
Bee Inspired Online Vehicle Routing
in Large Traffic Systems

Horst Wedde, Sebastian Senge, Sebastian Lehnhoff, Fabian Knobloch, Tim Lohmann, Robert Niehage, Manuel Sträßer
School of Computer Science

Technical University of Dortmund
Dortmund, Germany

{horst.wedde, sebastian.senge, sebastian.lehnhoff, fabian.knobloch, tim.lohmann, robert.niehage, manuel.straesser}@tu-dortmund.de

Abstract—Traffic congestions have been a major problem in
metropolitan areas worldwide, causing enormous economical as
well as ecological damage. We argue that, due to the highly
dynamic character of congestion forming and dissolving, any
adequate solution for individual online vehicle routing in large
traffic systems will require distributed, adaptive coordination of
local navigators in order to transmit directions in due time before
any road intersection which would still be valid when carried
out. In this paper a completely distributed and adaptive swarm
intelligence based multi-layered approach termed BeeJamA is
presented. It features dynamic deadlines. There is no need
of global or centralized information. We report on extensive
simulation experiments with the MATSim simulator verifying
BeeJamA’s superior performance compared to existing models.

Index Terms—Traffic management; traffic information system;
distributed systems; swarm intelligence

I. MOTIVATION

Traffic congestions in densely populated areas induce high
economical and ecological costs worldwide. The total eco-
nomic loss in Europe alone, during the year 2000 was esti-
mated to exceed 270 billion euro [1].

For an adequate individual online vehicle routing to be
practically successful in large traffic systems it is necessary
that driver directions should be transmitted and processed in
due time before each intersection, and that they should still be
valid when carried out. This calls for dynamic and very tight
deadlines. (Otherwise the measures may even be counterpro-
ductive.) Also successful solutions should be seamlessly scal-
able to very large systems, and at the same time, they should
be robust considering that when introduced the drivers will
only gradually accept the routing system. None of the so far
existing approaches satisfies all three constraints. Due to space
limitations we have to mostly skip previous and related work,
however, it is not difficult to see that any satisfactory model
has to be based on distributed agent control and a dynamic
management of deadlines in the range of very few seconds.
Global information handling would make the system too slow.
For coping with the highly dynamic complexity of individual
vehicle traffic we developed a novel self-organizing online
routing system termed BeeJamA (for Bee Jam Avoidance).
Here autonomous agents (navigators) coordinate their area
information through a multi-layer communication structure,

the latter relying on our own novel routing protocol Bee-
Hive/BeeAdhoc [9] for large computer networks which had
been inspired by the honey bee foraging communication [2],
and was stepwise adapted to the road guidance situation.
The objectives are congestion avoidance and minimization of
individual travel times. After achieving a proof of concept
through a fairly simple traffic model [3] we deal with the
general case here. A notable related work is the H-ABC [4] ,
an adaption of AntNet [5] (and thus decentralized approach) to
traffic networks, however, for a detailed comparison between
BeeHive and AntNet as underlying agent model we refer
to [9].

The next sections are structured as follows. Section II briefly
outlines the behavior of honey bees in nature. Section III
describes our communication and system architecture and
Section IV introduces our novel Generic Routing Framework,
as the central modeling contribution and at the same time
the key for implementing BeeJamA (and other algorithms)
into a simulator, and to compare it to traditional algorithms.
Section V sketches the main ideas and concepts of the Bee-
JamA algorithm. In Section VI we report on our simulation
experiments with the MATSim [6] simulator and summarize
the results in Section VII.

II. HONEY BEES IN NATURE

A honey bee colony reacts flexibly and adaptively to
countless changes in the forage pattern outside the hive,
and to changes inside the hive, through a decentralized and
sophisticated communication and control system (by watch-
ing so-called waggle dances. In this way each honey bee
follows simple stochastic rules relying on local information
only. A reinforcing and self-regulating behavior emerges in a
decentralized fashion where the amount of collected food is
optimized in a decentralized fashion, and food sources are not
overworked.

The exploitation of such principles by means of a multi
agent system (MAS) is frequently termed Swarm Intelli-
gence [7]. For a complete description of the biological back-
ground, which we used as the foundation of our MAS, see [2].

