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Abstract—The AIR (ARINC 653 in Space Real-Time Op-
erating System) technology targets modern aerospace systems,
where the concepts of time- and space-partitioning are applied.
AIR features advanced timeliness control and adaptation mech-
anisms in its design, such as mode-based schedules, process
deadline violation monitoring, and protection against event
overload. The timing parameters of a space mission may vary
throughout time, according to its mode/phase of operation, and
the spacecraft may be exposed to unpredictable events and
failures. In this paper we explore the adaptation potential of
the advanced features included in AIR, analysing their code
complexity (which influences software verification, validation
and certification efforts) and computational complexity (which
correlates to the temporal overhead impact on the system), and
discussing how they can be applied to provide more adaptive,
reconfigurable and self-adaptive AIR-based systems.

Keywords-adaptive systems; aerospace industry; logic parti-
tioning; processor scheduling; real-time systems

I. INTRODUCTION

The computing infrastructure aboard spacecrafts employs
embedded systems to cope with strict dependability and real-
time requirements. Additionally, cost concerns call for flex-
ible resource reallocation and the overall reduction of size,
weight and power consumption (SWaP). To address SWaP
requisites, functions which traditionally received dedicated
resources are now integrated in a shared computing platform.
As these functions may have different degrees of criticality
and predictability and/or originate from multiple suppliers,
this integration brings potential safety hazards, for which the
architectural approach of time- and space-partitioning (TSP)
has been proposed. Applications are separated into logical
containers, partitions, for the benefit of fault containment,
software integration, and independent verification, validation
and certification processes. The aviation industry had already
made a similar move, by transitioning from federated archi-
tectures to Integrated Modular Avionics (IMA) [1].

The AIR architecture [2] was defined in response to the in-
terest of space agencies, namely the European Space Agency
(ESA), and industry partners in applying TSP concepts to the
spacecraft onboard computing resources [3]. Each partition
hosts its own application and operating system, either a
real-time operating system (RTOS) or a generic non-real-
time one. AIR employs a two-level scheduling scheme.
Partitions are scheduled under a predetermined, cyclically
repeated, sequence of time windows. Inside each partition’s

time windows, the respective processes compete according
to the native operating system’s process scheduler policy.

In normal conditions, a mission goes through multiple
phases (flight, approach, exploration) [4]. Additionally, un-
planned circumstances may happen, such as unforeseeable
external events and internal failures. Adaptation to chang-
ing/unexpected conditions is of great importance for a mis-
sion’s survival. This kind of adaptation can include mech-
anisms of support for assisted adaptation, reconfiguration
capabilities, and self-adaptation according to environmental
information. Such need is more stringent in the case of un-
manned missions. Flexible adaptation to unforeseen events
is of paramount importance, and has been proven to prolong
the lifetime of unmanned space vehicles by years [5].

In this paper, we explore the adaptation, reconfiguration
and self-adaptation potential of the AIR architecture, with
respect to timeliness control and failure detection/recovery.

Related work

To the best of our knowledge, the only contemporary
approach to flexible scheduling in a TSP system is the
mode-based scheduling feature provided by the commercial
Wind River VxWorks 653 solution [6]. Previous academic
research on TSP solutions [7] and works on scheduling
analysis for TSP systems [8], [9], [10] do not state including
or foreseeing mechanisms for timing parameters adaptation.
Architectural alternatives to TSP/IMA are compared in [11]
in terms of features which contribute to adaptability, and
recommendations are made to include adaptive features in
IMA-like architectures. Preliminary results are presented
in [12] for a reconfigurable IMA platform. Emergence and
increasing acceptance of adaptive and reconfigurable control
in unmanned aerial systems is pointed out in [13].

Paper outline

Section II provides an overview of the AIR architecture
for self-containment of the issues at hand. Section III
describes the advanced timeliness control mechanisms pro-
vided by AIR, while Section IV discusses how they allow
adaptive behaviour. Section V exposes the implementation
and evaluation of a prototype demonstrator of these capabil-
ities. Finally, Section VI closes the paper with concluding
remarks and future work directions.
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II. AIR ARCHITECTURE FOR TSP SYSTEMS

The AIR design [2] evolved from a proof of feasibility for
adding ARINC 653 support to the Real-Time Executive for
Multiprocessor Systems (RTEMS) to a multi-OS (operating
system) time- and space-partitioned (TSP) architecture. Its
modular design aims at high levels of flexibility, hardware-
and OS-independence, and independent component verifica-
tion, validation and certification.

