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Abstract—Applications have many opportunities to be adap-
tive. One of them is the ability to control the input language(s).
To achieve this objective we present an efficient semi-top-
down parsing technique — kind parsing. It supports on-line
(parse-time) as well as off-line extensions, restrictions or other
adaptation of the accepted language. Kind parsers can be
adapted quickly and the changes of the parser’s structure tend
to be only local. We suppose that such a technique can be very
useful for adaptive system development.
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I. INTRODUCTION

Development and maintenance of adaptive applications
could become simpler if adaptive techniques were used. Do
we have enough usable adaptive techniques? We suppose
that it would come to useful if there were more techniques
available. Therefore, this paper describes one of them.

In the case that our input data are in an XML-based
format, we can use standard XML techniques. As XML is
extensible from the beginning, the XML-parsers and other
XML-tools should be able to cope with it somehow.

But what happens if the input is not XML-based? Hand-
written parsers as well as parsers generated by usual parser
generators are not (reasonably easily) extensible. They are
built to handle just one language — the one specified in the
beginning. So, should we give up adaptivity for non-XML
inputs? No!

We should use parsers that are extensible or even modifi-
able. The parser extensibility or modifiability can be off-
line (applicable only on parsers that do not parse at the
moment) or on-line (applicable also during parsing). To
support adaptability or self-adaptability it could be better
if the parser could be extended or modified on-line.

There is a parsing technique called kind parsing [1], [2]
allowing on-line changes of the parsers and being efficient
(parsing in the linear time). We will shortly describe the
parsing technique here and show that it is possible to use
its structure also for on-line language restrictions. If we
have both on-line extensibility and restrictability of the input
language, we get an on-line modifiable (adaptable) parsing
technique.
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A. Paper Structure

It is reasonable to start projects with the specification of
requirements. We collect requirements on parsers to be adap-
tive in Section II. The structure of Kind Parsers is introduced
in Section III. Section IV presents how they work. Section
V describes how Kind Parsers can be extended and when
it is safe to do that. A discussion about communication of
parsers with other parts is in Section VI. Issues related to
an (on-line) parser restriction are covered by Section VIL.

II. REQUIREMENTS

We expect that readers are a bit familiar with the basics
of the parsing theory presented in many nice books — let us
mention at least a few of them: [3], [4], [5], [6].

To change the parser efficiently it is good if the changes
are only local — i.e., it is not necessary to generate the entire
parser again and only a few its parts are affected. If the
changes are on-line, the computation, which has been done,
must be preserved. On condition that we use a pushdown
automaton, it involves at least the current state and all
symbols on the stack. More precisely, it should be possible
to get from the current parsing configuration to some final
configuration or to other parser-changing configuration.

Therefore, we need a parser structure that is easily modifi-
able and computation-preserving. Such a requirement holds
for structures like a tree or a forest. Well known parsing
techniques like LR(k) [7], SLR(k) [8], LALR(k) cannot be
used, as even a small change in the grammar may induce
large changes in the parser. Other techniques like LL(k) [9],
[10] and SLL(k) are of a very limited use: Their structure
is a forest, but they are too restrictive in the form of the
trees — they can fork only in their root nodes. Restrictions
on the parser changes would be too strong, or productions
(and the parser structure) would have to be adapted to
productions with at most two symbols on their right-hand
side (to support more changes). Such grammars are harder
to read (understanding them requires more effort and thus
using them may induce more practical troubles), so it is
better if the system supports productions written “naturally”
(i.e., in the way designers think). Therefore, we do not want
to be so restrictive in the grammar design.

Ch(k) grammars proposed by Nijholt and Soisalon-
Soininen in [11] are quite promising in this sense. Produc-
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tions for every nonterminal may create arbitrary trees. There
are, however, two issues:

« re-computation of lookaheads is quite complex for k& >
1,

o left recursion is not supported. (A production is called
left recursive if it is possible to derive a string of
symbols from its right-hand side, which starts with the
symbol from its left-hand side. A grammar is called
left recursive if it has left-recursive productions. Left
recursion is often used to describe lists or arithmetic
expressions. It is possible to describe them without left
recursion [12] but it is less comfortable.)