To sum up, the global optimization problem (of collecting
enough food in the natural scenario or of jam reduction in the

78

ADAPTIVE 2010 : The Second International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-109-0



A

E

B C

Dynamic Deadline

Current Position

X
Destination 1

getNextHop()

Y
Destination 2

Fig. 1. Dynamic Deadline

road traffic scenario) is tackled by agents solving local and
dynamic assignment problems under distributed control. Our
algorithm borrows from this decentralized and self-organizing
foraging behavior.

III. V2I COMMUNICATION

The BeeJamA system uses an approach similar to Floating
Car Data (FCD) [8] to get up-to-date traffic information.
The BeeJamA algorithm disseminates this information and
calculates individual routing instructions based on it.

In this section, we propose a vehicle-to-infrastructure (V2I)
based architecture for the necessary communication with the
vehicles. The cornerstone of the architecture is a decentralized
network of so-called navigators. A navigator has a spatially
limited area of responsibility, its navigation area, where it
handles the communication with each vehicle and returns
routing instructions on request.

The interaction between a vehicle and a navigator is de-
picted in Figure 1. After the driver specified a destination,
a (GPS-enabled) personal navigation assistant (PNA), e.g. a
smart cell phone, continuously submits the vehicle’s position
to its responsible navigator. In addition, a routing instruction
request for the next intersection (hop) is sent from the PNA
to the navigator each time a vehicle enters a new road. The
navigator calculates an instruction (see Section V-D) based on
up-to-date traffic information (which, in turn, is based on the
continuously transmitted position information of the vehicles
and disseminated by a flooding procedure). Ultimately, a hop-
to-hop routing emerges, where each vehicle in a navigation
area receives an individual next-hop instruction before each
intersection in due time. This is a tough real-time problem as
these individual deadlines depend on the speed of the vehicle
moving within the area of its responsible navigator. Therefore,
the size of a navigation area must be small enough to allow for
timely detour calculation in the presence of congestions (and it
is further limited by the actual wireless communication range).

To cope with these real-time constraints a completely dis-
tributed routing algorithm (based on the described decentral-
ized V2I architecture) is necessary to achieve these objectives.

IV. GENERIC ROUTING FRAMEWORK

In order to conduct simulations easily, we developed a
middleware (termed Generic Routing Framework (GRF)) to
hide the complexity of traffic simulation from the routing al-
gorithms and to offer a common interface to routing algorithms
from the simulation tools. In such a way we could easily
switch to another simulator, or use a different set of routing
algorithms. The GRF manages a graph G (representing the
road network) and a set of agents called tokens (representing
the vehicles) on the so-called physical layer. The physical
layer maintains domain specific physical attributes like the
length of a road and the position of each token at each time
step. For that purpose, the simulator computes the vehicle
positions and updates the GRF data structures accordingly
(using the appropriate interfaces).

The weighted directed graph is given by G = (V,E,w),
where V is the set of vertices, E the set of edges and w : E×
N→ R+ a time variant weight function (the second parameter
t ∈ N represents a discrete time step). Edges represent roads
and vertices represent intersections, thus the graph correlates
directly with the actual road network. The weight function on
the physical layer simply indicates the number of vehicles at
time t on edge e, or their current travel times, as given by
the road traffic simulation tools. The graph is assumed to be
strongly connected.

The implemented routing algorithms may add abstract lay-
ers to maintain algorithm specific information for the com-
putation of the routing decision, e.g., the BeeJamA algorithm
adds two layers as described in the next section.

V. THE BEEJAMA ALGORITHM

The basic idea of our BeeJamA algorithm presented in this
section is for the sake of scalability to follow a three layer
approach (Figure 2) to allow real-time hop-to-hop routing in
road networks of a realistic size. The first layer is given by
the aforementioned physical layer. The BeeJamA algorithm
has two more layers each consisting of a graph, a set of
routing tables, and rules for the generation of bee agents used
to disseminate local weight changes.

