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Abstract—Self-adaptive pervasive systems often implement
adaptation in a centralised manner, where one component
holds all the necessary knowledge to identify when and how
the system needs to adapt. In self-adaptive pervasive systems,
composed of autonomous components with different authorities
(such as security, distribution, etc.), this approach cannot be
implemented as composing a centralised knowledge is not
feasible and it also obstructs the system’s ability to dynamically
change its components. A simple alternative would be to allow
each component to adapt independently but this can quickly
give rise to conflicts, race conditions and oscillations between
multiple independent adaptations. To avoid these problems,
we propose to coordinate individual adaptations so that each
component’s adaptation goals are satisfied. Each component
proposes an adaptation which is reviewed by other components
who may propose their own adaptations that they may need to
do. This continues until a complete adaptation plan is agreed
upon. In cases where certain individual adaptations conflict
with some components’ goals, components are instructed to
seek alternative proposals. The Adaptation Manager component
is in charge of the negotiation process and it also has the
authority to resolve certain conflicts between adaptations. Our
approach is evaluated in the context of pervasive workflow
systems where the failure probability and execution times are
assessed.
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I. INTRODUCTION

Self-adaptive pervasive systems operate in environements
characterised by a high degree of dynamic behaviour due to
frequent changes in the environment and frequent changes
of the environment in which they operate [1]. As a running
use-case study of adaptive pervasive systems, this paper will
adopt the system described in the ALLOW project [2], that
focuses on modelling and building human-centric pervasive
systems. The project is also heavily investigating the ap-
plications of workflows as a new programming paradigm
for these systems. More precisely, adaptable pervasive sys-
tems (APSs) are modeled using Adaptable Pervasive Flows
(APFs) [3], [4], [5] and these flows represent an extension
of traditional workflow concepts [6] which make them more
suited for adaptation and execution in pervasive execution
environments.

Principal application adaptations are executed by replac-
ing or rearranging tasks in a flow such that the flow’s goals
can still be fulfilled despite the fact that various failures and
problems have occurred. Beyond that, a number of other
adaptation aspects need to be controlled while a flow is
running such as: the adaptation of user interfaces, security
adaptation, and flow distribution adaptation. The adaptation
strategies for these different aspects of the flow execution
are stored and executed by the components in control of
these aspects, such: security manager, distribution manager
and so forth. Having each component adapt its own concerns
independently of the rest of the system, makes the adaptation
much more robust since the adaptation knowledge and strate-
gies are decentralised. This in turn makes the components
loosely-coupled and the system more robust in face of
component failures. However, this also introduces a problem
of coordinating these different independent adaptations to
avoid conflicts, oscillations and race conditions among their
adaptation actions and goals.

The main contribution of this paper is to propose a novel
approach for coordinating a set of autonomous components
that can adapt different execution aspects of a common
pervasive system. Our solution allows the components to
retain their autonomy and authority over the execution as-
pects that they are overseeing, while undesirable effects such
as conflicts, oscillations and race conditions are avoided.
We have implemented this approach for the pervasive flow
systems and we use this implementation to validate our
ideas. We refer to this approach as the Overall Adaptation
Process (OAP). The OAP approach is based on two main
principles: 1) every aspect publishes the changes it is going
to make to the system, 2) other aspects say whether they
agree with the changes and whether they themselves need to
make further changes to accommodate the original proposed
ones. In order to coordinate this negotiation loop between
different components we introduce the overall adaptation
manager whose internal logic guides the negotiation to an
overall agreement.

The rest of the paper is structured as follows: Section
II analyses the requirements that the proposed adaptation
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approach, specified in Section III, ought to meet. Section
IV discusses testing and validating the proposed approach,
while the last two explore the relevant related works and
conclude the paper.

