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Abstract—Chest radiographs are the initial diagnostic modality
for lung or chest-related conditions. It is believed that radi-
ologist’s availability is a bottleneck impacting patient’s safety
because of long waiting times. With the arrival of machine
learning and especially deep learning, the race for finding
Artificial Intelligence (AI) based approaches that allow for the
highest accuracy in detecting abnormalities on chest radiographs
is at its peak. Classification of radiographs as normal or abnormal
is based on the training and expertise of the reporting radiologist.
The increase in the number of chest radiographs over a period
of time and the lack of sufficient radiologists in the UK and
worldwide have had an impact on the number of chest radio-
graphs assessed and reported in a given time frame. Substantial
work is dedicated to machine learning for classifying normal and
abnormal radiographs based on a single pathology. The success
of deep learning techniques in binary radiograph classification
urges the medical imaging community to apply it to multi-
label radiographs. Deep learning techniques often require huge
datasets to train its underlying model. Recently, the availability
of large multi-label datasets has ignited new efforts to overcome
this challenging task. This work presents Convolutional Neural
Networks (CNNs) based models trained on publically available
CheXpert multi-label data. Based on common pathologies seen
on chest radiographs and their clinical significance, we have
chosen pathologies such as Pulmonary oedema, Cardiomegaly,
Atelectasis, Consolidation and Pleural effusion. We trained our
models using different projections such as Anteroposterior (AP),
Posteroanterior (PA), and lateral and compared the performance
of our models for each projection. Our results demonstrate that
the model for the AP projection outperforms the remaining
models with an average AUC of 0.85. Furthermore, we use the
samples with uncertain labels in CheXpert dataset and improve
the model performance by removing the uncertainty using Gaus-
sian Mixture Models (GMM). The results show improvement in
all three views with AUCs ranging from 0.91 for AP, 0.75 for PA
and 0.85 on the lateral view.

Keywords— Chest radiograph; Deep learning; Multi-label clas-
sification; Uncertain labels

I. INTRODUCTION

Respiratory diseases are one of the leading causes of death
in the United Kingdom. According to a survey by Conor Stew-
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art [1]], prior to COVID-19, the mortality rate from respiratory
diseases in the United Kingdom in 2020 was 130 per 100,000
male population and 89 per 100,000 female population. Chest
radiographs are the most utilised diagnostic modality for
lung or chest-related conditions. However, it requires an
experienced radiologist to accurately analyse radiographs to
detect chest-related conditions, such as Pulmonary oedema,
Cardiomegaly, Atelectasis, Lung cancer, and Consolidation,
besides other less common pathologies. A report in 2020 by
the Royal College of radiologists [2] highlights the national
shortage of radiologists resulting in reporting backlogs which
can adversely impact patient care. A further predicted shortfall
in radiologist numbers by 44% in 2025 will have a greater
impact on reporting backlogs. Expenditure on outsourcing
imaging examinations for reporting has increased by 58% in
the last few years. In addition to the scarcity of radiologists,
there is a problem with diagnostic errors in radiology reports.
According to [3]], worldwide, annually, at least 40 million out
of 1 billion radiology reports contain errors. Chest radiographs
are the most used diagnostic procedure for respiratory and
cardiovascular diseases - errors in diagnosis and delays in
reporting contribute to adverse outcomes for patients. In order
to decrease the workload for existing and future radiolo-
gists, scientists have been working on automatic radiographic
interpretation systems. Recently, Deep Learning especially
Convolutional Neural Networks (CNNs) has boosted research
in computer vision, especially in medical imaging and has
demonstrated promising results in the detection of pathologies
on chest radiographs. However, the interpretation of chest
radiographs can be challenging. In order to provide good
results, deep learning requires a large number of data samples
for training. The presence of multiple conditions in one
radiograph makes it difficult for the model to generalise as
there can be an overlap in the imaging findings of two different
chest pathologies, e.g., pulmonary oedema and infectious
pathologies. Moreover, the presence of uncertain labels in a
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dataset further increases the difficulty. Samples with uncertain
labels can cause difficulties in training the machine learning
algorithm. Besides demonstrating the potential to improve
diagnostic accuracy, deep learning models can also improve
the reporting workflow by prioritising abnormal radiographs
over normal ones. Training the model on different radiographic
projections has the potential to improve the diagnostic accu-
racy of the model, particularly when dealing with a suboptimal
radiograph in a critically ill patient.