On the first additional layer, called navigation area layer,
or area layer for short, the graph layout is nearly congruent
the physical layer’s graph structure but is partitioned into the
areas. Each area belongs to a navigator which is responsible for
maintaining the routing tables associated to the area, sending
and receiving bee agents for the routing table updates and for
communicating with the vehicles within the area. A vehicle
which travels over larger distances thus traverses more than
one area to reach its destination. On the second additional
layer, called net layer, the information needed for routing
between areas (and ‘in the direction of the destination area”) is
managed. The actual techniques are described in the following
sections.

On both layers two kinds of routing tables are used: Next-
Hop (NH) and Node-to-Hierarchy (NTH) tables. Table I and II
depict generic instances of these tables.

79

ADAPTIVE 2010 : The Second International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-109-0



TABLE I
STRUCTURE OF A NEXT HOP TABLE

NH(v) W1 · · · W|W |

S(v)1 c1,1 · · · c|W |,1
...

...
...

...
S(v)|S(v)| c1,|S(v)| · · · c|W |,|S(v)|

Fig. 2. Layered Routing Model

Let S(v) denote the set of successors of node v ∈ V and
W ⊆ V a set of destinations. Then, the cost to travel from
node v to Wi over successor S(v)j is ci,j in a next hop table.
The actual set W differs on both layers.

TABLE II
STRUCTURE OF A NODE-TO-HIERARCHY TABLE

NTH W1 · · · W|W |

H1 . . . H|W |

The node-to-hierarchy table is a simple associative memory,
mapping nodes bijectively from a set W to sets H1, . . . ,H|W |.
The elements of Hi are structural components like the afore-
mentioned navigation areas. Such node-to-hierarchy tables are
static and do not change throughout the simulation. In contrast,
the table entries of next hop tables are time variant and are
updated by incoming bee agents (see Section V-C).

A. Area Layer

The basic notion of our distributed routing algorithm is to
divide the physical layer graph (i.e., the actual road network)
into smaller parts called navigation areas (done on the area
layer) and to connect them to allow inter-area travels (done on
the net layer). So the navigator associated to each area could
refrain from maintaining global information and must thus
maintain only small routing tables with local (and therefore
up-to-date) information for intra-area routing and information
about a limited neighborhood for inter-area routing on the
net layer. Technically, the area layer’s set of vertices and
edges are equal to their counterparts on the physical layer,
GA = (VA, EA) = (V,E). The weight function wA, however,

Fig. 3. Area Layer

differs, since it transforms the information available on the
physical layer into (estimated and thus abstract) travel times
for each edge. E.g., we use a simple moving average of the
last n travel times over an edge (given by the simulator) to
determine an edge’s weight. An area is defined using an edge
partition of the area layer’s graph. Thus, given an edge parti-
tion EA,1, . . . , EA,n, an area is a subgraph Ai = (VA,i, EA,i)
with

VA,i =
⋃

(ek,el)∈EA,i

{ek, el}.

The set of border nodes B(A) of an area A is given by
B(A) = {b ∈ VA|∃i ∈ V \ VA : (b, i) ∈ E} and the set of
inner nodes by I(A) = VA \ B(A). Please note, that border
nodes belong to at least two areas. At the same time, the set of
edges is partioned such that each edge is assigned to exactly
one navigation area (e.g., edge (d, e) in Figure 3 belongs either
to area B or C). We use a simple grid algorithm to obtain an
edge partition. Each navigator maintains two tables: for each
node v ∈ VA,i the next hop IFZarea (intra foraging zone)
table and a copy of the static and global node-to-hierarchy
FRMarea (foraging region membership) table. The destination
set W = VA,i is utilized for intra-area next hop routing
(see section V-D for details on routing decisions). To locate
a destination node’s area, the navigator checks its FRMarea

table which maps each node to its associated areas.

B. Net Layer

Typically vehicles may drive across several areas to reach
their individual destinations. To satisfy those routing requests,
for each area on the area layer a so-called net area on the
second layer, the net layer, is created. These net areas are
mapped onto fixed foraging regions, modeling the vicinity of
a destination node (see Figure 4 and Figure 5 for examples).

