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Abstract—We have developed a Japanese fingerspelling recog-
nition system based on a sensor glove, using deep learning,
to achieve smooth communication between the deaf and hard-
of-hearing, and hearing people. In this study, we conducted
evaluation experiments using a convolutional neural network
to recognize 76 characters of Japanese fingerspelling. In the
developed system, we have adopted a sensor glove that is
light and cheap. Additionally, the target Japanese fingerspelling
alphabet includes 35 characters for dynamic fingerspelling, which
require both finger and wrist movement. The experimental results
demonstrated that the average recognition rate of the developed
system was approximately 70.0%. Based on these results, we have
discussed the peculiarity of Japanese fingerspelling and potential
improvements to sensor gloves and algorithms.

Keywords–Sign language; Japanese fingerspelling; Sensor
glove; Recognition; Convolutional neural network.

I. INTRODUCTION

In recent years, there has been an increased interest in
research on speech recognition and information technology
devices with voice input functions. Various applications, such
as KoeTra [1] and UDtalk [2], as well as cloud-speech-to-
text services [3], have been released to provide information
accessibility to the Deaf and Hard-of-Hearing (DHH) based
on speech recognition. As a result, the DHH can read text
corresponding to vocalizations.

However, it is difficult for hearing people to read sign
language. Some research on information accessibility systems
for sign language recognition has been reported [4]–[11].
However, compared to information accessibility systems based
on speech recognition, the development of a practical sign
language recognition system is still in progress.

As a primary communication method, sign language is used
in everyday conversations among the DHH. Sign language
recognition has different characteristics than speech recogni-
tion. It is difficult for hearing people to learn and read sign
languages. Therefore, a system for converting sign language
into voice information or text information (i.e., a sign language
recognition system) is necessary (see Figure 1).

A sign language recognition system must recognize the
position, direction, and shape of the hands, as well as mo-
tion. Methods for recognizing sign language can be roughly
classified into recognition using cameras [4] [5] [9], which
are non-contact-type sensors, and recognition using sensor
gloves, which are contact-type sensors [6] [7] [10] [11].
Luzhnica et al. [6] reported a recognition accuracy of 98.5%
for sign language using a sensor glove; however, they only
considered approximately 30 recognition candidate classes,
which is insufficient for practical use.
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Figure 1. Information accessibility system.

TABLE I. NUMBERS OF FINGERSPELLING CHARACTERS IN DIFFERENT
COUNTRIES.

Language Dynamic Static Sum
American 2 24 26

French 3 23 26
Japanese 35 41 76

In recent years, technologies based on deep learning have
attracted significant attention. Deep learning, which increases
the number of hidden layers in a neural network, is a type
of machine learning that can contribute to improving recogni-
tion rates. For example, to improve hand gesture recognition
accuracy based on image recognition, various techniques for
applying deep learning have been reported [4].

In this study, as a first step toward sign language recogni-
tion to facilitate communication with the DHH, we attempted
to recognize the Japanese FingerSpelling (JFS) recognition
system. JFS is composed of representations of Japanese char-
acters, using only the fingers.

A camera, which is a non-contact-type sensor, is difficult
to use for sign language recognition in everyday life because
hands must be captured by the camera. Additionally, cameras
are easily affected by environmental factors. In contrast, hand
shape recognition using contact sensors, such as sensor gloves,
is easy to perform because sensors can be attached directly to
the hands.

We were motivated by the goal of improving recogni-
tion accuracy by adopting conductive fiber weaving technol-
ogy [12], which can reduce the weight and cost of sensor
gloves and simplify hand movements (see Figure 2).

In our experiments, we evaluated our developed system by
classifying 76 JFS characters, including dynamic (non-static)
fingerspelling characters, which are a unique feature of JFS
compared to other fingerspelling systems, as shown in Table I.
Evaluation experiments were conducted using a Convolutional
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Figure 2. Recognition diagram.

Neural Network (CNN) as a learning model (this type of model
performed best in previous studies) to perform data reduction
by calculating moving averages of the data acquired from gyro
sensors. In these evaluation experiments, all 76 characters of
JFS were included as recognition targets, as well as dullness,
semi-voiced sounds, diphthongs, and long vowels. Evaluation
experiments were conducted using all collected data under a
variety of experimental conditions.