This study trains a state-of-the-art CNN-based deep neural
network DenseNet121 on a large chest radiograph dataset,
CheXpert [3][6]. Figure 1 shows a few radiographs from the
CheXpert dataset. In addition, we trained separate models
for different views Anteroposterior (AP), Posteroanterior (PA),
and lateral and evaluated their performance. Furthermore, the
study addresses uncertainty present in the data by relabelling
uncertain samples using a Gaussian Mixture Model (GMM)
[7] and including them in the training data. The performance
is then compared before and after reducing the uncertainty.
The following Section offers a review of the state of the

(b) Cardiomegaly

(a) Supporting Devices

Figure 1: Images from CheXpert dataset. Each image has 14 labels corre-
sponding to each condition. Mentioned conditions are positive labels for each
of the four images.

art using deep learning for interpreting chest radiographs,
identifying multiple conditions in a single radiograph, and
addressing uncertain labels in data. Section III presents our
approach, which involves utilizing various data and model-
based methods, correcting uncertain labels, and addressing
each radiographic view individually. In Section IV, we conduct
comparative experiments on the CheXpert dataset and provide
the results. Section V examines the main insights gained from
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the results. Lastly, in Section VI, we present the conclusion
of the paper.

II. RELATED WORK

The availability of large labelled datasets [S][6][8] of chest
radiographs has led many researchers to use deep learning
for chest radiograph interpretation. Most recent work in this
area has focused on CNN-based models and applied various
techniques such as transfer learning, feature extraction, and
region of interest analysis to improve the detection of abnor-
malities [OH12]]. In one study, a 121-layered neural network
trained on the CheXnet frontal view dataset, outperformed
average radiologists in detecting pneumonia [9]. Additionally,
data augmentation has been used to tackle the issue of insuf-
ficient data in new challenges such as COVID-19, as seen
in where a CNN model was trained to classify chest
radiographs of COVID-19 patients. Many studies have focused
on specific conditions such as pneumonia, COVID-19 and
oedema [9][13][14]. In addition to the above, the power of
deep learning allows for the detection of multiple conditions
in a single radiograph [I3][16]. Multiple-label detection on
chest radiographs is much more challenging as compared to
a single label. The overlapping and vanishing of features can
hinder the model performance in a multi-label setting [17].
The hierarchical dependencies present between conditions are
exploited in [135] by using a conditional training approach.
This is achieved by training a deep neural network twice, first
on data with only positive parent-level conditions, followed
by training on the entire dataset. As CNN is very good at
extracting prominent features, suppresses the irrelevant
features by assigning them smaller weights and enhancing
the important features with higher weights to detect multiple
conditions in chest radiographs. Different abnormal conditions
appear on radiographs in different anatomical areas, such as
a Pleural effusion, which can be identified by looking at the
lower left and right corners of the lungs. Localising the correct
anatomical region in [19] enables the model to learn the better
relationship between different structures in the radiograph.

This paper examines the use of three different radiograph
views (AP, PA, lateral) separately. In the first phase, we train
a DenseNet121 model for each view, using techniques such
as transfer learning, template matching, and augmentation to
improve performance. We have repeated these experiments ten
times to ensure generalisable results. In the second phase, we
use a semi-supervised approach with GMM to label uncertain
samples, which is an improvement over previous methods
[3][13] that assigned positive labels to all uncertain samples
or a random float between 0.55 to 0.85. We then include these
relabelled uncertain samples in the training data and repeat all
experiments. Our approach of individually analysing each view
shows promising results and effectively reduces uncertainty in
the data.

III. METHODOLOGY

In this section, we outline the method utilised to classify
radiographs with multiple labels. We begin by introducing
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DenseNet121 and CNN briefly along with the applied model
training procedure in subsection A. Following that, we delve
into explaining multi-scale template matching for data quality
improvement and transfer learning techniques we employed
to enhance the model’s performance in subsection B. Further-
more, in subsection C, we expound upon the data augmenta-
tion methods we adopted to enhance data diversity and control
model overfitting. Finally, we describe how we utilize GMM
to eliminate uncertainty in the data in subsection D.

A. DenseNetlI2] and Model Training

In this paper, we chose DenseNetl21 architecture as our
base CNN model because of its popularity in computer vision,
especially in medical imaging [[L5][20][21]. DenseNet121 uti-
lizes convolutional neural networks (CNN) and comprises 121
layers. The layers in the network are connected in such a way
that each layer receives inputs from all the previous layers;
this helps the model retain important features recognized in
the earlier layers [4]. CNN is a deep learning algorithm
that performs a convolution operation on images to extract
features. We also used pooling and dropout layers to prevent
the model from overfitting. Finally, we trained the model using
a batch size of 32, Adam optimizer, and used the Area under
the Receiver Operating Characteristic Curve (AUC) as the
evaluation metric, as in [[15].

