
Translation of Sign Language Into Text Using Kinect for Windows v2

Preeti Amatya, Kateryna Sergieieva, Gerrit Meixner
UniTyLab

Heilbronn University
Heilbronn, Germany

emails: preetiamatya@gmail.com, kateryna.sergieieva@hs-heilbronn.de, gerrit.meixner@hs-heilbronn.de

Abstract—This paper proposes methods to recognize and
translate dynamic gestures of the German Sign Language
(Deutsche Gebärdensprache, DGS) into text using Microsoft
Kinect for Windows v2. Two approaches were used for the
gesture recognition process: sequence matching using Dynamic
Time Warping algorithm and a combination of Visual Gesture
Builder along with Dynamic Time Warping. For
benchmarking purposes, eleven DGS gestures, which were
provided by an expert user from Germany, were taken as a
sample dataset. The proposed methods were compared on the
basis of computation cost and accuracy of these gestures. The
computation time for Dynamic Time Warping increased
steadily with increasing number of gestures in the dataset
whereas in case of Visual Gesture Builder with Dynamic Time
Warping, the computation time remained almost constant.
However, the accuracy of Visual Gesture Builder with
Dynamic Time Warping was only 20.42% whereas the
accuracy of Dynamic Time Warping was 65.45%. On the basis
of the results, we recommend Dynamic Time Warping
algorithm for small datasets and Visual Gesture Builder with
Dynamic Time Warping for large datasets.

Keywords-Sign Language; Deutsche Gebärdensprache;
DGS; German Sign Language; Dynamic Time Warping; Visual
Gesture Builder.

I. INTRODUCTION

Sign language is a visual language [27] used by the deaf
people around the world. According to the World Federation
of the Deaf, there are about 70 million deaf people in the
world who use sign language as their mother tongue [1]. It is
often compared to spoken languages in terms of “modality
difference” [19]. A spoken language is perceived auditorily
whereas a sign language is perceived visually [19]. However,
sign languages are not based upon the spoken languages [8].
Instead, it has its own grammar, syntax, semantics, and
morphology [14][20], which makes it a highly structured
language [17]. It is not a universal language [8] and it differs
according to the deaf communities across the world. But,
most of the sign languages are named after a country, for
instance: in the USA – American Sign Language (ASL), in
Germany – German Sign Language or Deutsche
Gebärdensprache (DGS), in the UK – BSL (British Sign
Language), in Poland – Polish Sign Language (PSL), etc. It
involves the process of a gestural interaction where gestures
consist of signs, which differ from each other by minor

changes [3]. These changes include a change in handshape,
motion, location, non-manual cues like facial expressions
[3], lip movements, and head movements, which complicates
the recognition process.

According to the Stokoe’s notation, a sign in a sign
language comprises of three different features, which are:
place where it is made, the distinctive configuration of the
hand or hands making it, the action of the hand or hands
[28]. In terms of gestures, motion and configuration can be
classified according to their positions, which may be static or
dynamic. Harling classified the hand gestures into four
categories, as follows [11]:
Static Hand Posture, Static Hand Location – SPSL:

1) SPSL includes the most of fingerspelling and numbers
of a sign language, which does not involve hand motions.
For instance, spelling ‘A’ in ASL (see Figure 1).

Figure 1. “A” fingerspelling in ASL [29]

2) Dynamic Hand Posture, Static Hand Location – DPSL:
DPSL includes sign gestures, which do not have real
meaning of a word. It can also be an acronym. For instance,
spelling “OK” in ASL. To spell “OK” first “O” is spelled
and then “K” (see Figure 2).

Figure 2. “OK” fingerspelling in ASL [29]

3) Static Hand Posture, Dynamic Hand Location –
SPDL: SPDL includes gestures like “Thank you” in ASL
(see Figure 3) where a hand posture is almost flat and
location changes from touching the chin to in-front of and
slightly below the chin.

19Copyright (c) IARIA, 2018. ISBN: 978-1-61208-616-3

ACHI 2018 : The Eleventh International Conference on Advances in Computer-Human Interactions

Figure 3. “Thank you” gesture in ASL [21]

4) Dynamic Hand Posture, Dynamic Hand Location –
DPDL: it includes gestures like “Hello” in ASL where the
hand posture (like the position of thumb in “Hello”) changes
along with the location (See Figure 4).