Each partition can host a different OS (the partition
operating system, POS), which in turn can be either a
real-time operating system (RTOS) or a generic non-real-
time one. We will now describe the AIR architecture in
enough detail for the scope of this paper. A more in-depth
description of AIR can be found in [2].

A. System architecture

The modular design of the AIR architecture is pictured
in Figure 1. The AIR Partition Management Kernel (PMK)
is the basis of the Core Software Layer of an AIR-based
system. The AIR PMK hosts crucial functionality such
as partition scheduling and dispatching, low-level interrupt
management, and interpartition communication support.

The AIR POS Adaptation Layer (PAL) encapsulates
the POS of each partition, providing an adequate POS-
independent interface to the surrounding components.

The APEX Interface component provides a standard pro-
gramming interface derived from the ARINC 653 specifi-
cation [14], with the possibility of being subsetted and/or
adding specific extensions for certain partitions [15].

AIR also incorporates Health Monitoring (HM) functions
to contain faults within their domains of occurrence and
to provide the corresponding error handling capabilities.
Support to these functions is spread throughout virtually all
of the AIR architecture’s components.

B. Two-level scheduling scheme

The AIR technology employs a two-level scheduling
scheme (Figure 2). The first level corresponds to partition
scheduling and the second level to process scheduling.
Partitions are scheduled on a cyclic basis, according to a
partition scheduling table (PST) repeating over a major time
frame (MTF). This table assigns execution time windows to

Figure 1. AIR system architecture

Figure 2. Two-level scheduling scheme

partitions. Inside each partition’s time windows, its processes
compete according to the POS’s native process scheduler.

III. DESIGNING FOR ADAPTABILITY

The potential to adapt to changing environmental or
operating conditions is crucial for space missions. Existing
studies show that a number of failures may be mitigated by
software reconfigurability [5].

AIR employs special design and engineering decisions
to address specific adaptation requirements, namely on the
temporal domain and on failure detection and recovery.

A. Mode-based schedules

Timing requirements are among the conditions which
may change according to a mission’s phase, since certain
functions should only execute during certain phases. Under
the basic mandatory scheme defined in ARINC 653 [14],
there is a single fixed PST under which all partitions are
scheduled. This PST must be tailored to attended to the
temporal requisites of the partitions in all of the phases the
mission goes through. Generating such a PST is a difficult
task (even assisted by a tool), and the end result may be a
mission with frequent resource utilization waste.

AIR approaches this issue with the notion of mode-
based schedules, inspired by the optional service defined
in ARINC 653 Part 2 [16]. Instead of one fixed PST, the
system can be configured with multiple PSTs, which may
differ in terms of the MTF duration, of which partitions are
scheduled, and of how much processor time is assigned to
them. The system can then switch between these PSTs; this
is performed through a service call issued by an authorized
and/or dedicated partition. To avoid violating temporal re-
quirements, a PST switch request is only effectively granted
at the end of the ongoing MTF.

The AIR Partition Scheduler, with the addition of mode-
based schedules, functions as described in Algorithm 1.
The first verification to be made is whether the current
instant is a partition preemption point (line 2). In case
it is not, the execution of the partition scheduler is over;
this is both the best case and the most frequent one. If
it is a partition preemption point, a verification is made
(line 3) as to whether there is a pending scheduling switch
to be applied and the current instant is the end of the

153

ADAPTIVE 2010 : The Second International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-109-0



Algorithm 1 AIR Partition Scheduler featuring
mode-based schedules
1: ticks ← ticks + 1 . ticks is the global system clock tick counter
2: if schedulescurrentSchedule .tabletableIterator .tick =

(ticks − lastScheduleSwitch) mod schedulescurrentSchedule .mtf
3: if currentSchedule 6= nextSchedule ∧

(ticks − lastScheduleSwitch) mod schedulescurrentSchedule .mtf
= 0

4: currentSchedule ← nextSchedule
5: lastScheduleSwitch ← ticks
6: tableIterator ← 0
7: end if
8: heirPartition←

schedulescurrentSchedule .tabletableIterator .partition
9: tableIterator ← (tableIterator + 1) mod

schedulescurrentSchedule .numberPartitionPreemptionPoints
10: end if

MTF. If these conditions apply, then a different PST will be
used henceforth (line 4). The partition which will hold the
processing resources until the next preemption point, dubbed
the heir partition, is obtained from the PST in use (line 8)
and the AIR Partition Scheduler will now be set to expect
the next partition preemption point (line 9). Generation of
different partition schedules can be aided by a tool that
applies rules and formulas to the temporal requirements of
the constituent processes of the necessary partitions [2], [17].