B. Multi-scale Template Matching and Transfer Learning

In order to improve the data quality, we employed a multi-
scale template matching technique to eliminate unnecessary
regions from both the training and testing images [15][22]]. To
achieve this, we picked a high-quality template image from
each view, trimmed and scaled it to 224x224 pixels, and
removed unnecessary areas such as the shoulders, neck, and
pelvic sections. We then matched the template image at a scale
range (empirically chosen) of (0.7 to 1.3) with the entire data
and extracted the best-matched 224 x224 section of the image,
thus enabling the model to concentrate on the thoracic area and
avoiding any confusion from other regions.

Furthermore, to help the model train fast and accurately we
applied transfer learning. This is a powerful method to improve
the accuracy of deep learning models. The idea is to leverage
the knowledge gained by training on a generic data set, such
as ImageNet [23]], to gain knowledge of general image features
(vertical and horizontal edges). The last layers of the model are
then replaced and fine-tuned the model with data specific to
the task at hand, such as CheXpert [S]] in this instance. As the
data in ImageNet is very different from the one in CheXpert,
so instead of fine-tuning just the last layers of the model we
fine-tuned all layers[24]. This makes all layers specialised to
radiographs while getting help from general image features.
Through experimentation, we have compared the performance
of models with and without transfer learning. The detail is in
section IV of this paper.

C. Data Augmentation

In the medical image classification domain, insufficient data
has always been a problem. Chest radiograph data is no
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different. Although we have very large chest radiograph data
sets available [5][6][8], these are still not enough for a deep-
learning model to generalise ideally. This is because the same
pathology can manifest differently on a radiograph depending
on the patient’s age, gender, lifestyle and stage of the disease,
besides the radiographic projection and other technical factors.
Multiple pathologies on a single radiograph make feature
extraction more difficult. That is the reason, deep learning
algorithms require a very large number of samples with the
same pathology to capture sufficient important features. With
data augmentation, we artificially enhance the size of the
data set and add diversity to it. Various techniques can be
used to modify the image, such as resizing and zooming.
In order to improve feature extraction, we employed data
augmentation on our data set which includes setting brightness
randomly between 30% and 100%, randomly rotating the
image by 74 degrees, applying a random shear range of 0.2+,
zooming the image by 0.2, adding random noise to the images,
and finally flipping the images horizontally [25]. These six
augmentation techniques were chosen empirically. We apply
all six data augmentation techniques on all training images
and send them to the model along with the original image for
training. The results of the experiment reveal that applying
image augmentation significantly improves performance.

D. Relabelling Uncertain labels with GMM

In the CheXpert dataset, almost 30% of the samples have
uncertain labels, which means the condition may or may not
be present in the radiograph. As this is a multi-label problem,
the presence of one condition can impact the appearance of
another coexisting condition on the radiograph. Instead of
discarding the 30% of the data with uncertain samples in
CheXpert, or assigning all positive/negative labels, we re-
moved the uncertainty and relabelled the samples and include
them in the training process. To do that, we chose GMM
because of its ability to tackle a mixture of multiple data
distributions. It is a probabilistic model that creates multiple
clusters using an Expectation Maximization (EM) algorithm
and updates the estimator parameters during the process [7].
We trained a GMM model for each of the five conditions
separately using only certain samples. GMM operates by
assigning each sample to the cluster with the distribution that
is closest in terms of parameters. It created 100 clusters for
Consolidation, 500 for Pleural Effusion, 200 for Cardiomegaly,
300 for Atelectasis and 350 for Edema. This results in many
clusters, with multiple clusters of each class. Once the esti-
mator was fully converged, we used it to get predictions for
the uncertain samples. We conducted experiments excluding
uncertain samples and then including them after relabelling
in the model training. The results indicate that this approach
leads to some performance improvement. Further detail is in
section IV of this paper.

IV. EXPERIMENTATION AND RESULTS

The dataset has 223,414 chest radiographs of 65,240 pa-
tients collected between October 2002 and July 2017. Each
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image has 14 labels corresponding to a medical condition.
In this study, we chose five clinically important conditions
Pulmonary oedema, Consolidation, Cardiomegaly, Atelectasis,
and Pleural Effusion [S]]. To make the performance comparison
between different radiograph projections, we created a separate
model for each projection. Also, to ensure fair performance
comparison, we trained the models on an equal number
of samples (29,421 images per view). We did not use the
CheXpert validation set during training and instead used it to
test the models after training. The experiments were conducted
in two phases. In the first phase, we excluded samples with
uncertainty from the model training process, further explained
in subsection A. In the second phase of experiments, we
incorporated 22,219 relabelled uncertain samples for each
view in the training process. Through this method, we were
able to observe the impact of eliminating data uncertainty on
the performance of the models.