Figure 4. “Hello” gesture in ASL [21]

Signing words of sign language using fingerspelling is a
tedious task, and generally, deaf people do not prefer to use
it as the main form of communication [24]. Also, most sign
languages do not include fingerspelling but include gestures,
which represent whole words [26].

This paper is based on the whole word representation of
the German Sign Language (DGS) gestures, which are
dynamic in nature, i.e., it involves some hand motions.
Hence, SPDL and DPDL types of gestures were used for
recognition using Microsoft Kinect for Windows v2 [6].
These gestures are used as input to the sign language
translator application, which was built for this research.
Gesture recognition is done on the basis of two approaches:
using Dynamic Time Warping (DTW) algorithm (see
Section 4.5) and Visual Gesture Builder (VGB) along with
DTW (see Section 4.7). After a gesture is recognized, it is
translated into text.

The rest of this paper is structured as follows: Section 2
describes related work done in the field of recognizing sign
language. Section 3 describes the methodology used for the
project. Section 4 explains the implementation of the
approach in detail. Section 5 presents the performance
benchmarks and evaluations of both variations of the
application in terms of a central processing unit (CPU) cost

and accuracy. The deductions made from the benchmarks
and results, as well as further work, are discussed in Section
6.

II. RELATED WORK

A lot of research has been done in the field of sign
language recognition using various approaches. Oszust and
Wysocki recognized isolated words of PSL on the basis of
“features which include Kinect’s skeletal image” and
“features describing hands as skin colored regions” [18].
Cooper recognized sign language on the basis of linguistic
subunits using Markov Models and Sequential Pattern
Boosting based on openNI frameworks [3]. For learning
appearance based on subunits (location, motion, hand
arrangements), hand segmentation and the position of the
face required a user needs to wear data gloves [3].]

Starner recognized ASL sentences using single camera
based on Hidden Markov Model (HMM) with word accuracy
of 99.2% without modeling the fingers [26]. In his method, a
user needs to wear distinct hand gloves [26]. Videos were
captured at 5 frames per second with a 320x243 pixel
resolution [26]. Fang and Gao proposed Transition
Movement Model (TMM) for large vocabulary continuous
sign language recognition [9]. The devices used for
experimentation were Cybergloves and Pohelmus 3SPACE-
position trackers [9]. Zhang, Zhou, and Li recognized
sentences on the basis of Discrete HMM and DTW [30].
DTW was used for determining the end point of each sign
[30].

Another widely used approach to gesture recognition is
gesture classification with a help of machine learning
techniques. Neural networks [23], support vector machine
[25] or nearest neighbor [5] are often used for such purposes.
Although, these methods show high accuracy level, they
require not only determining the signing motion, but also
design, fine-tuning and training of algorithmic model for
classification.

In contrast to these approaches for sign language
recognition, the methods used in this paper do not use hand
segmentation approaches, and they do not use data gloves.
Since our methods do not consider hand posture and focus
on isolated words, only DTW algorithm was used for
determining the signing motions performed by a user. The
only constraint in DTW based approach is that a user has to
stay in standstill positions to make a gesture, whereas VGB
with DTW has no such constraints. The body joints tracking
feature provided by Microsoft Kinect SDK 2.0 was used for
sign language recognition, which does not require further
color segmentation. Furthermore, we use VGB, which was
released with Microsoft Kinect SDK 2.0 to recognize the
start and end positions. Our training sets for start and end
positions of a sign language is done by VGB application,
which provides more custom features for our datasets. For
instance: ignoring hands, ignoring lower body joints. Also,
the VGB datasets can be experimented prior to recognition
using VGB view to determine if the dataset is appropriate for
sign language recognition. Finally, this paper also
investigates the potential of DTW algorithm and VGB with
DTW to recognize sign language gestures.

20Copyright (c) IARIA, 2018. ISBN: 978-1-61208-616-3

ACHI 2018 : The Eleventh International Conference on Advances in Computer-Human Interactions

III. METHODOLOGY

To provide gesture recognition for DGS and its
translation into the text, by means of DTW and VGB-with-
DTW-based Translators, both learning machines have to be
trained to perform this task. For these purposes, the system
should be developed which cover data collection, which
includes collecting data from the user, specifically filming
videos with DGS gestures; data preprocessing, that has to
transform video files into gesture dataset in a format
acceptable for the translators; and translators training.