B. Process deadline violation monitoring

During system execution, it may be the case that a
process exceeds its deadline. This can be caused by a
malfunction, by transient overload (e. g., due to abnormally
high event signalling rates), or by the underestimation of
a process’s worst case execution time (WCET) at system
configuration and integration time. Factors related to faulty
system planning (such as the time windows not satisfying
the partitions’ timing requirements) could, in principle, also
cause deadline violations. However, such issues can be
predicted and avoided using offline tools that verify the
fulfilment of timing requirements [2], [17].

In addition, it is also possible that a process exceeds a
deadline while the partition in which it executes is inactive.
This violation will only be detected when the partition is
being dispatched, just before invoking the process scheduler.

Deadline verification, which is invoked for the currently
active partition immediately following the announcement
of elapsed system clock ticks, obeys to Algorithm 2. In
the absence of a violation, only the earliest deadline is
checked. Subsequent deadlines may be verified until one has
not been missed. This methodology is optimal with respect
to deadline violation detection latency, which upper bound
for each partition is the maximum interval between two
consecutive time windows.

Figure 3 provides a use-case scenario for the process
deadline violation monitoring functionality. The exemplified
process (with the identifier pid ) has a relative deadline of
t3 − t1. When it becomes ready at t = t1 via the START
primitive, its absolute deadline time is set to t3. At t = t2,

Algorithm 2 Deadline verification at the AIR PAL level
1: *PAL CLOCKTICKANNOUNCE(elapsedTicks)
2: for all d ∈ PAL deadlines do
3: if d.deadlineTime≥PAL GETCURRENTTIME( )
4: break
5: end if
6: HM DEADLINEVIOLATED(d.pid) . pid : process identifier
7: PAL REMOVEPROCESSDEADLINE(d)
8: end for

Figure 3. Process deadline violation monitoring example

the REPLENISH primitive is called, requesting a deadline
time replenishment, so that the new absolute deadline time
is t4. When the instant t = t4 arrives and the process pid
has not yet finished its execution (e. g., having called the
PERIODIC WAIT primitive to suspend itself until its next
release point), its deadline will be the earliest registered in
the respective AIR PAL data structure. The violation is then
detected, and reported to the Health Monitor.

C. Health Monitor and error handling

In the context of fault detection and isolation, ARINC
653 classifies process deadline violation as a process level
error (that impacts one or more processes in the partition, or
the entire partition) [14]. The action to be performed in the
event of an error is defined by the application programmer
through an appropriate error handler [2].

The error handler is an application process tailored for
partition-wide error processing. The occurrence of process-
/partition-level errors may be signalled through interpartition
communication to a (system partition) process performing
a Fault Detection, Isolation and Recovery (FDIR) function
for the spacecraft [4]. A system-wide reconfigurability logic
should be included in FDIR.
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Table I
ESSENTIAL APEX SERVICES TO SUPPORT MODE-BASED SCHEDULES

Primitive Short description

SET SCHEDULE Request for a new PST to be adopted
at the end of the current MTF

GET SCHEDULE STATUS Obtain current schedule, next schedule
(same as current schedule if no PST
change is pending), and time of the last
schedule switch

Table II
APEX SERVICES IN NEED OF MODIFICATIONS TO SUPPORT

PROCESS DEADLINE VIOLATION MONITORING

Primitive Short description

Need to register/update deadline
[DELAYED ]START Start a process [with a given delay]
PERIODIC WAIT Suspend execution of a (periodic) process

until the next release point
REPLENISH Postpone a process’s deadline time

Need to unregister deadline
STOP[ SELF] Stop a process [itself]

Table III
ESSENTIAL APEX SERVICES FOR HEALTH MONITORING

Primitive Short description

RAISE APPLICATION ERROR Notify the error handler for a spe-
cific error type

D. Impact on APEX services

To allow application programmers to use the mode-based
schedules functionality, the APEX interface is extended with
additional primitives presented in Table I.