A. Experiments Excluding Uncertain Samples

In this paper, we used DenseNetl21 as the main net-
work and trained five different models for each radiograph
view. These models include DenseNet121, DenseNet121 with
multi-scale template-matched (TM) data, DenseNet121 with
transfer learning (TL), DenseNet121 with data augmentation
(AUG), and a combination of template matching, transfer
learning, and augmentation. The AUC is used as the eval-
uation metric in all of the experiments done in this paper.
Table I shows the results on the Anteroposterior view. We

TABLE I: AUC SCORES FOR VARIOUS DEEP LEARNING METHODS
WITH DENSENET121 ON AP, WITHOUT UNCERTAIN SAMPLES. THE
VALUES IN BOLD SHOW THE BEST RESULTS OF EACH MODEL.

TABLE II: RESULTS OF EXPERIMENTS USING OUR BEST-
PERFORMING MODEL ON AP, PA AND LATERAL VIEWS WITHOUT
UNCERTAIN SAMPLES.

Exp Anteroposterior(AP) Posteroanterior(PA) Lateral
1 0.84 0.69 0.79
2 0.85 0.73 0.9
3 0.82 0.74 0.84
4 0.83 0.74 0.78
5 0.83 0.74 0.87
6 0.83 0.73 0.82
7 0.88 0.73 0.84
8 0.85 0.69 0.86
9 0.86 0.7 0.82

10 0.88 0.72 0.81

Avg 0.85 0.72 0.83

Std 0.02 0.02 0.04

"DN121_TM_TL_AUG?, is then compared across the three
views. Table Il shows the results from this comparison.
ANOVA results indicate statistically significant differences
between the three views where [F(2,27) = 64.677,p <
0.001]. Summary statistics indicate that AP and Lateral views
performed better than PA. AP performed more consistently
with a standard deviation of 0.02 as compared to 0.04 for
Lateral.

B. Experiments Including Uncertain Samples

In the second phase of experiments, we included the rela-
belled uncertain samples to the training data of the correspond-
ing data set. We reran the whole series of experiments as in the
first phase. Table III shows the results of the experiments for

TABLE 1III: RESULTS OF EXPERIMENTS USING OUR BEST-
PERFORMING MODEL ON AP, PA AND LATERAL VIEWS WITH
UNCERTAIN SAMPLES.

repeat each experiment ten times with different sample sets
randomly chosen from CheXpert. We can see how differ-
ent techniques applied with DenseNetl21 performed bet-
ter, especially transfer learning and data augmentation. The
best-performing model is "DN121_TM_TL_AUG” with
statistical significance observed using Analysis of Variance
(ANOVA) where [F'(4,45) = 5.504,p = 0.001]. When
repeating the same experiment for the other two views, PA and
Lateral, a similar statistical significance is observed in favour
of this combined model. The performance of this model,
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Anteroposterior Exp Anteroposterior(AP) Posteroanterior(PA) Lateral
Exp |DN121| DN121_TM | DN121_TL | DN121_AUG | DN121_TM_TL_AUG 1 087 072 078
1 0.85 0.79 0.76 0.87 0.84 2 0.65 0.73 0.85
2 0.79 0.74 0.81 0.76 0.85 3 0.87 073 0.84
3 0.76 0.75 0.86 0.79 0.82 4 0.89 0.75 0.82
a | o7s 0.81 0.8 0.8 0.83 5 0.91 0.73 0.77
5 | 076 0.81 0.84 0.84 0.83 6 09 0.75 082
7 0.85 0.72 0.83
6 0.76 0.72 0.9 0.86 0.83 8 Py 072 ™
7 0.8 0.79 0.67 0.8 0.88 9 089 073 Py
8 0.82 0.63 0.8 0.84 0.85 10 0.88 073 0.83
9 0.81 0.79 0.82 0.82 0.86 Avg 0.86 0.73 0.82
10 0.74 0.78 0.81 0.8 0.88 Std 0.08 0.01 0.03
Avg | 0.79 0.76 0.81 0.82 0.85
Std |M0%03 005 0:06 003 002 the best model of each view. ANOVA results indicate statistical

significance for the difference between the three views where
[F(2,27) = 19.823,p < 0.001]. Interestingly, on average AP
is still ahead but if we look at the minimum and maximum
AUC, it is 0.65 and 0.91, respectively, also represented by the
larger standard deviation for AP.

