exploiting
Insignificantly Delayed Auditory Feedback,” Knowledge
Information and Creativity Support Systems, AISC 416,
Springer, pp. 483-498, 2016.

[3] C. Neuwirth, D. Kaufer, R. Chimera. and T. Gillespie, “The
Notes program: A hypertext application for writing from
source texts,” Hypertext ‘87 Papers. Chapel Hill, NC. pp.
121-142, 1987.

[4] J. B. Smith, S. F. Weiss, and G. J. Ferguson, “A hypertext
writing environment and its cognitive basis,” Hypertext ‘87
Papers. Chapel Hill, NC. pp. 195-214, 1987.

[5] W. J. Hunter and J. Begoray, “A Framework for the Activities
Involved in the Writing Process,” The Writing Notebook, vol.
7, No. 3, pp. 40-42, 1990.

[6] S. Liao, “Expert system methodologies and applications—a
decade review from 1995 to 2004,” Expert Systems with
Applications, vol 28, Issue 1, pp. 93–103, 2005.

[7] R. Mizoguchi, J. Vanwelkenhuysen, M. Ikeda, “Task
ontology for reuse of problem solving knowledge,” Towards
Very Large Knowledge Bases: Knowledge Building &
Knowledge Sharing, IOS, pp. 46-59, 1995.

[8] H. Shibata and K. Hori, “A system to support long-term
creative thinking in daily life and its evaluation,” In
Proceedings of the 4th conference on Creativity & Cognition
(C&C '02). ACM, New York, USA, pp. 142-149, 2002.

[9] M. Sharmin, L. Bergman, J. Lu, and R. Konuru, “On slide-
based contextual cues for presentation reuse,” In Proceedings
of the 2012 ACM international conference on Intelligent User

Interfaces (IUI '12), ACM, New York, USA, pp. 129-138,
2012.

[10] V. 'V. Simbelis, P. Ferreira, E. Vaara, J. Laaksolahti, and K.
Höök, “Repurposing Bits and Pieces of the Digital,” In
Proceedings of the 2016 CHI Conference on Human Factors
in Computing Systems (CHI '16), ACM, New York, USA, pp.
840-851, 2016.

[11] K. Nakakoji, Y. Yamamoto, B. N. Reeves, and S. Takada,
“Two-Dimensional Positioning as a Means for Reflection in
Design,” Proceedings of Design of Interactive Systems
(DIS’2000), ACM , New York, USA, pp.145-154, 2000.

199Copyright (c) IARIA, 2017. ISBN: 978-1-61208-538-8

ACHI 2017 : The Tenth International Conference on Advances in Computer-Human Interactions