Each foraging region is represented by a representative
node. In addition, each node v on the net layer maintains a
specific foraging zone FZr

net(v) that consists of all neigh-
boring nodes within a certain hop range r. It models the
direct vicinity of a source node for which accurate routing
information is available. They are constructed by a flooding
procedure originally developed for the BeeHive algorithm [9].

80

ADAPTIVE 2010 : The Second International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-109-0



Fig. 4. Extended Net Layer with 3 Areas

Fig. 5. Net Layer with Foraging Regions

Let A1, . . . , An be the areas on the area layer, then the net area
Ni is given by the fully connected graph Ni = (B(Ai), Ei)
with

EN =
n⋃

i=1

{(v1, v2) ∈ E|v1 ∈ B(Ai) ∧ v2 ∈ B(Ai)} .

The net area’s navigator maintains three tables: for each
node v ∈ B(Ai) the next hop tables IFZnet (inter foraging
zone) and IFRnet (intra foraging region) and a copy of the
static and global node-to-hierarchy FRMnet table . The IFRnet

table (in analogy to the IFZarea table ) stores costs from each
neighbors to each nodes in the same foraging zone on the net
layer (W = FZr

net(v)). In addition, the IFRnet table stores
costs from each neighbors to each representative nodes and
is used to forward vehicles if the destination is far away (see
Section V-D for more details) and finally the FRMnet table
maps each net layer node to its foraging region (and thus to
its associated representative node).

C. Table Updates

In order to continuously update the routing tables, we follow
a multi agent system (MAS) approach. We use two types of

agents, inspired by the honey bee behavior: the majority of the
foragers exploit food sources in the direct vicinity of the hive,
while a minority visit food sources which are further away. We
adapted this concept into Short Distance Bee Agents and Long
Distance Bee Agents. Both types of agents are responsible
for disseminating routing cost information. They only differ
in the distance (hops) that they are allowed to travel starting
from their launching node. Due to page limitations we refer
the reader to a comprehensive description of the MAS based
update process in [9].

Here, we present a shortend informal version of this process:
1) Each non-representative node periodically sends a short

distance bee agent, by broadcasting replicas of it to each
neighbor site.

2) When a replica of a particular bee agent arrives at a site
it updates routing information there, and the replica will
be flooded again (it will not be sent to the neighbor from
where it arrived). This process continues until the life
time (number of hops) of the agent has expired, or if a
replica of this bee agent had been received already at
a site. In the latter case the new replica will be killed
there.

3) Representative nodes launch long distance bee agents
that would be received by the neighbors and propagated
as in 2. However, their life time (number of hops) has
a higher limit, the long distance limit.

As a result of this flooding based approach, each node
always has up-to-date cost information (depending on the
flooding period and the graph layout) of the travel times to
the nodes in its own foraging zone and to the representative
nodes.

D. Routing decisions

In the area and net layer model, there are three possible
cases for routing a vehicle from node x within area X to a
destination node y within a destination area Y :

1) The destination node y is listed in the current area X’s
IFZarea table. Thus, the destination node y lies within
the current area X (areas X and Y are the same):

RC I : y ∈ X

2) Case 1 is not true but the destination area Y is listed
(relative to every border node of Y ) in the IFZnet

tables of the current area X’s border nodes. Thus the
destination node y lies outside of area X but within an
area Y that lies within the net layer foraging zone1 of
area X:

RC II : ¬RC I ∧B(Y ) ⊆ FZr
net(X)

3) Case 1 and 2 are not true (i.e., the destination node y
lies outside of area X and the destination area Y lies
outside of the net layer foraging zone of area X):

RC III : ¬RC II

1∀X ⊆ V : FZr
net(X) =

⋂
x∈X

FZr(x)

81

ADAPTIVE 2010 : The Second International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-109-0



The cases above reflect a sequence of scenarios in which
the destination node y lies further and further away from the
current area X .

The navigator in X selects the vehicle’s next hop by creating
a set of cost paths C(x, y), evaluating the costs c(p) of
each cost path p ∈ C(x, y) as appropriate in the particular
routing case and drawing a cost path p (including a next hop)
accordingly. Thus, the decision process in each routing case
is described by stating the set of cost paths C(x, y) and the
associated cost function c(p), p ∈ C(x, y). The cost paths2

C(x, y) =
{(

x
·→ S(x)→ . . .→ y

)}
are no complete paths

from x to y but a sequence of nodes used to approximate the
costs of choosing each s ∈ S(x) as a next hop.