Figure 2 shows a better view of gradual improvement in
the performance of AP models. The blue boxes indicate the
performance of models before including uncertain samples and
the orange boxes indicate the performance of models after in-
cluding uncertain samples which were relabelled using GMM.
Performing a Univariate Analysis of Variance for AP identified
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statistical significance at model level (p < 0.001) and also
pre-post level (p = 0.024), but there was no significance for
interaction effects for model and pre-post indicating that we
can interpret and rely on significant differences observed at
model and pre-post levels.

Overall, this indicates that our GMM approach to reduce
uncertain labels contributes to betterment of the classification
task.

Anteroposterior

W Wwithout Uncertain

ﬁé

e

AuC
o
®

DN121 DN121_TM DN121_TL DN121_AUG DN121_TM_TL_AUG

Deep learning Techniques

Figure 2: Performance comparison of AP models before and after including
uncertain samples.

V. DISCUSSION

By training a state-of-the-art deep learning algorithm on
different views of chest radiographs, we identified that AP and
Lateral views are comparably better than PA on DenseNet121
and its derivations using some of the state-of-the-art CNN
backbone architectures. The process allowed us to identify a
model with best performance for the AP and Lateral views.
This is an interesting fact, keeping in view that PA radiographs
are more commonly performed in the outpatient setting, while
AP radiographs are performed in patients who are ill or
unstable and therefore unable to cooperate for a PA view. Iden-
tifying a condition by a view-specialised model can be more
reliable than a general model trained on all types of views.
As the frontal and lateral views of the chest look different,
important features of a frontal image can manifest differently
on a lateral view resulting in uncertainty for interpretation both
by the radiologist and the machine learning algorithm.

Machine learning techniques such as GMM can help resolve
uncertain labels which can be utilised in the training process as
shown in this work. Although the improvement after removing
the uncertainty is not significant in terms of AUC increases,
this approach shows the potential for further exploration and
optimisation. This work has some limitations, for example the
data set used contains radiographs from only one hospital.
CNN is a data-hungry algorithm, more images are required for
each projection to show significant improvements. A further
point for investigation is to assess the model performance
across different data sets, ideally obtained from different
geographical areas.

In the presented work, we applied multiple techniques to
improve the data quality and the model’s ability. For transfer
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learning, we utilised a DenseNet121 model pre-trained on Ima-
geNet data. Although the ImageNet dataset differs significantly
from CheXpert, it does provide some assistance to the model,
but this assistance does not result in any significant increase
in AUC. A point for future investigation is to either fine-
tuning the model with huge radiograph data or to pre-train
the model on a different chest radiograph data and fine-tuning
it on CheXpert, this will help the model to learn some basic ra-
diograph features in the pre-training stage. Data augmentation
has resulted in significantly improving the model performance.
We believe that carefully engineered augmentation techniques
can enhance the detection accuracy of radiographs. Counter-
intuitively, the multiscale template matching approach did not
provide significant benefits and sometimes even resulted in a
decrease in performance. Further investigation is necessary to
identify the cause of this observation.

The results of our experiments show the potential to improve
diagnostic accuracy for chest radiographs and also classify
radiographs in a reporting worklist as normal or abnormal
thereby prioritising abnormal radiographs for more urgent
reporting.

VI. CONCLUSION

This paper presented a performance comparison of five
CNN-based deep learning models trained on different views of
chest radiographs. Our results indicated the final derivation of
the model utilising a combination of template matching, trans-
fer learning, and augmentation provided the highest average
AUC of 0.88. This observation led to choosing the final model
as a tool to compare and contrast between different views. Our
contrasting led to ordering AP, Lateral and PA views with
a decreasing AUC from 0.85 to 0.83 and 0.72, respectively.
Improving the model by labelling uncertain samples led to an
increase in AUC, by a factor of 0.01, for each of these views.
Our results indicated that it is possible to detect and label
radiographs in multi-condition images, with anterio-posterior
and lateral views outperforming the posterio-anterior view. We
also highlighted that our approach to uncertainty reduction can
have a positive impact on AUC improvement, indicating better
detection accuracy. We now embark on evaluating if there are
conditions where different views have a vested advantage in
detection, using the above CNN model. We also plan co-design
studies with radiologists in our partner hospital, to identify
barriers to the acceptability of such models, but also ways to
integrate such approaches into the clinical workflow.
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