In Section II, we present the related works. In Section III,
our developed system is detailed. In Section IV, the experimen-
tal method is described. In Section V, experimental results are
presented, and their implications and limitations are discussed.
In Section VI, the conclusions are provided.

II. RELATED WORK

In past research on fingerspelling recognition, two main
types of sensors have been proposed to recognize a series
of operations in fingerspelling: contact-type sensor gloves and
non-contact-type cameras for image recognition.

A. Image recognition
Several methods for recognizing hand shapes based on

processing images of fingerspelling captured by cameras have
been proposed. Mukai et al. [8] reported that fingerspelling
recognition targeting 41 characters without movement in
Japanese sign language resulted in an average recognition
accuracy of 86%. They used a classification tree and machine
learning based on a support vector machine to classify indi-
vidual images. Hosoe et al. [9] employed deep learning to
perform recognition and achieved a recognition rate of 93%,
but only for static fingerspelling. Jalal et al. [5] reported a
recognition rate for American Sign Language (ASL) images
of 99% based on a deep learning algorithm, but only for
static fingerspelling (i.e., excluding “J” and “Z”). Therefore,
recognition accuracy cannot be considered sufficient for the
practical recognition of JFS. Additionally, very few recognition
results for dynamic fingerspelling (i.e., the fingers move when
expressing a character) have been reported.

B. Sensor glove recognition
Several methods for recognizing hand shapes based on

measurement data acquired by contact-type sensor gloves have
been proposed. This method can be used to measure finger
bending, hand position, and directional data. The measurement
data are then sent to a personal computer and a classification
algorithm is used to recognize hand shapes. Cabrera et al. [10]
paired the Data Glove 5 Ultra [13] sensor glove with an
acceleration sensor and acquired information regarding the
degree of flexion of each finger, as well as wrist direction.
They conducted test classification using 24 static fingerspelling
characters in ASL, excluding “J” and “Z.” Their neural network

Figure 3. Prototype sensor glove.

Figure 4. Software structure.

was trained using 5 300 patterns and achieved a recognition
rate of 94.07% for 1 200 test patterns. Mummadi et al. [11]
proposed a sensor glove prototype with multiple embedded
small inertial sensors. They collected French sign language
fingerspelling data from 57 people and achieved an average
recognition rate of 92% with an F value of 91%. Among var-
ious methods for performing JFS recognition, the conductive
fiber braid method [12] uses gloves woven with conductive
fibers instead of bending sensors. Additionally, such gloves can
recognize hand shapes and hand movements by incorporating
directional gyro sensor. However, the recognition rate for JFS
(“a”, “i”, “u”, “e”, “o”) based on Euclidean distance has been
reported to be only 60%.

III. SYSTEM DEVELOPMENT

In this study, to achieve smooth communication in real-
world environments, we designed a system for communicating
information using lightweight and comfortable sensor gloves
to recognize fingerspelling with high accuracy in real time.
The developed system consists of a sensor value measurement
unit and recognition unit. Figure 3 presents the JFS recog-
nition system developed in this study. Figure 4 presents the
corresponding software architecture.

A. Sensor glove
To recognize fingerspelling efficiently based on hand, fin-

ger, and wrist data, it is necessary to detect motion magnitudes
and directions using a sensor glove. In this study, we adopted
a hand shape recognition technique using conductive fiber
sensor gloves, which are more comfortable, less expensive,
and lighter than traditional sensor gloves. Motion direction is
detected using a gyro sensor. Motion magnitudes are detected
based on resistance changes in the conductive fibers in the
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Figure 5. Architecture of the convolutional neural network.

gloves. The motion detection board is an Arduino board and
the measurement values from the sensor glove are transferred
from the detection board to a PC, where they are saved in
comma-separated-value format. Machine learning and motion
recognition are performed using Python implementations on
a PC. Sensor readings for JFS motion from the data gloves
have different scales depending on the wearer. Therefore, the
data are subjected to linear normalization in consideration for
differences in movement. Additionally, because the activation
function and likelihood function of the proposed system are
based on probabilities, as a pretreatment for network inputs,
we perform scale conversion to a range of zero to one.

Motion magnitudes are detected based on resistance
changes in the conductive fibers during flexion and extension
of the fingers. We use partial pressure values to calculate input
voltages based on (1).