Process deadline monitoring calls for adaptation of pro-
cess management services, encapsulated by appropriated
AIR PAL functions. Table II shows the APEX primitives
which need to register deadline information (either updating
the deadline information for the process, or inserting it
if it does not exist yet) or unregister deadline informa-
tion (removing any information on the respective process
from the AIR PAL deadline verification data structures).
The APEX primitive RAISE APPLICATION ERROR, de-
scribed in Table III, is used to report a process deadline
violation to the HM and trigger the defined error handler.

E. Low-level event overload control

The AIR PMK includes advanced adaptation mechanisms
to control the timeliness of asynchronous events signalled
through processor interrupts. These mechanisms use the
discrete event processing methodology described in [18], and
have been adapted for application on the AIR architecture.
The resulting approach, integrating with the Health Monitor,
is presented in Algorithm 3. The continuous time, t, is
transformed into a discrete time n through a sample/hold

Algorithm 3 Event (interrupt) overload control
1: t← GETTIME( )
2: n← SAMPLEHOLD(t)
3: yn+1 ← FILTERING(n, nlast, yn) . Event metric determination
4: nlast ← n
5: if yn > M . Overload detection
6: DISABLEINTERRUPT(irq) . irq: interrupt request number
7: HM EVENTOVERLOAD(irq)
8: end if

Figure 4. Operation of overload control mechanisms [18]

function (line 2). The discrete time is used for the deter-
mination of the event (interrupt) metrics, such as its rate
of occurrence, using recursive digital filters (line 3). The
complexity of computing some filtering functions inside
the interrupt service routing (ISR) is removed resorting to
previously built lookup tables [18]. If a specific metric upper
threshold M is exceeded, interrupt service is disabled and
the HM is notified to take action. The corresponding error
handler then polls events at a predefined fixed rate. The
effectiveness of this approach is illustrated in Figure 4,
using an Infinite Impulse Response (IIR) filter for rate
determination [18]. When the overload state is over, and the
relevant metric value yn decreases below the lower threshold
m, the error handler enables the interrupts and returns to the
state of waiting for further overload notifications.

IV. ACHIEVING ADAPTABILITY

The described features can be used to allow the adaptation
of the system to changing conditions, either by the action
of a human operator (adaptability) or autonomously after
processing acquired information (self-adaptability).

A. Adaptability and reconfigurability

By offering the possibility to host multiple PSTs and
switch among them by demand during the execution of the
system, AIR allows for guided adaptation of the system to
the mission’s different phases and to detected operational
condition changes.

The proposed reconfigurability model also allows updat-
ing the set of available PSTs during the operation of the
mission, by issuing an update from ground control. This
process can be extended to allow updating the applications
running inside the partitions [15]. Process deadline violation
monitoring information can be useful in detecting the need
for PSTs and/or applications to be updated.
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B. Self-adaptability

Besides ground control commands, a request to use a
different PST can also be autonomously issued from the in-
terpretation of the internal and external operating conditions
of the mission. The Attitude and Orbit Control Subsystem
(AOCS) [4] should detect when the mission should transit
from flight to approach and from approach to exploration,
for instance, and (propose to) switch schedules accordingly.

Another self-adaptation use of mode-based schedules
can profit from process deadline violation monitoring. The
system integrator can include several PSTs that fulfil the
same set of temporal requirements for the partitions, but
distribute additional spare time inside the MTF among these
partitions in different ways. This set of PSTs, coupled with
an appropriate HM handler for the event of process deadline
violation, can be used to temporarily or permanently assign
additional processing time to a partition hosting an applica-
tion which has repeatedly observed to be missing deadlines.

An additional degree of self-adaptability is obtained by
applying event overload control mechanisms with reconfig-
urable parameters to preserve timeliness [18].

V. PROOF-OF-CONCEPT PROTOTYPE AND EVALUATION

The core mechanisms for adaptability and reconfigurabil-
ity of the AIR architecture have been prototyped on both
Intel IA-32 and SPARC LEON platforms. Each partition
executes an RTEMS-based [19] mockup application repre-
sentative of typical functions present in a spacecraft.

A. Code complexity

Critical software, namely that developed to go aboard a
space vehicle, goes through a strict process of verification,
validation and certification. Code complexity increases the
effort of this process and the probability of there being bugs.

