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Abstract—For the deaf and hard-of-hearing to be able to go out
safely, they must be able to recognize alarm sounds (horns, bicy-
cle bells, ambulance sirens, etc.) among various environmental
sounds. Therefore, it is crucial to be able to transmit these
kinds of sounds to such people, even in noisy environmental
conditions. In this paper, we propose and develop an alarm
sound classification system using deep neural networks. The
system works on smartphones that can always be carried by the
users when they are going out. Besides, we performed evaluation
experiments to verify the effectiveness of the system using the
5-fold cross-validation method. Furthermore, we evaluate the
classification rate for unlearned data and re-evaluate one by
adding data downloaded from the web. We also discuss the
limitations of the system to improve it and make it more useful.

Keywords–Alarm sound; Classification; Deaf and hard-of-
hearing; Neural network; Smartphone.

I. INTRODUCTION

Over 5% of the world’s population (466 million people) has
disabling hearing loss as stated in [1]. In order for these people
to be able to go out safely, they must be able to recognize alarm
sounds (horns, bicycle bells, ambulance sirens, etc.) directly
linked to a safe and secure life, among various environmental
sounds. Therefore, there is need for a system that distinguishes
these specific alarm sounds from environmental sounds and
transmits them to those with disabling hearing loss.

In recent years, Deep Neural Networks (DNNs) have been
attracting attention; DNNs automatically learn alarm sounds
to be recognized, and they automatically acquire the features
of these sounds. With DNNs, high-precision classification is
expected even when the sound quality is affected because of
the movement of objects or noisy environments.

In this research, we develop an alarm sound classification
system using DNN (Figure 1). As a result, hearing-impaired
people will be able to recognize alarm sounds and go out
safely. Our aim is to build a system that uses a smartphone
because the users carry smartphones when they go out.

In this paper, we propose an alarm sound classification
system using DNN and confirm essential classification perfor-
mance. Moreover, we develop a smartphone application that
recognizes the siren of an ambulance, the bell of a bicycle, etc.,
and sends it to the user. We perform evaluation experiments
to verify the effectiveness of the system using the 5-fold
Cross-Validation (CV) method. Furthermore, we evaluate the
classification rate for unlearned data and re-evaluate one by
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Figure 1. Alarm sound classification and transmission systems.

adding data downloaded from the web. We also discuss the
limitations of the system to improve it and make it more useful
in the future.

II. RELATED WORK

Ontenna [2] is an interface that focuses on vibration, which
lets the user recognize sounds by real-time vibration. The
system was created to recognize sound, so there is no system
to tell the user the type and direction of the sound. However,
the Ontenna system is tiny and lightweight. In the system, a
sound of 0–90 dB was converted into 256 steps of vibration
and light intensity. The sound feature is transmitted to the user
through some kinds of vibration.

Google Live Transcribe [3] is mainly for voice recognition,
but can also recognize environmental sounds. The only alert
sound supported by the system is the horn of the car. Moreover,
since the main feature of the system is voice recognition, there
is no ability to communicate with the user via a vibration or
through pop-up notifications.

Wavio SeeSound [4] can send sounds to the user via
vibration and pop-up notifications. However, the system works
indoors and does not support outdoor use.

Takeda et al. [5] proposed a system for classifying alarm
sounds using a multilayer perceptron neural network. However,
the alarm system only targets straightforward beep sounds in
oxygen concentrators.

Nicholas et al. [6] present the first mobile audio sensing
framework built from coupled deep neural networks that simul-
taneously perform everyday audio sensing tasks. However, the
target sounds are from diverse acoustic environments such as
bedrooms, vehicles, or cafes. The classification ratio is at most
about 90%, which is inadequate for safety alarm recognition.
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Meanwhile, Jain et al. [7] examine how Deaf and Hard-of-
Hearing (DHH) people think about sounds in the home, and
they explore potential concerns. Findlater et al. [8] conducted
an online survey with 201 DHH participants to investigate
preferences for mobile and wearable sound awareness systems.
The reviewed studies support the importance of alarm sound
classification systems.