II. PROBLEM ANALYSIS

The nature of pervasive systems defines extensive re-
quirements for the design of self-adaptive systems. First,
pervasive systems are becoming increasingly complex and
are required to manage a large set of different aspects of
the system. Each of these heterogeneous aspects considers a
bounded part of the overall system and is associated with a
dedicated goal for execution. This goal is defined by means
of acceptance criteria. Second, adaptation is considered as
a key principle to deal with the dynamics found in pervasive
environments, which results from unforeseen changes in the
system that may violate each aspect’s acceptance criteria.
Therefore, adaptations are necessary to bring the system
back into a state that preserves the individual criteria of
each aspect. Due to the above characteristics, the overall
complexity of the system is only manageable by avoiding
a single, centralized point of control. The reduction of
complexity can be achieved through a loosely-coupled sys-
tem design, where the aspect-specific adaptation strategies
are independently encapsulated inside each aspect. Thus,
aspects can be flexibly composed to suit the characteristics of
different environments, i.e., some aspects may not be present
in each setting.

However, this model of independently acting aspects
also elevates certain issues. Although each aspect is only
concerned with a part of the system, harmful side-effects
resulting from adaptation may occur. In particular, the adap-
tation of one aspect may easily push the system into a state
that triggers adaptations in other aspects. This causes the
following problems:

Conflicts: A conflict arises if two or more aspects react
to a relevant change by issuing contradictory adaptations
concurrently. Contradictory adaptations are adaptations that
cannot be applied in combination since this would violate
the acceptance criteria of the system.

Oscillations: An oscillation can occur if conflicting adap-
tations are issued in sequence: If one aspect as1 receives an
event that violates its internal acceptance criteria it issues
an adaptation which in turn violates the acceptance criteria
of one or more other aspects. These aspects react by issuing
adaptations to correct this violation, which in turn violates
the criteria of as2. This can lead to a long series of mutual
adaptations without ever reaching a system configuration
that satisfies all aspects.

Race conditions: Race conditions occur if two or more
aspects apply adaptations and the final outcome depends on
the order in which they complete and apply their individual
adaptations. In particular, if we have aspects as1 and as2

issuing adaptations, the order as1, as2 may lead to a system

configuration that satisfied all acceptance criteria while the
order as2, as1 may result in a conflict or oscillation.

In order to avoid these problems, a coordinated way of
interaction among the aspects is required. The goal is to
restrict the freedom of each individual aspect in order to
avoid the negative effects detailed above while still preserv-
ing as much of the autonomy as possible. The principal
question that we are tackling in this paper is therefore:
How can loosely coupled autonomous adaptation aspects
be coordinated while their autonomy is preserved?

III. CROSS-ASPECT ADAPTATION

The novel approach for cross-aspect adaptation proposed
in this paper is based on the insight that aspects need to
coordinate at an early stage of adaptation before applying
changes to the system. For this reason we advocate the
introduction of an adaptation process split into phases of
adaptation negotiation and adaptation enactment. Adapta-
tion negotiation denotes the process of aspect interaction
with the goal of finding an acceptable adaptation that all
aspects agree on. Adaptation enactment refers to the physical
adaptation of the system, based on the agreement achieved
by the negotiation process before. Both phases are usually
strongly integrated into one indivisible process in traditional
systems. However, the decoupling of these constituent parts
of our adaptation process enables adaptation aspects to
reason over the effects of possible adaptation and influence
other aspects in decision making before the actual change
of the system.

In the next subsections, we describe our solution that
facilitates coordinated adaptation among the aspects in the
system. For this purpose, we first introduce in Section III-A
the adaptation framework, which presents the necessary
elements and their relationships for building self-adaptive
systems according to our approach. Subsequently, we use
these elements to define our overall adaptation process in
Section III-B.

Figure 1. Overview of Cross-Aspect Adaptation Framework
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A. Adaptation Framework

The adaptation framework serves as a blueprint for the
design of composed adaptive systems. It defines a unified
view on the elements of a self-adaptive pervasive system as
illustrated in Figure 1. The elements are Adaptation Aspects
representing the self-contained entities executing adaptations
in the system and the Adaptation Manager that represents
the control instance of a coordinated adaptation process.