Routing in case 1 is fairly simple. The vehicle’s next hop is
chosen probabilistically according to the (normalized) costs of
the next-hop entries in the IFZarea table of area X . The cost
path expresses that the destination node y is reachable within
the current area by each neighbor s ∈ S(x):

C(x, y) =
{(

x
·→ S(x)→ y

)}
Thus, the number of cost paths to evaluate is

|C(x, y)| = |S(x)|

Each cost path p = (x ·→ s → y) ∈ C(x, y) can be easily
calculated by a single IFZarea table lookup:

c(p) = c(x ·→ s′ → y)
= IFZX

area(x, s′, y)

This table is managed by the current navigator, so that
no additional intra-navigator network traffic is required for
routing a vehicle within the destination area. For an adequate
routing in case 2 travel times have to be accumulated across
the different layers in BeeJamA.

Therefore, travel costs are composed of three parts:
• The travel times from the vehicle’s current position at

node x to a border node of area X (over neighbor s ∈
S(x)).

• The minimum travel times from a “suitable” border node
of the current area X to a border node of the destination
area Y on the net layer.

• The minimum travel times from a border node of area Y
to the destination node y.

The following cost paths are used to approximate these
travel costs:

C(x, y) =
{(

x
·→ S(x)→ B(X)i

min→ B(Y )j
min→ y

)}
and

2Please note, that {(x → . . . → M → . . . → y)} = {(x →
. . . → m1 → . . . → y), . . . , (x → . . . → mn → . . . → y)}, if
M = {m1, . . . , mn}.

|C(x, y)| = |S(x)| · |B(X)| · |B(Y )i|

The cost function is given by:

c(p) = c(x ·→ s→ B(X)i)
+č(B(X)i → B(Y )j) + č(B(Y )j , y)

= c(IFZX
area(x, n′, B(X)i))

+ min(IFZX,Y
net (B(X)i, B(Y )j)))

+ min(IFZY
area(B(Y )j , y)))

(Here the min notation is used to denote the minimum table
entry from the first argument as current node and the second
argument as destination). Only the last addend is unknown to
the current navigator and the appropriate minimum value must
be requested from the navigator of area Y .

For an adequate routing in case 3 travel times are composed
of only two parts:
• The travel times from the vehicle’s current position at

node x to a border node in its current area X .
• The minimum travel times from a “suitable” border node

of the current area X to the representative node RY of
area Y ’s foraging region.

The key idea (adopted from the foraging behavior of bees in
nature) is to route a vehicle in the rough direction towards the
foraging region of its target area Y until it gets close enough
to its destination for it to be listed in the IFZnet table of a
visited node.

The cost paths to approximate the travel costs are

C(x, y) =
{(

x
·→ S(x)→ B(X)i

min→ RY

)}
with

|C(x, y)| = |S(x)| · |B(X)|

c(p) = c(x ·→ n′ → B(X)i) + č(B(X)i → RY )
= c(IFZX

area(x, n′, B(X)i)
+min(IFRX

net(B(X)i, RY ))

Finally, to draw a next hop s ∈ S(x) the aforementioned
costs must be transformed into probabilities, so that higher
costs (higher travel times) result in lower next hop proba-
bilities. For a cost path pi ∈ {p1, . . . , pn} ∈ C(x, y) the
probability is given by

P (pi) : =

(
c(pi)∑n

j=0
c(pj)

)−1

∑n
k=0

(
c(pk)∑n

j=0
c(pj)

)−1

=
1

c(pi)
n∑

k=0

1
c(pk)

,

82

ADAPTIVE 2010 : The Second International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-109-0



Fig. 6. Eastern Ruhrgebiet District

which is simply the normalization of the inverted normalized
costs.

If the cost path pi = (x ·→ s → . . . → y) is chosen, then
s ∈ S(x) is the next hop sent back to the vehicle.