III. DEVELOPMENT SYSTEM

In this system, the classification and transmission applica-
tion run on a smartphone without internet connection. Since
users of this system are DHH or people with disabling hearing
loss, a non-sound notification system is required. Therefore,
the developed system displays the names of alarm sounds on
the screen when such sounds occur.

The basic flow of the proposed system is as follows:

1) Collect environmental sounds with a smartphone.
2) Notify smartphone when an alarm sound is identified.

Deep learning is used as a classification method. To create
learning data, we collected sound data such as ambulance
sirens, horns, and bells, to be classified and transmitted.
We pre-collected these sounds in a real environment using
smartphones. The reason why we collected the data in the
real environment instead of using the pure tone of the warning
sound is to make full use of the generalization ability of deep
learning.

We performed data reduction and data screening on the
alarm sound data collected in various environments, and we
created a learning database.

Keras [9] was used for implementing deep learning algo-
rithms. Keras was a wrapper library for Tensorflow [10], and
now Keras is officially integrated into Tensorflow. Besides,
it supports not only Linux servers but also Android and
iOS, which makes possible application development more
straightforward.

Figure 2 shows a snapshot of the ongoing developed ap-
plication. Presently, the application works only on the iPhone,
which is programmed using the Swift programming language.
By using Apple’s neural network library, we can import the
learned weight data using Keras to iPhone.

IV. CLASSIFICATION ALGORITHM

The alarm classifying flow consists of the following three
steps.

1) Continuous collection of environmental sounds.
2) If volume data exceeding the threshold is detected,

record audio data for a certain period.
3) Specify the alarm class (horns, bicycle bells, ambu-

lance sirens, etc.) of the recorded audio data.

Besides, because the nature of the alarm sound tends to
be monotonous, we apply the Short-Time Fourier Transform
(STFT)

STFT (t, ω) =

∫ ∞
−∞

x(τ)h(τ − t)e−jωτdτ, (1)

where x(t) is sound data, and h(t) is a window function to
the sound data collected by the above threshold processing.

After STFT, the power spectrum of STFT is converted to
the log scale, which is used as an input to the DNN. Finally,
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Figure 2. Snapshot of develop smartphone application.

real-time classification is performed by applying an integrated
process to the one-time classification results that DNN has
repeatedly determined for all audio data.

ReLU (2) is used for the activation function, Softmax cross
entropy (3) is used for the error function, and Adam [11] is
used for the learning algorithm, where tk is the correct label
(one-hot expression), and yk indicates the network output.

f(u) = max(u, 0) (2)

E = −
∑
k

tk log yk (3)

The operation of the classification application is as follows:

1) Use a smartphone microphone and collect sound
every 1024 frames using 32-bit single-precision
floating-point numbers (-1.0 to 1.0).

2) When the absolute value of the buffered single-
precision floating-point buffer exceeds the threshold
value (0.3), identification processing starts.

3) Multiply the buffer by 231 and change the buffer
range to a 32-bit integer type, then execute STFT.

4) Input of logarithmic power spectrum to DNN.
5) Display the classification result on the screen.

In a real environment, the target sound would continue to
resonate so that the classification result would be displayed
multiple times for one occurrence of the target sound. There-
fore, considering the importance of desired alarm sounds,
the final classification result is determined by the following
algorithm (called integrated judgment process). As a result, the
classification ratio and reliability are expected to be improved.

1) Evaluate sounds continuously (more than once to less
than ten times).

2) If there is more than one classification result from a
specific sound other than noise,

a) Calculate the sum of outputs.
b) The largest of the noise exclusions is used as

the final classification result.
3) If all classification results are noise,

a) Regard the final classification result as noise.

Figure 1 shows the flow of the entire operation up to the
classification result determination.
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TABLE I. 5-FOLD CV FOR 5 TYPES OF ALARMS.

Number of layers Classification rate
3 0.9845
4 0.9867
5 0.9924

TABLE II. CLASSIFICATION RESULTS IN A NOISY ENVIRONMENT
(BEFORE APPLYING THE INTEGRATED JUDGMENT PROCESS).