An adaptation aspect covers a well-defined part of the
pervasive system subject to dynamic adaptation. The model
of an adaptation aspect asi is expressed as a set of public
variables V (asi) modelling the system properties relevant
for adaptation. An assignment of the variables in V (asi) is
called a configuration of the aspect and denoted as vas,i.

Each aspect represents an autonomous part of the system,
which monitors changes of the system relevant to its ac-
ceptance criteria. For this purpose, each aspect provides a
set of monitoring mechanisms to detect events that provide
information on the execution environment. These events are
used to inform the Adaptation Manager about aspect-specific
problems that demand an adaptation. Moreover, each adap-
tation aspect has a set of adaptation mechanisms that can
be used to enact adaptations physically in the environment.
The concrete adaptation mechanisms are aspect-specific and
depend on the functionality provided by each individual
aspect. While aspects change the system according to their
adaptation needs, they are not required to know or under-
stand the direct effects of their own adaptations on other
aspects. This preserves their fundamental level of autonomy
as aspects just have to implement their internal adaptation
logic and know their own acceptance criteria.

Aspects are able to communicate with each other based on
a common negotiation language. The negotiation language of
aspects AS1,n = {as1, as2, .., asn} is based on all variables
V (AS1,n) = V (as1) ∪ V (as2)... ∪ V (asn) shared among
them. The variables are used to communicate the changes
an aspect is going to make for adaptation. An assignment of
all variables is formally referred to as vAS1,n

and indicates a
desired system configuration, which may result from a series
of adaptations of a set of adaptation aspect. The change of
an aspect’s configuration has consequences on all aspects
that are influenced or depend on its shared properties. Thus,
the coordination of several aspects is based on the exchange
of system configurations, allowing all aspects to inspect and
influence the future adaptation of the system. As the ex-
changed system configurations describe hypothetical system
states under negotiation, they can be seen as proposals of
an overall adaptation that involves more than one aspect for
adaptation.

In addition to the adaptation aspects, our framework also
introduces the Adaptation Manager (AM) component whose
purpose is to coordinate multiple independent adaptations.
This introduction is motivated by the fact that a well-

structured way of interaction among the aspects is required,
which needs to be controlled by a mediator. The Adap-
tation Manager reacts to monitoring events arriving from
the adaptation aspects. Based on the incoming events, the
AM infers an adaptation trigger at that characterizes the
cause of adaptation. The trigger may be the result of a
single monitoring event, as well as be discovered from
the correlation of multiple events coming from different
adaptation aspects. The AM acts upon a set of adaptation
strategies, each of which defines a coordination process for
specific adaptation triggers. Formally, an adaptation strategy
as is a tuple (at, ap, ae, p) where at denotes the adaptation
trigger the strategy is devised for, ap is the adaptation plan,
ae describes the adaptation enactment, and p is the priority
associated to the strategy. The adaptation plan ap associated
with an adaptation strategy as defines the procedure of how
to negotiate among the aspects in order to react appropriately
on an adaptation trigger. For this purpose, the adaptation
strategy reflects the dependencies among the adaptation as-
pects. The dependencies of aspects define the order, in which
aspects can make their proposals of desired adaptations.
For example, if the adaptation manager selects a strategy
with the associated plan 〈asi, asj , ask〉, it means that the
aspects are contacted in the order asi, asj , ask. Similarly,
the adaptation enactment ae is a list of aspects and captures
the order in which different aspects should be invoked to
enforce the adaptation. This allows complex adaptations,
where not only the agreement for finding an adaptation, but
also the implementation of adaptations requires a coordi-
nated approach.