Bees in nature perform the waggle dance only if the quality
of a discovered food source exceeds a certain threshold.
Otherwise, the food source is discarded and no new foragers
will be recruited. In analogy to this behavior, a route may
only be selected if its travel cost does not exceed a dynamic
threshold (and thus would avoid unacceptable detours).

VI. SIMULATION STUDIES

For our simulation experiments on MATSim [6] we selected
the major part of the Eastern Ruhr District (see Figure 6, bold
lines indicate highways) in Germany, a densely populated,
formerly heavy industry area, featuring a good of approx.
1850 sections and approx. 3800 intersections. We also selected
a variety of characteristic real-world initial configurations
and utilized our own graphical tools to follow the events as
they occurred under BeeJamA and one of the commercially
available shortest-path based services. We picked quite a few
road sections that turned into bottlenecks under the shortest-
path approach. This history for one section is to be observed
in Figure 7. Here the car density is plotted over the simulation
time. A threshold (see [10] for more details) is marked which
indicates that any value above means congestion on this
section. As it can be observed, the shortest-path approach
(dark color) results in quite a far serious congestion while
on the other hand BeeJamA (light color) leaves this section
congestion-free. In another course of study - which we cannot
display in detail, due to page limitations - we selected, starting
again from real-world scenarios, a substantial subset of cars
with fixed source and destination, and we kept track of their
travel times in subsequent runs. Here again, it was clear
that in the average over the runs, the travel times were kept
considerably lower compared to shortest-path solutions.

Fig. 7. Density

VII. CONCLUSIONS

The BeeJamA traffic guidance system is a highly flexible
distributed multi-agent system. While self-organizing under
the challenge of dynamic and very tight deadlines it makes
sure that any directions are still accurate when carried out.
No global information is needed for decision making. So
altogether BeeJamA has the potential from the beginning to be
robust under gradually growing degrees of penetration (among
the drivers). Our results so far support this claim clearly. Also
scalability is not a serious issue since the new structure over
the navigation areas could be layered further in order to cover
systems of the size of Germany. The idea behind is that the
more distant a disturbance is the less influential it will be in
a particular city, a principle that is borrowed from the swarm
intelligence of honey bees.

The upcoming research will focus on more and more
realistic scenarios and a much more detailed experimental
insights. This will be subject of forthcoming publications.

REFERENCES

[1] W. Rothengatter. External costs of transport, 2004,
http://www.uic.org/html/environnement/cd external/
pages/introduction.html, last access at: 08/27/2010

[2] M. Farooq. Bee-Inspired Protocol Engineering - From Nature to Net-
works. Springer, Berlin, 2009.

[3] T.D. Seeley. The Wisdom of the Hive. Harvard University Press, Cam-
bridge, 1995.

[4] H. F. Wedde, S. Lehnhoff, S. Senge, and A. M. Lazarescu et. al. A Novel
Class of Multi-Agent Algorithms for Highly Dynamic Transport Planning
Inspired by Honey Bee Behavior. In: Proc. of the 12th IEEE Conf. on
Emerging Technologies and Factory Automation, Patras, 2007.

[5] B. Tatomir, L.J.M. Rothkrantz, H-ABC A scalable dynamic routing algo-
rithm, In: Recent Advances in Artificial Life, World Scientific Publishing
Co. Pte. Ltd. 5 Toh Tuck Link, Singapore 596224

[6] G. Di Caro, M. Dorigo, AntNet: Distributed Stigmergetic Control for
Communications Networks, In: Journal of Artificial Intelligence Research,
vol. 9, pag. 317-365, 1998

[7] MATSim - Multi-Agent Transport Simulation Toolkit, official homepage
at: http://www.matsim.org, last access at: 08/27/2010

[8] E. Bonabeau, M. Dorigo and G. Theraulaz. Swarm Intelligence - From
Natural to Artificial Systems. Oxford University Press, Ney York, 1999.

[9] B.S. Kerner et al. Traffic State Detection with Floating Car Data in Road
Networks. IEEE Intelligent Transportation Systems, 2005.

[10] L. Neubert et. al. Statistical Analysis of Freeway Traffic. In: Traffic and
Granular Flow ’99, Springer, 2000.

83

ADAPTIVE 2010 : The Second International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-109-0