Vin =
R1

R1 +R2
∗ Vout (1)

In this equation, Vin is the estimated motion magnitude, Vout

is the reference voltage, R1 is the variable resistance of the
conductive fibers, R2 is a fixed resistance. When a finger is
stretched, the resistance value of the conductive fiber increases.
When a finger is bowed, the resistance value of the fiber
decreases.

B. Recognition algorithm
In this study, we adopted a CNN. This type of network has

achieved high recognition rates in previous studies. The CNN
and k-fold cross validation were implemented using open-
source libraries called TensorFlow [14] and scikit-learn [15].
We adopted the RMSprop training algorithm [16]. The acti-
vation function is a rectified linear unit, as shown in (2). The
error function is the cross-entropy function shown in (3), where
tk is the correct label (one-hot expression) and yk expresses
the network output.

PC

Participant Sensor Glove
USB

Video

Figure 6. Data acquisition experiment.

Figure 7. Twenty-fold cross validation by shuffling data.

f(u) = max(u, 0) (2)

E = −
∑
k

tk log yk (3)

CNNs are often used for image recognition and can gener-
ally achieve high recognition rates. Convolutional layers and
pooling layers are the main features of CNNs. These layers
are updated as their feature values are extracted during the
training process. We transform the measurement data acquired
by the sensor glove into two dimensions based on training and
evaluation trials. The motion magnitudes, accelerations, and
gyro readings are branched at the time of input. Through the
CNN (typical layer size of 32 to 64 nodes), these data are
coupled using “Flatten” and “Dense” operations (128 nodes).
Finally, by using an additional Dense operation (76 nodes)
corresponding to the number of JFS characters, outputs are
generated. Figure 5 presents a system overview of the CNN.
In the CNN, inputs are initially separated based on the physical
meanings of each signal. The separated signals are eventually
combined to recognize JFS characters.

IV. EXPERIMENTAL METHOD

A. Data collection
To target 76 JFS characters, we recruited 20 participants

(from 20 to 27 years old). In our experiments, each participant
wore a sensor glove and performed the motions of finger-
spelling characters in sequence for 1 s at a time according
to directions provided by a moderator. As shown in Figure 6,
video was also recorded to capture the motions of the wrists
and fingers of the participants. For each 1 s motion, at a
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Figure 8. Confusion matrix.

rate of 200 samples per second, the sensor gloves captured
five dimensions of motion magnitude data, three dimensions
of acceleration data, and three dimensions of gyro data for a
total of 11 dimensions. Data labeling was conducted manually
at the same time as data collection. This series of motions
was repeated five times. Therefore, with five repetitions per
participant, 76 JFS characters, and 200 samples per second for
1 s, a total of 76 000 motion measurement data were collected
for each participant. We were able to collect a total of 1 520 000
data samples for all 20 participants. These experiments were
conducted with approval from the Tsukuba University of
Technology Research Ethics Committee (Approval number:
H30-17).

To overcome several of the issues in previous works, we
performed extensive data cleaning and feature selection oper-
ations. To prevent gyro drift, we used Madgwick filters [17],
which calculate angles from the values of acceleration and
gyro sensors in real time. This allowed us to calculate three
angle dimensions from the acceleration and gyro data. To
clarify hand directions, the angles were converted into sine
and cosine data. The resulting six dimensions were combined
with the motion magnitudes (five dimensions) and motion
directions (six dimensions) mentioned above to generate a
total of 17 dimensions. Next, we conducted a review of the
sampling frequency. Although 200 samples per second can be
acquired without leakage, noise and training time are included

37Copyright (c) IARIA, 2020.     ISBN:  978-1-61208-761-0

ACHI 2020 : The Thirteenth International Conference on Advances in Computer-Human Interactions



TABLE II. TWENTY-FOLD CROSS VALIDATION RESULTS.

k Learning data (%) Validation data (%)
1 93.6 65.0
2 94.1 75.5
3 94.8 68.7
4 93.1 69.7
5 94.2 66.3
6 93.9 73.2
7 92.9 67.9
8 93.5 71.1
9 93.0 67.4

10 94.6 70.5
11 93.4 71.6
12 93.0 66.1
13 94.6 68.9
14 94.3 70.3
15 93.0 69.7
16 93.4 68.4
17 92.9 71.3
18 93.1 71.1
19 94.5 74.2
20 94.5 72.4

Average 93.7 70.0

TABLE III. MISRECOGNITION PATTERNS.