One metric for code complexity is its size, in lines of
source code. Since equivalent code can be arranged in
ways which account for different lines of code counts,
standardized accounting methods must be used. We employ
the logical source lines of code (logical SLOC) metric of
the Unified CodeCount tool [20]. Another useful metric is
cyclomatic complexity, which gives an upper bound for the
number of test cases needed for full branch coverage and a
lower bound for those needed for full path coverage.

The C implementation of Algorithm 1 is accounted for
in Table IV, which shows its logical SLOC count and
cyclomatic complexity. Code introduced at the AIR PAL
level to achieve process deadline violation monitoring is
accounted for in Table V. The total complexity added in
terms of code executed during a clock tick ISR is a small
fraction of that already present in the underlying ISR code.

B. Computational complexity analysis

Since the verifications of deadlines and of the need to
apply a new PST are executed inside the system clock tick

Table IV
LOGICAL SLOC AND CYCLOMATIC COMPLEXITY (CC) FOR THE AIR

PARTITION SCHEDULER WITH MODE-BASED SCHEDULES

Logical SLOC CC

AIR Partition Scheduler a 13 4

Underlying clock tick ISR >190 b >20

aAlgorithm 1
bC code only; plus >182 assembly instructions

Table V
LOGICAL SLOC AND CYCLOMATIC COMPLEXITY (CC) FOR THE

IMPLEMENTATION OF DEADLINE VIOLATION MONITORING IN AIR PAL

Logical SLOC CC

Register deadline 34 6
Unregister deadline 12 3
Verify deadlines a 16 2

aAlgorithm 2

Table VI
AIR PARTITION SCHEDULER (WITH MODE-BASED SCHEDULES)

EXECUTION TIME — BASIC METRICS

Minimum (ns) Maximum (ns) Average (ns)

32 186 36

ISR, they must have a bounded execution time; computa-
tional complexity is a good indicator thereof.

In the AIR Partition Scheduler (Algorithm 1), all instruc-
tions areO(1). Accesses to multielement structures are made
by index, and thus their complexity does not depend on the
number of elements or the position of the desired element.

Linear complexity is easily achievable for the majority
of the executions of the process deadline verification at the
AIR PAL level (Algorithm 2). By placing deadlines in a
linked list in ascending order of deadline times, the earliest
deadline is retrieved in constant time. The removal of a
violated deadline from the data structure can also be made
in constant time, since we already hold a pointer for the said
deadline. In case of deadline violation, the next deadline(s)
will successively be verified until reaching one that has not
expired. Thus, the worst case wields O(n), where n is the
number of processes in the partition. However, by design, the
number of processes is bounded, and these worst cases are
highly exceptional and mean the total and complete failure
of the partition, which should be signalled to the HM.

C. Basic execution metrics

AIR Partition Scheduler execution time has been mea-
sured, resulting in the basic metrics shown in Table VI.
These values were obtained executing the AIR prototype
demonstrator on a native machine equipped with an Intel
IA-32 CPU with a clock of 2833 MHz. Time readings
are obtained from the CPU Time Stamp Counter (TSC)
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64-bit register, being rounded to 1 ns. Measurements showed
negligible variation between sample executions.

Though encouraging, these results should be enriched.
Further work will compare them with the execution of the
whole clock tick ISR, dissect the execution time by subcom-
ponents, and identify trends in execution time variation.

VI. CONCLUSION AND FUTURE WORK

In this paper, we detailed and analysed fundamental mech-
anisms providing support for adaptive and self-adaptive be-
haviour to aerospace missions based on the AIR architecture
for time- and space-partitioned systems. Support for mode-
based partition schedules directly provides the capacity for
adaptation by direct order from ground control, and also
for self-adaptation according to the perceived operational
conditions of the mission. The mechanisms for process
deadline violation monitoring and protection against event
overload allow controlling the overall timeliness, through
self-adaptation in the presence of exceptional and uncertain
operational conditions.

Besides implementing self-adaptation as a function of
process deadline violations, future work includes adding
AIR the capability to receive and apply updates to the
currently installed applications and PSTs [15]. We are also
currently exploring the approach of taking advantage of
multicore platforms in AIR [2]. The availability of multiple
cores can be applied for fault tolerance, with the system
adapting to a hardware failure by assigning an application
to a different core than the (failed) current one.
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