TP FP FN TN Prec. Recall F-value Max vol[dB]
Horn 545 0 87 2232 1.00 0.86 0.92 98.1
Bicycle bell 502 0 113 2249 1.00 0.81 0.98 127.7
Ambulance 572 1 56 2336 0.99 0.91 0.95 90.0
Fire alarm 631 1 57 2176 0.99 0.91 0.95 93.2
Noise 298 262 2 2563 0.53 0.99 0.69 100.3

V. EXPERIMENTS

A. Basic performance of the classification system
In addition to the two types of manually collected sound

data (ambulance sirens and bicycle bells), we downloaded a
total of 18 horn sound data from the web page [12]. We
also manually recorded fire alarm sounds during evacuation
drills. Furthermore, we added a noise class to handle cases
where sounds other than the target sounds are generated. We
collected six types of noises: footsteps, car driving sounds,
voices, door opening/closing sounds, hitting desks, and rubbing
plastic bags.

Training and evaluation were performed on 3-layer NN,
4-layer DNN, and 5-layer DNN. We performed STFT with
1024 frame for the 44.1 kHz 32 bit sound. We carried out a
5-fold CV for 25 000 pieces of training and evaluation data
(5000 pieces × 5 classes) with a maximum of 1000 epochs
(input layer: 513, hidden layer: 128, output layer: 5).

A 5-fold CV is described as follows. First, we divide all
data into five groups. Next, data from one group are used for
the test and the data from the other four groups are used for
the learning. Finally, the learning process is repeated five times
by using five different test groups.

Table I shows the experimental results. The classification
results in the table are above 98% for all NN/DNNs. In the
following experiments, we used the five-layer DNN because it
gives the highest classification rate.

B. Performance in a noisy environment
Next, the experiment was performed in a noisy environment

of 50.5 to 100.3 dB. In this study, we assumed that the noise
originating from outdoors was mainly the noise of cars, and
repeatedly evaluated the noise from driving cars 100 times
(after applying the integrated judgment process). At that time,
we recorded the maximum volume of each target sound.

Table II shows the classification results before applying
the integrated judgment process, and Table III shows the
results after applying the integrated judgment process. After
applying the judgment process, it was possible to classify these
sounds with an average F-measure of more than 99% in a real
environment.

C. Performance for unlearned horn sounds
In this algorithm, we performed feature extraction and

identification using STFT. In particular, since the quality of
horn sounds differs depending on the type, the frequency

TABLE III. CLASSIFICATION RESULTS IN A NOISY ENVIRONMENT
(AFTER APPLYING THE INTEGRATED JUDGMENT PROCESS).

TP FP FN TN Prec. Recall F-value Max vol[dB]
Horn 100 0 0 400 1.00 1.00 1.00 98.1
Bicycle bell 100 0 0 400 1.00 1.00 1.00 127.7
Ambulance 100 0 1 400 1.00 0.99 0.99 90.0
Fire alarm 100 0 1 400 1.00 0.99 0.99 93.2
Noise 100 2 0 398 0.99 1.00 0.99 100.3

TABLE IV. UNLEARNED HORN CLASSIFICATION
(BEFORE APPLYING THE INTEGRATED JUDGMENT PROCESS).

TP FN Classification rate
Horn 1 62 16 0.79
Horn 2 43 11 0.80
Horn 3 42 8 0.84
Horn 4 55 23 0.71
Horn 5 67 8 0.89
Horn 6 36 29 0.55
Horn 7 50 33 0.60

characteristics also differ. Therefore, there is concern that
generalizability of the performance of new types of horn
sounds is perhaps low.

Therefore, we examined the classification in the case of a
new type of horn sound (20 times × 7 types) different from the
learning data in a noisy environment. The results are shown
in Tables IV and V.

As a result, by applying the integrated judgment process,
we were able to obtain a classification rate of over 95% for
unknown horn sounds.