Teacher a sa ku yo ke te ki chi chi
Prediction sa a yo ku te ke chi ki tsu
Rate (%) 21.0 19.0 14.0 20.0 12.0 28.0 12.0 12.0 34.0
Teacher tsu ni ha ne ma hi re wo xya
Prediction chi ha ni ma ne re hi xya wo
Rate (%) 32.0 20.0 22.0 13.0 11.0 19.0 23.0 11.0 13.0
Teacher gi di ge de di du zo bu
Prediction di gi de ge du di bu zo
Rate (%) 12.0 13.0 29.0 20.0 39.0 35.0 14.0 15.0

in these samples. Therefore, the number of data was reduced
by calculating a moving average to achieve a final value of 4
samples/s.

B. Evaluation experiments
The collected data were evaluated using a CNN (Figure 5)

and k-fold cross validation (k = 20). In our evaluation exper-
iments, data shuffling was performed using Google Colabora-
tory [18]. The number of folds for k-fold cross validation was
set to 20 according to the number of participants. Additionally,
confusion matrices and accuracy rates were generated using
20-fold cross validation of all data shuffling evaluations (see
Figure 7).

V. RESULTS AND DISCUSSION

The experimental results of 20-fold cross-validation are
listed in Table II. This table reveals an average recognition
rate of approximately 70.0%.

As shown in Figure 8 and Table III, various misrecognition
patterns occurred. We believe these patterns occurred because
the conductive fibers are firmly attached to the sensor gloves.
We confirmed that the hand directions for “ha” and “ni, ” which
are JFS characters, varied among participants. Additionally,
“ne” and “ma” appear to be confused based on both hand
bending and finger bending.

Figure 9 presents sample input data leading to misrecog-
nition for the JFS characters “te” and “ke”. By analyzing the

[samples/s]

[samples/s]

[samples/s]

[samples/s]

Figure 9. Example input data (only five dimensions):
(a) predict “te” as “te” correctly, (b) predict “te” as “ke” incorrectly,
(c) predict “ke” as “te” incorrectly, (d) predict “ke” as “ke” correctly.

data, it was confirmed that close contact between the fingers
caused these errors. Notably, the thumb sometimes contacted
the forefinger. Additionally, depending on the participant, the
hand may be widely opened or the fingers may be in close
contact.

Figure 10 presents examples of acquiring data from two
participants using the sensor glove for dynamic fingerspelling.
This figure clearly highlights the individual differences in fin-
gerspelling between participants, particularly in the strength of
finger bending (including noisy signals), timing of hand move
movement, and shape of the fingers. Therefore, it is necessary
to improve recognition algorithms and data glove devices (e.g.,
detecting hand movement periods and constructing more robust
glove devices).

Based on the aforedescribed results, we determined that
recognition errors largely occurred based on variance in the
flexion and direction of the fingers. We also confirmed that
finger expressions vary based on individual differences, which
can be attributed to different home and social environments,
making recognition more difficult.

However, JFS is widely used for displaying proper names
and technical terms. Therefore, the recognition of JFS is
essential for realizing a Japanese sign language recognition
system.

VI. CONCLUSIONS AND FUTURE WORK

In this study, to realize smooth communication between
the DHH and hearing people, we adopted a lightweight sensor
glove, developed an effective convolutional neural network
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(a) one person

(b) another person

Figure 10. Example of acquiring data.

model, implemented a JFS recognition system, and evaluated
the performance of the developed system. JFS data collection
experiments with 20 participants and 76 target JFS characters
were repeated five times. Data were acquired at a rate of
200 samples per second for 11 input dimensions. Angle data
were then transformed by applying a Madgwick filter to gyro
readings and converted into the sine and cosine space, which
increased the total number of input dimensions to 17. However,
the data acquired at 200 samples per second contained various
issues, including noisy signals. To solve this problem, we
calculated moving averages to reduce the frequency to 4
samples/s.

Finally, a 20-fold cross validation evaluation experiment
was conducted. The average recognition rate was approxi-
mately 70.0% and the maximum recognition rate was approx-
imately 75.5%. It was determined that the firm attachment of
conductive fibers was a significant cause of misrecognition.

In future work, we will construct improved sensor gloves
and investigate methods to handle various problems, such as
individual differences and hand movement detection. To this
end, we are planning additional experiments for data collec-
tion under more controlled conditions. Additionally, we will
conduct continuous fingerspelling recognition experiments.
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