B. Overall Adaptation Process

The process of overall adaptation defines an interaction
protocol in which the adaptation aspects iteratively take
turns in a well-defined order and propose adaptations. In
this way, adaptations are not occurring concurrently but
they are serialized. Each aspect thus does not base its
adaptation on the actual current system configuration but
on the hypothetical system configuration that would exist
if the previously proposed adaptations had been applied.
This process is coordinated by the Adaptation Manager and
consists of four individual phases, which are described in
detail subsequently:

Initialization (Phase 0): During the system execution,
the set of adaptation aspects publishes monitoring events.
The AM, using a correlation function C, infers an adaptation
trigger at to launch the overall adaptation process. In order
to react appropriately on at, the AM selects all adaptation
strategies {〈at, ap, ae, p〉} which are devised for this trigger.
Among this set, the strategy with the highest priority p is
chosen for execution. Each aspect listed in the adaptation
plan ap will participate in the overall adaptation process. Let
these aspects be denoted as AS1,n = {as1, as2, ..., asn} in
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the following. The initial configuration of the system before
negotiation is thus given by the values of all variables
in V (AS1,n) found in the running system at the time a
trigger is raised. The goal of the OAP is then to negotiate
a future configuration of the system, so that the individual
requirements of each aspect can be met.

Negotiation phase (Phase 1): In the negotiation phase a
consensus protocol is executed that involves interactions of
the AM with the adaptation aspects. The AM controls the
interactions according to the adaptation strategy and collects
the adaptation proposals from the aspects. An adaptation
proposals represents a hypothetical aspect configuration that
would be the result of an adaptation action. It is important
to note that the aspect configuration is merely virtual
and describes the changes of a desired adaptation in an
understandable way for the remaining aspects. This creates
the opportunity for aspects to inspect the objectives of other
aspect before their physical enactment. For this purpose,
each aspect asi provides a uniform interface proposeasi

that can be invoked by the AM during the negotiation
phase:

proposeasi : (vAS1,n , at) 7→ v′
AS1,n

Each aspect participates by suggesting an adaptation,
which in turn provides the input for aspects consulted
subsequently. The proposal is made for a specific
adaptation trigger and based on the proposals made by
other aspects which came before. This process ensures
to exchange adaptation proposals in a way, which takes
the dependencies among the aspects into account. This
iterative procedure results in an evolution of the future
system configuration from the first version, which is the
initial proposal of first aspect, to the final one, where each
aspect has stated its proposal. This procedure can be seen
as a concatenation of the proposal functions: v′

AS1,n
=

proposeasn(...proposeas2(proposeas1(vAS1,n , at), at), at).
The proposal phase is completed after the last aspect
asn from the set of participating aspects has contributed
its proposal. The result is a new hypothetical system
configurations, that needs to be validated for enforcement.
As the AM forwards a proposals from one aspect to another,
the aspect have not to be aware of each other directly.

Decision phase (Phase 2): After each aspect has taken
its turn, an agreement needs to be reached whether one
coherent overall adaptation (result of all the aspect-specific
adaptations) was found. For making this decision, each
aspect needs to rate the outcome of the proposal phase
with regards to its individual acceptance criteria. As the
rating of an aspect may be influenced by proposals made
before and after an aspect’s own turn, the decision making
is reached in a separate phase that allows all aspects to see
the final negotiated configuration v′

AS1,n
. For rating, each

aspect may choose from a set of aspect-specific verdicts
rasi = {r1, .., rn} that are also known to the AM. An
aspect can communicate a quality measure via a verdict
which allows the AM to infer the satisfaction of an aspect
with the adaptation proposal. The rating is calculated using
the function ratei of each aspect that can be formalized as:

ratei : v′
AS1,n

7→ r ∈ rasi

so that the overall rating roverall =
(r1(v′

AS1,n
), ..., rn(v′

AS1,n
)) can be expressed as the

tuple of all the aspects’ verdicts. The AM inspects the
overall rating and determines whether one coherent overall
adaptation was found. For this purpose, the AM holds
decision rules that determine if the proposal can be
accepted:

decide : roverall 7→ {accepted, rejected}

Thus, the AM represents the final authority for enforcing
adaptation decision. If the overall rating is not sufficient
for enforcing an adaptation, the AM will start another
negotiation phase as described before such that the
solutions proposed in the previous round are avoided by the
aspects who proposed the first initial proposal. In each loop,
all aspects are required to relax their adaptation criteria.
Such a relaxation is realized by applying a less restrictive
threshold to some quality criteria an aspect uses internally
to judge whether a given system configuration is sufficient.
By means of criteria relaxation, the set of possible system
configurations and thus the probability of finding valid
overall adaptations is increased. The termination of the
negotiation loop is ensured by a defined strategy associated
with the adaptation plan, e.g., restricting the number of
negotiating cycles.

Phase 3 – Enactment phase (Phase 3): If a valid
adaptation is found in phase 2, the hypothetical configuration
on which the aspects have agreed needs to be physically im-
plemented in the system. This again motivates a coordinated
approach among the aspects, since an aspect may already
require the configuration of another aspect to be physically
existent in order to implement its target configuration. There-
fore, the aspects again take turns in a well-defined order. The
order is defined by the enactment ae as part of the selected
adaptation strategy as. Thereupon, each aspect implements
its part of the overall system configuration. The required
actions to enforce an adaptation for an aspect asi are directly
derived from the target configuration vAS1,n of the agreed
overall system configuration.

IV. EVALUATION

To evaluate the feasibility of our proposed overall adap-
tation approach, we applied our proposal in the context
of the EU FP7 ALLOW project [4]. This project focuses
on human-centric pervasive applications. Applications are
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specified as adaptive pervasive workflows. To execute a
workflow successfully, a workflow must adhere to a set of
functional and non-functional constraints. In the ALLOW
project, three different adaptation aspects are considered: 1)
the Flow Security Aspect which ensures that the execution of
a workflow is according to specified security policies. 2) the
Flow Structure Aspect which may modify the structure of a
workflow in order to meet the specified goal of the workflow.
3) the Flow Distribution Aspect which ensures that the
execution of a workflow complies to specified performance
criteria.

Without coordination adaptation the problems mentioned
in Section II may occur. Assume, for example, the Flow
Security Aspect replaces untrusted services with trusted ones.
The new set of services does not suite the performance
criteria of the Flow Distribution Aspect. Thus, the Flow Dis-
tribution Aspect replaces the trusted services with untrusted
ones that have a better performance which would in turn
trigger the Flow Security Aspect again. Consequently, the
system would oscillate.

To measure the effectiveness of our approach, we com-
pared a system with adaptation manager controlling the
overall adaptation process to a system without adaptation
manager. We define a system without adaptation manager
as a system without any coordination between the individual
aspects. We conducted two sets of experiments. In the first
set, we assumed a workflow engine aborts the execution of
a workflow if a task blocks the execution because it cannot
be executed without violating the acceptance criteria of the
individual aspects. In this set, we measured the number of
completely executed workflows.

In the second set, we assumed a workflow engine waits
until a task can be executed without violating the acceptance
criteria of the individual aspects. In this set, we measured
the average time required to completely execute workflows.

Our evaluation is based on simulation. In each simulation
run, we generated a workflow and executed the workflow
in each system under identical conditions. This means, that
the environment a workflow is executed in generates the
same events at the same point in time. In the simulation, we
measure time in simulation cycles.

The environment influencing the execution of our work-
flows consists of a network (simulating the electronic world)
and a context system (simulating the real world). Both,
network and context system may generate events at arbitrary
points in time during a simulation run. These events may
result in an adaptation of the currently executed workflow.
Network events give information about changes in the avail-
ability or the trust of services provided by the network.
Events of the context system indicate that the goal of a
workflow is endangered due to real-world events.