For the sample dataset, 11 DSG gestures were selected
for recording. Video recording was decided to make with
Microsoft Kinect for Windows v2 with SDK 2.0. It was
chosen for this project because it can detect full body
movements [6] using raw color frames and depth images.
The sensors of Kinect include a color camera, a depth sensor,
and IR (Infra-Red) emitter. The depth sensor and IR emitter
of Kinect has a resolution of 512x424 pixels, and the camera
has 1080p resolution [6]. It can capture frames at the rate of
30 FPS [6].

In this research Kinect ability for capturing body joints
based on its depth images is used. The 2D body coordinates
above the hip region are chosen because most sign language
gestures include hand motions. For simplicity, hand postures
and non–manual cues were not used for recognition.

Figure 5 shows the overall architecture of the sign
language translator system.

Figure 5. Overall System Architecture

An expert user is allowed to sign DGS gestures in front
of the Microsoft Kinect for Windows v2. The Kinect
captures the data streams from the user, and these data
streams are recorded using Kinect Studio. The video files
from the Kinect Studio (.xef files) are used for training
datasets in VGB. These .xef files are processed using
Gesture Converter, which returns DTW dataset (.txt files)
after normalization (see Section 4.3). On the other hand,

VGB datasets are created using the Visual Gesture Builder.
After training VGB datasets, the generated .gbd files are
used as a dataset in VGB-with-DTW-based Translator.

The .txt files from the DTW datasets are used in DTW-
based Translator (see Section 4.5) as well as VGB-with-
DTW-based Translator (see Section 4.7).

When a normal user signs a sign language gesture, the
data streams are captured by sign language translator
application (see Sections 4.5 and 4.7) and are translated into
text (see Section 4.6).

IV. IMPLEMENTATION

4.1 Input Data

As mentioned before, input data for the system is data
streams, which represents videos of gestures, filmed by
Kinect Studio.

Kinect Studio is a recording tool, which can record 2D
and 3D data captured by Kinect, along with the orientation of
the body. Kinect studio records the data in a .xef file format.
These files contain audio, video, depth information recorded
by a user.

Recording clips with Kinect Studio was done by starting
the Kinect service and user performing the gestures in front
of Kinect. The Kinect records the videos in .xef format.
These .xef files are used in VGB for training datasets.

4.2 Visual Gesture Builder

VGB is a tool, which was developed to recognize
custom gestures using Kinect. VGB uses a data-driven
solution for gesture recognition [8]. Gesture detection
through VGB is done by training the gestures provided by
users (content creation) rather than code writing [8]. The
processes in VGB are described below in detail.

At first, VGB was used to tag the start and end positions
of sign language gestures. A gesture in VGB is a posture in
our context. A gesture in VGB was created with its custom
features, which include “Body Side”, “Gesture Type” and
“Training Settings”. A body side in VGB is differentiated
into three categories, “Left”, “Right” and “Any”. “Any”-
body side was chosen for training gestures. Discrete gesture
type allows VGB to train gestures using AdaBoost, which is
a machine learning meta-algorithm to improve performance
[10]. “Ignore Lower Body” was chosen to train all the start
and end positions of the gestures, and lower body was
considered for training “Standstill” position.

After creating a gesture using VGB, start and end
positions of sign language gestures were tagged separately
(see Figure 6). The blue frames in Figure 6 represent a
positive training set of data, whereas, all other frames,
which are untagged, are referred to as negative training data.
These frames are weak classifiers for AdaBoost. For tagging
data, VGB provides custom input parameters. The custom
input parameters chosen for the start and end positions of
gestures are shown in Figure 6. Building gestures in VGB
result in .gbd files. These .gbd files are used in application
to detect gestures.

21Copyright (c) IARIA, 2018. ISBN: 978-1-61208-616-3

ACHI 2018 : The Eleventh International Conference on Advances in Computer-Human Interactions

Figure 6. Clips tagged for “Abend_start” gesture

VGB view can be used to find out whether the start and
end gestures of a sign language has been recognized
correctly. It consists of all the gestures, which were tagged
in VGB. When Microsoft Kinect SDK 2.0 captures the
input, VGB view shows the confidence of gestures based on
the input. A higher level of confidence shows more
accuracy of the gestures performed by the user. Figure 7 is
an example of a gesture performed using VGB view.

Figure 7. Custom parameters for abend_start gesture

In Figure 8, the “dick” (in English: thick) gesture in
DGS is performed. At first, a start position is detected
followed by the end position. A spike shows the confidence
of the start and end positions of the gesture.