D. Adding new type of data from the web
In addition to the five types of sound data collected so far

(car horn, ambulance siren, bicycle bell, fire alarm, noise),
we downloaded different car horns and ambulance sounds
from the web page [13]. We also downloaded different bicycle
bells from other web pages [14] (because the bicycle bells are
not included in the [13]). We collected 428 car horn sounds,
929 ambulance siren sounds, and 169 bicycle bell sounds as
new collections. Furthermore, the data was manually separated
into the noisy and relatively clear data. Table VI shows the
characteristics (types, numbers, and the range of sound time)
of all obtained relatively clear data.

Using the CV method (5-fold, 1000 epochs) with 77 183
training and evaluation data (21 180 car horns, 28 684 am-
bulance sirens, 9819 bicycle bells, 12 500 fire alarms, 5 000
noises), training and evaluation were performed (input layer:
513, hidden layer: 128, output layer: 5). The classification
results are shown in Table VII.

Table VII shows that the classification rates were above
94% for all NN/DNNs. However, the five-layer DNN has the
highest classification rate, about 97%.

VI. LIMITATIONS OF THE DEVELOPED SYSTEM

First, we discuss data collection. The data set downloaded
from the web has some problems: It includes 1) the noisy
data, 2) the unlabeled data, and 3) the mixed sound data for
one target (including no sound time). It is also challenging
to collect significant amounts of sound data manually. This
is because making a real alarm sound for acquiring such
data can confuse others even when it is not truly dangerous.
Crowdsourcing is a solution because crowd workers could
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TABLE V. UNLEARNED HORN CLASSIFICATION
(AFTER APPLYING THE INTEGRATED JUDGMENT PROCESS).

TP FN Classification rate
Horn 1 20 0 1.00
Horn 2 20 0 1.00
Horn 3 20 0 1.00
Horn 4 20 0 1.00
Horn 5 20 0 1.00
Horn 6 20 1 0.95
Horn 7 20 1 0.95

TABLE VI. ALL DATA FOR LEARNING AND EVALUATION

Types of alarm Number of each Time range[sec]
Conventional Horn 18 6-20
Data Bicycle bell 7 4 1-10

Ambulance 18 1-2
Additional Horn 151 0-4
Data Bicycle bell 120 1-2 0-4

Ambulance 103 0-76

record the alarm sound in daily life; other crowd workers
would only label the alarm sound when they have time.

Second, in terms of the recognition response timing, a fast
response time is vital because of the dangerous circumstances
surrounding the sounding of alarms. There is a method to
determine the recognition timing when the sound is approach-
ing from a distance based on inverse calculation using the
sound speed. However, it is difficult to distinguish the alarm
sound from other environmental sounds. This problem might
be solved by notifying users when the big alarm sounds occur,
which happens in a hazardous situation, e.g., when the car
sound is very close to the user. In this case, the way of
notification is crucial.

Finally, with DHH it is difficult for people to notice
the direction of the sound source. Even when the system
recognizes a type of alarm sound, determining the direction
of the source of that sound could be another problem. This
problem could be resolved by using a microphone array and
direction estimate algorithms. The mode of notifying the user
of the sound direction is also essential.

VII. CONCLUSION

In this paper, we have proposed and developed an alarm
sound classification system using DNNs based on smartphones.
Besides, we performed evaluation experiments to verify the
effectiveness of the system using the 5-fold CV, and the
classification rates were above 98% for all NN/DNNs. We also
proposed an integrated judgment process and made it possible
to classify the types of alarms with an average F-measure of
more than 99% in a real environment by using the integrated
process. By applying the integrated judgment process, we
were able to obtain a classification rate of over 95% for
unknown horn sounds. Furthermore, even after adding the
different sound data (428 car horn sounds, 929 ambulance siren
sounds, and 169 bicycle bell sounds), the classification rates
were above 94% for all NN/DNNs; the five-layer DNN has
the highest classification rate, about 97%. We also discussed
the limitations of the developed system and the expectations
of the improved system by overcoming these limitations.

TABLE VII. 5-FOLD CV USING ADDITIONAL DATA.

Number of layers classification rate
3 0.9367
4 0.9498
5 0.9714
6 0.9710
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