This information is used by our aspects as follows. The
Flow Security Aspect ensures that all services which are
bound to the tasks of a workflow are according to the

specified security policies. If this is not the case, the Flow
Security Aspect replaces untrusted services with trusted ones
if possible. The Flow Distribution Aspect binds the fastest
available service in order to improve the execution time of
a workflow. Whenever an event endangers the goal of a
workflows, the Flow Structure Aspect tries to replace some
tasks of the workflow with a predefined set of tasks. Hereby,
the Flow Structure Aspect can chose from several predefined
sets.

The probability for changes in the network or for context
events is defined by a failure probability. In each simulation
cycle, each service changes its state according to this failure
probability. Similarly, context events are generated with this
probability in each simulation cycle.
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Figure 2. Engine aborting in case of a blocking task

Figure 2 shows the evaluation results for the first set of
experiments. It can be seen that in the system with adaptation
manager more workflows are executed completely than in
the system without adaptation manager. This is due to fact
that the system with adaptation manager is able to resolve
conflicts and oscillations by means of its negotiation process.
However, if the failure probability increases, the probability
rises that no solution exists in the whole solution space.
Thus, the percentage of successful executions decreases with
an increase in the failure probability.
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Figure 3. Engine waiting for tasks to complete

In Figure 3, the results for the second set of experiments
are depicted. It can be seen that the number or simulation
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cycles is much higher in the system without adaptation
manager. This is because without coordination the aspects
are not able to derive compromises and, thus, have to wait
for a configuration that by chance fits all acceptance criteria.
Again, as the failure probability increases, it may happen that
no solution for a problem can be found. In this case, also
the system with adaptation manager has to wait and, thus,
the average time required to execute a flow increases.

V. RELATED WORK

The motivations for, and a notion of coordinated adap-
tation has been investigated by Cheng et al. [7]. They
have argued that independent adaptations must not introduce
unwanted effects through which the system can be put
into an unsafe state. These unwanted behaviours can be
oscillations, races, deadlocks and so forth [8]. They propose
that components should coordinate their evaluation metrics
to reach a consensus, but they do not have a strategy to deal
with situations when such consensus cannot be reached.

CARISMA system [9] explores bidding on a proposed
set of adaptation policies as a way to adapt the whole
system. When a set of proposals is collected every agent
places a sealed bid for each proposal. The proposal with the
highest sum of bids, wins. The agents implement a utility
function that decides how much they are willing to bid on
a particular proposal. The main difference with our work is
that CARISMA has no further rounds, where agents would
be able to revise their utility functions. This is a crucial
requirement for our system since the workflow adaptation
component can revise its adaptation plan based on a set of
available and trusted services.

In [10] each application consists of different functional
levels where each level has its own evaluation metrics. The
model employs an independent component that monitors
the performance of individual layers. If certain constraints
are not satisfied, this monitor invokes different adaptation
mechanisms in affected layers. The main difference with this
approach is that the presented overall adaptation manager
runs a negotiation loop.

VI. CONCLUSION

Self-adaptive pervasive systems that are composed of
cooperating and autonomous components, typically employ
each component to control and monitor a specific applica-
tion execution aspect. Each of these components usually is
capable of self-adapting a particular part of the underlying
pervasive system or application in order to meet its own
goals.

To avoid problems like conflicts, race conditions and
oscillations, this paper proposes a solution based on a
negotiation loop that attempts to find one adaptation that
satisfies all components’ individual constraints and needs.
The negotiation loop provides a coordinated way for individ-
ual components to exchange adaptation proposals and infer

whether such proposals break their individual requirements.
This process is coordinated by a special component, the
Adaptation Manager, that acts as a mediator to make sure
that all components have a fair say.

We evaluated our approach in the context of pervasive
workflow systems based on multiple simulations where we
have compared a system with and without coordinated
adaptation. Our results show that the convergence to a stable
system is faster with the coordinated approach. For the
future work we will investigate the following questions: how
many proposals per round should be made,and how can the
overall adaptation manager facilitate faster convergence to
the overall solution.
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