Figure 8. An example of viewing .gbd file using VGB view

The VGB view allows developers to verify if the
training is good enough to be used in an application. After
the .gbd file was viewed using VGB view, it was added in
our application to detect the start and end positions of
gestures.

4.3 Normalization of coordinates

Microsoft Kinect for Windows v2 SDK 2.0 can track 25
body joints using its depth images. To determine the hand
gesture motion, the following body joints in 2D –
HandRight, HandLeft, ElbowRight, ElbowLeft, WristRight,
WristLeft, ShoulderRight and ShoulderLeft were chosen as
the joints of interest because they contribute to identifying
hand gestures [2] in a sign language.

In this case, normalization is carried out by shifting the
origin from the Kinect to the user body position. It is done
to eliminate the variations in the joined coordinates due to
the height of a person or his position in the camera’s field of
view [2]. The distance between joints “ShoulderLeft” and
“ShoulderRight” are taken for the variations due to a
person’s size [2]. Thus, the joint “SpineShoulder” is
selected as the origin of the user body position.
Normalization is done by subtracting the shoulder elements
from joints coordinates when a user is not in the center of
depth image [2]. While normalizing, every frame is
separated by the delimiter “@” and consists of twelve X and
Y coordinates of joints of interest except “ShoulderRight”
and “ShoulderLeft”. While performing hand gestures,
“SpineShoulder” is considered as origin, which is
approximately the midpoint of “ShoulderRight” and
“ShoulderLeft”. These normalized coordinates are used as
sequence X in sequence matching using DTW (see Sections
4.5 and 4.7).

4.4 Gesture Dataset

4.4.1 DTW Dataset

DTW dataset consists of .txt files, which are resulted
from the Gesture Converter after Normalization of
coordinates (see Section 4.3). The .txt files consist of X and
Y coordinates of body joints for a gesture.

4.4.2 VGB Dataset

The VGB dataset consists of clips from Kinect Studio
recordings where start position and end position of each sign
language gesture were tagged separately and considered as
separate postures. While creating a gesture project, start or
end keyword was added as a suffix of the gesture. For
example: “gs_Abend_start”. The “Gesture Type” was chosen
as Discrete (AdaBoostTrigger). It allows VGB to train
gestures using AdaBoost machine learning technique. In
Figure 5, “Angestellter-false” in “Abend_start” gesture
consists of “Angestellter” gesture, which was tagged as a
negative dataset. Unlike tagging start and end positions,
negative tagging includes tagging of motion of a gesture. For
every gesture, negative training of the gestures should be
done to reduce false positives. Figure 5 shows tagging of

22Copyright (c) IARIA, 2018. ISBN: 978-1-61208-616-3

ACHI 2018 : The Eleventh International Conference on Advances in Computer-Human Interactions

“Abend_start” gesture for training. Multiple portions of the
same gesture are tagged to improve accuracy.

4.5 DTW-based Translator

The body joints provided by Kinect can be used for
sequence matching using the Dynamic Time Warping
(DTW) algorithm.

DTW is a technique to find an optimal alignment
between two given sequences under certain restrictions [16].
A distance measurement between time series can be used to
find similarity between them [22]. It is used to cope up with
time deformation and different speeds of time-dependent
data [16]. The time and space complexity
of DTW is O(nm) [13], which means every point in a series
compares every other point in a time series.

For a given two sequences Q = (q1, q2, ..., qi, ..., qn) of
length n and C = (c1, c2, ..., cj, ..., cm) of length m, a cost

matrix is constructed where the (i
th

, j
th

) element of the
matrix contains the distance d(qi, cj) between two points qi

and cj, i.e., d(qi, cj) = (qi - cj)
2 [13].

Each matrix element (i, j) corresponds to alignment
between the points qi and cj [13]. A warping path W is a set
of matrix elements, which defines the mapping between Q
and C [13]. The kth element of element W is defined as wk(i,
j), where W = (w1, w2, ..., wk, ..., wK) and where max(m, n)
≤ K <m+n-1 [13]. K is the length of warp path [13][22].
The minimum distance of a warp path is called an optimal
warp path [22]. Its distance can be calculated using [22]: if

wk=(i, j), wk+1 is equal (i´,j´), where i ≤ i´≤ i+1, and j ≤

j´≤ j+1, then

K

∑ Dist(W) = Dist(wki, wkj). (1)
K=1

In (1) Dist(W) is the Euclidean distance of the warp path W
and Dist(wki,wkj) is the distance between two data points
[22]. The value of a cell in a cost matrix is given by [22]:

D(i, j)=Dist(i, j)+min[D(i −1, j),D(i, j −1),D(i −1, j −1)] (2)

The warp path to D(i, j) must pass through one of those
three grid cells, and the least distance among the three
neighboring cells are added to the Euclidean distance
between the two points [22]. While filling the matrix, it is
filled one column at a time from the bottom up, from left to
right [22].

By using this approach, the cost matrix was plotted for
two-time series. The normalized input from Kinect was
captured in between standstill positions (sequence X in
Figure 9) versus gesture from the DTW dataset (sequence Y)
one at a time. The shortest distance (minimum cost) was
calculated from the top row of the cost matrix. It was divided
by the length of the gesture dataset sequence, with which it
was compared against [4].

This resulted value was compared with a threshold value
(t=2), which is defined manually. If the resulted value is less
than or equal to t, the gesture is recognized.

4.6 Translation into Text

Since the gesture from Kinect (sequence X in Figure 9) is
compared against multiple gestures in DTW dataset, only
those gestures were chosen, which satisfies constraint (t less
or equals to 2). DTW-based Translator returns a list of
possible matches from the dataset for gesture input. Based
upon the DTW principle, less cost results in more similarity
in time series. Hence, the gesture, which has least cost was
chosen to be a recognized gesture. After a gesture is
recognized, the application gets the filename of the matched
gesture, which is printed as the recognized gesture.

4.7 VGB with DTW-based Translator

DTW-based Translator utilizes high CPU and a
significant amount of memory to compare the multiple
gestures. Also, the application has to compute any gesture
between standstill position even if they were not sign
language gestures. The concept behind VGB with DTW
approach is to avoid comparing every gesture in the DTW
dataset for gesture recognition. It can be done by identifying
the start position of the sign language gesture. If a start
position is detected, it is highly probable that a user has
signed a correct sign language gesture.

Figure 9. VGB-with-DTW-based Translator

In Figure 9, when the user body frame arrives as a Kinect
input, each of these frames are processed by using the VGB
API. It uses AdaBoost machine technique to recognize the
start or end position of the sign language gestures.
AdaBoost is a supervised machine learning algorithm [15],
which generates a strong classifier out of the set of weak
classifiers [10][12]. While training gesture datasets in VGB
using AdaBoost, weak classifiers, i.e., angles using inferred
joints, speed rejecting inferred joints, etc., are used to
generate the strong classifier along with a confidence level.
When a frame from Kinect is recognized as a gesture, VGB
API returns the gesture name. When the start position of a
gesture is detected, the application collects the body frames
unless the end position of the same gesture is found. In the
meantime, if it detects other gestures, the stored frames are
cleared, and the collection of frames begins as soon as start

23Copyright (c) IARIA, 2018. ISBN: 978-1-61208-616-3

ACHI 2018 : The Eleventh International Conference on Advances in Computer-Human Interactions

position is detected again. After the frames are collected
between start and end positions of the same gesture, they are
normalized and passed for sequence matching using DTW.
In this case, the application knows the gesture name and, by
using this gesture name as a reference, it compares with
only one gesture from DTW dataset, which matches the
gesture. It was done to find if the motion of the sign
language gestures were performed correctly. Using this
technique, false positives, which were observed using the
DTW-based Translator, can be significantly reduced.

V. RESULTS

The eleven gestures of DGS used in Germany: Abend,
Angestellter, Bayern, Danke, Dick, Gebärdensprache,
Information, München, Schlank, Un- möglich and Vater
were used to compute the cost of computation and accuracy.
These gestures, which were used as datasets for DTW and
VGB were provided by an expert user. To compute the cost
of computation and accuracy, “Abend”-gesture was chosen
against the varying number of gestures in the dataset. For
DTW–based Translator DTW threshold was chosen as 2,
whereas for VGB-with-DTW based translator DTW
threshold was chosen as 2.5.

In VGB-with-DTW based translator time taken to
compute a single gesture in dataset includes the sum of time
taken to compute start and end position of gesture from VGB
along with time taken to compute the gesture in DTW
dataset. Figure 10 shows time taken to compute the
“Abend”-gesture using both approaches.

Figure 10. Time calculation for “Abend”-gesture using both approaches

5.1 Accuracy of DTW-based Translator

To compute the accuracy for DTW-based Translator,
every gesture was performed 10 times by a novice user.
Before performing the gestures, they were studied from the
recordings of an expert user. Table 1 shows the number of
detected, not detected, and false positives for the gestures
using DTW-based Translator. The accuracy column shows
accuracy in percentage for detected gestures. “Schlank” had
90% accuracy whereas “Unmöglich” had 40% accuracy.

TABLE I. ACCURACY OF DTW-BASED TRANSLATOR

Table 2 shows the gestures, which were recognized as
false positives for DTW- based Translator.

TABLE II. GESTURES WITH FALSE-POSITIVE RECOGNITION

Figure 11 is based on Table 1. For “Abend”-gesture, 6
gestures were detected, where one was false positive. The
highest number of false positives were observed in
“Unmöglich”-gesture, whereas the lowest number of false
positives were observed in “Angesteller”, “Bayern”,
“Gebärdensprache”, “München” and “Schlank”. The least
detected gesture was “Unmöglich” whereas the most detected
gesture was “Schlank”.

Figure 11. Calculation of Accuracy for DTW-based Translator

5.2 Accuracy of VGB-with-DTW-based Translator

Table 3 was calculated by performing a gesture several
times by a novice user. “Abend” gesture was performed 15
times, but it was recognized only 4 times with no false
positives. Some gestures like “Information” and “Vater”
were not detected at all. The best-detected gesture was
“Bayern”, “Dick”, and “München”.

24Copyright (c) IARIA, 2018. ISBN: 978-1-61208-616-3

ACHI 2018 : The Eleventh International Conference on Advances in Computer-Human Interactions

TABLE III. ACCURACY OF VGB-WITH-DTW-BASED TRANSLATOR

Figure 12 shows the number of detected, not detected,
and false positives for the gestures for VGB-with-DTW-
based Translator recognized gesture.

Figure 12. Calculation of accuracy for VGB-with-DTW-based Translator

5.3 Overall AccuraciesVGB with DTW-based Translator

DTW-based translator detected 65.45% of gestures with
10.91% false positives whereas VGB-with-DTW-based
Translator detected 20.42% of gestures with 1.57% of false
positives. More detections but also more false positives were
observed in DTW-based Translator.

VI. DISCUSSION AND FUTURE WORK

In Figure 10, the time, which was taken to compute
“Abend”-gesture using DTW–based translator, increased
with increasing number of gestures in the dataset whereas
VGB-with-DTW based translator almost remained same.
This behavior was expected because DTW-based translator
has to compare with more numbers of gestures on increasing
the gestures in the dataset whereas VGB-with-DTW based
translator has to compare with only one designated gesture.
The constant outcome was expected for the VGB-with-DTW
based translator, but some irregularities were observed in
Figure 10. One of the possible reasons might be VGB not
being able to detect the same frame as a start or end position
of gestures in each observation. The accuracy of detected
gestures of DTW–based Translator (see Table 1) was better
than VGB-with-DTW based translator (see Table 3),
although, some false positives were observed in DTW–based
translator. From the false positive recognition (see Table 2) it
can be inferred that:

 Usually, single-handed gestures have single-handed
gestures as false positives. Similarly, two-handed gestures

have two-handed gestures as false positives (Exception:
“Dick”).

 Most of the false positives were caused by
“Bayern”-gesture. It was false positive for “Danke”,
“Unmöglich” and “Vater”. If we observe the right-hand
movement of “Bayern”-gesture, coordinates of right hand
differ slightly because it is signed by forming small circles
around the chest. The small variation in its coordinates might
have resulted in false positive gesture for many cases.

From the accuracy of DTW-based Translator, it can be
inferred that:

 Accuracy highly depended upon how user
performed the gesture.

 Gestures involving long motions were difficult to
recognize. For example, “Gebärdensprache”, “Unmöglich”.

 Short Gestures that included variation in
coordinates were easier to recognize. For example: “Danke”.

 However, lengthy gestures involving a greater
variation of coordinates were difficult to recognize
(“Abend”, “Unmöglich”).

 Long gestures affected Natural User Interaction of
the user. It was observed that, while performing a long
gesture like “Gebärdensprache”, the gesture displayed in the
application did not synchronize with the user body
movement.

 When gestures were performed accurately, i.e., in
accordance with the expert user, it was easier to recognize.

 The accuracy of VGB-with-DTW based translator
was lower than DTW–based Translator. Some factors that
may have affected its accuracy are:

 Detected gestures from VGB, i.e., start and end
positions have very low confidence (<50%).

 The translator was not able to detect start and end
points precisely. One reason might be due to a number of
frames tagged in VGB. Several frames were considered for
tagging standstill position, but only a small portion of frames
was used for tagging start and end positions of gestures.

 “Angestellter_start” was not detected precisely,
compared to “Angestellter_end”. For example: the start
position of “München”, as well as the end position of
“Unmöglich”, were difficult to be detected. The reason
might be that the start and end positions of a gesture closely
resemble with other gestures.

 A single gesture “Bayern” was detected twice,
because of multiple start and end points in the gesture. In
such cases, the accuracy of this translator was even lower,
because the partially completed gesture is not considered as a
single gesture.

Nevertheless, this application is a proof of concept that
VGB and DTW can be used for sign language recognition.

VII. CONCLUSION

In this paper, two different methods – DTW and VGB
along with DTW were proposed to recognize dynamic sign
language gestures.

To reduce complexity in application development,
several constraints were taken into account, i.e., ignoring
non-manual cues, the configuration of hands and considering

25Copyright (c) IARIA, 2018. ISBN: 978-1-61208-616-3

ACHI 2018 : The Eleventh International Conference on Advances in Computer-Human Interactions

only the signs that involve some motion. Using DTW–based
translator-approach the input gesture was compared against
all available gestures in dataset whereas in VGB–with–
DTW–based translator, the concept of determining the start
position and end position of a sign language were used to
guess the correct gesture, which was then verified by DTW
computation. The DTW-based translator had some false
positive detections and the time computation increased with
the increasing number of the gestures in the dataset. Usually,
similar gestures were the false positives. Some latency was
observed using this approach, but the accuracy was
comparatively better than translator based on VGB–with–
DTW–based translator. The key factor for the increase in
accuracy was a small dataset, and the boundary condition
(standstill) for the gestures were easily recognized. However,
DTW–based translator is unrealistic for large numbers of the
dataset. In VGB-with-DTW-based translator, false positive
detections were significantly lower compared to that of
DTW-based translator. But, the accuracy decreased
significantly. The lower accuracy was mostly because of not
being able to precisely detect start and end points of similar
sign language gestures. This approach had less computation
time because of less noise in the gesture. However, the
accuracy also reduced significantly because of the low
detection rate of start and end gestures.

From benchmarks of the translator applications, it can be
concluded that the DTW-based Translator has higher
accuracy (65.45%) than that of VGB-with-DTW-based
Translator (20.42%). But, the VGB-with-DTW-based
Translator performed better regarding CPU consumption
than the DTW-based Translator.

REFERENCES

[1] “Sign language”. Available from http://wfdeaf.org/human-
rights/crpd/sign-language; Last accessed 20.01.2018.

[2] S. Celebi, A. S. Aydin, T. T. Temiz, and T. Arici, “Gesture
recognition using skeleton data with weighted dynamic time
warping”. In VISAPP (1), pp. 620-625, 2013.

[3] H. Cooper, E. J. Ong, N. Pugeault, and R. Bowden, “Sign language
recognition using subunits”. The Journal of Machine Learning
Research 13, 1, pp. 2205-2231, 2012.

[4] “Dynamic time warping to recognize gestures”. Available from
https://social.msdn.microsoft.com/Forums/en-US/4a428391-82df-
445a-a867-557f284bd4b1/dynamic-time-warping-to-recognize-
gestures?forum=kinectsdk; Last accessed 20.01.2018.

[5] N. Gkigkelos and C. Goumopoulos, "Greek sign language vocabulary
recognition using Kinect," presented at the Proceedings of the 21st
Pan-Hellenic Conference on Informatics, Larissa, Greece, 2017.

[6] “Kinect tools and resources”. Available from
https://developer.microsoft.com/en-us/windows/kinect; Last accessed
20.01.2018.

[7] “Visual gesture builder: A data driven soultion to gesture detec-
tion”. Available from
https://onedrive.live.com/view.aspx?resid=1A0C78068E0550B5!
77743&app=WordPdf; Last accessed 20.01.2018.

[8] K. Emmorey, “Language, cognition, and the brain: Insights from sign
language research”. Psychology Press, 2001.

[9] G. Fang, W. Gao, and D. Zhao, “Large-vocabulary continuous sign
language recognition based on transition-movement models”. In:
IEEE Transactions on Systems, Man and Cybernetics, Part A:
Systems and Humans, 37, 1, pp. 1-9, 2007.

[10] Y. Freund, and R. E. Schapire, “A decision-theoretic generalization
of on-line learning and an application to boosting”. In: Journal of
computer and system sciences, 55, 1, pp. 119-139, 1997.

[11] P. A. Harling and A. D. N. Edwards, “Hand tension as a gesture
segmentation cue”. In: Proc. of Gesture Workshop on Progress in
Gestural Interaction, pp. 75-88, 1996.

[12] T. Hastie, R. Tibshirani, and J. Friedman, “Boosting and Additive
Trees”. In: The Elements of Statistical Learning. Springer Series in
Statistics. Springer, New York, NY, 2009.

[13] E. Keogh and C. A. Ratanamahatana, “Exact indexing of dynamic
time warping”. In: Journal of Knowledge and Information Systems, 7,
3, pp. 358-386, 2005.

[14] S. K . Liddell, “Grammar, gesture, and meaning in American Sign
Language”. Cambridge University Press, 2008.

[15] O. Mozos, C. Stachniss, and W. Burgard, “Supervised learning of
places from range data using adaboost”. In: Proc. of the IEEE
International Conference on Robotics and Automation, pp. 1730-
1735, 2005.

[16] M. Müller, “Dynamic time warping”. Information retrieval for
music and motion, Springer, 2007.

[17] S. Ong and S. Ranganath, “Automatic sign language analysis: a
survey and the future beyond lexical meaning”. In: IEEE Transactions
on Pattern Analysis and Machine Intelligence, 27, 6, pp. 873-891,
2005.

[18] M. Oszust and M. Wysocki,. “Some approaches to recognition of sign
language dynamic expressions with kinect”. In Human-Computer
Systems Interaction: Backgrounds and Applications 3. Springer, pp.
75-86, 2014.

[19] R. Pfau, M. Steinbach, and B. Woll, “Phonetics, phonology and
prosody”. In: Sign Language: An International Handbook, pp. 4-77,
Walter de Gruyter, 2012.

[20] R. Pfau, M. Steinbach, and B. Woll, “Sign language: An international
handbook”. vol. 37, Walter de Gruyter, 2012.

[21] Quizlet LLC; Available from: http://quizlet.com/12296633/abc-1-asl-
vocab-flash-cards; Last accessed 20.01.2018

[22] S. Salvador and P. Chan, “Toward accurate dynamic time warping in
linear time and space”. In: Journal of Intelligent Data Analysis, 11, 5,
pp. 561-580, 2007.

[23] M. S. Santos, E. B. Pizzolato, S. Feuerstack, “A Real-Time System to
Recognize Static Gestures of Brazilian Sign Language (Libras)
alphabet using Kinect”. In: IHC 2012 Proceedings, 2012.

[24] A. Sarkadi, “Vocabulary learning in dyslexia: the case of a hungarian
learner”. In: Language learners with special needs: An international
perspective. Clevedon: Multilingual Matters 194, 2008.

[25] C. Sun, T. Zhang, C. Xu, „Latent support vector machine modeling
for sign language recognition with Kinect.” In: ACM Trans. Intell.
Syst. Technol. 6, 2, pp. 1-20, 2015

[26] T. Starner and A. Pentland “Real-time american sign language
recognition from video using hidden markov models”. In: Proc. of the
International Symposium on Computer-Vision, pp. 265-270, 1995.

[27] W. C. Stokoe, “Sign language structure: An outline of the visual
communication systems of the american deaf”. In: Journal of deaf
studies and deaf education, 10, 1, pp. 3-37, 2005.

[28] W. C. Stokoe, D. C. Casterline and C. G. Croneberg, “Introduction to
a dictionary of american sign language”. In: Linguistics of American
Sign Language, pp. 243-258, 2000.

[29] W. Vicars, “ASL University”. Available from
http://www.lifeprint.com; Last accessed 20.01.2018.

[30] J. Zhang, W. Zhou, and H. Li, “A Threshold-based HMM-DTW
Approach for Continuous Sign Language Recognition”. In Proc. of
the International Conference on Internet Multimedia Computing and
Service, pp. 237-240, 2014.

26Copyright (c) IARIA, 2018. ISBN: 978-1-61208-616-3

ACHI 2018 : The Eleventh International Conference on Advances in Computer-Human Interactions