The tree/forest structure and support for handling left
recursion are met by kind grammars and kind parsers [13],
[2]. We will describe their structure, show the local character
of changes, and discuss the limitation of input language
restrictions and modifications.

III. STRUCTURE OF KIND PARSER

We will explain the structure and behaviour of kind
parsers via the “transformation” of a kind grammar to a kind
parser and a few examples. In our examples a grammar G gg
= (N,X,P,S) of a simple arithmetic expression will be used.

Example 3.1 (Simple arithmetic expression):
N={S,E,T,F}
¥ = {id,num, (, ), +, *}

S — F,
E—-E+T,FE—T,
T—>TxFT—F,

F —id, F — num,F — (E)

P:

S=S5
In one case we will need a set of productions describing a
simple command.

Example 3.2 (Productions of a simple command):
cmd — begin cmds end
cmd — id := E
cmd — id (E)
cmd — read id
cmd — write E
cmd — write str
cmd — while cond do cmd

Let us start with dividing the productions into groups
followed by their simple changes and redrawings. First, the
productions are grouped according to the nonterminal on
their left-hand side and according to their left recursiveness
(Table I).

Then a special symbol is put to the end of each production
that denotes the end of a production. These special symbols
will be used to handle productions that are prefixes of
some other productions and moreover to simplify the parsing
process. In many parsing systems the end of a production
may start semantic actions — activities related to a production
or a parsing point. For top-down or semi-top-down parsing
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Table I
PRODUCTIONS DEFINING A SIMPLE ARITHMETIC EXPRESSION GROUPED
ACCORDING TO THE NONTERMINAL ON THEIR LEFT-HAND SIDE AND

RECURSIVENESS
Productions

without left recursion | with left recursion
S—FE
E—-T E—>E+T
T —F T—TxF
F —id
F — num
F — (E)

it is reasonable to allow semantic actions on arbitrary (or
close to arbitrary) places within productions (Table II).

Table II
SPECIAL-SYMBOL-TERMINATED PRODUCTIONS DEFINING A SIMPLE
ARITHMETIC EXPRESSION GROUPED ACCORDING TO THE
NONTERMINAL ON THEIR LEFT-HAND SIDE AND RECURSIVENESS

Productions
without left recursion | with left recursion
S — E #51
E—T #F; E— E+T #E>
T—}F#Tl T—>T*F#T2
F —id #F,
F — num #F>
F — (E) #F3

Then we can isolate the left-hand-side nonterminals from
the productions. In the left-recursive groups the leading
nonterminals can be omitted.

Table IIT
MODIFIED PRODUCTIONS
Nonterminal | right-hand sides of productions having

no left recursion | direct left recursion
S E #51
E T #FE; +T1 #E»>
T F #T xF #Ts

id # I
F num #F5

() #I3

After that, the productions are redrawn from the textual
form to graphs with edges labelled by symbols (Figure 1).

Next, the productions are reordered so that all productions
with the common prefix are together. The common prefixes
can be joined to make a single path (Figure 2).

The tree structure is better visible on the example of a
simple command (Figure 3).

Finally, the nodes of the trees can be decorated with
lookaheads to simplify a traversal along the forest (Figure
4).

IV. PARSING PROCESS

The work of the kind parser can be described as an input-
driven traversal through the production forest — regardless of
the representation of the kind parser (which can be in the
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cmd

Figure 3. Simple command basic production tree
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nonterminal N
i-th production for nonterminal N
Figure 1. Productions drawn as graph
S
E T k)
T
F

Figure 2. Productions drawn as forest

form of, e.g., a forest, a pushdown automaton, or a set of
procedures forming a recursive descent parser).

1) It starts in the root of the non-recursive production
tree that is associated with the starting symbol and
the pushdown is in its initial setting (e.g., it contains
the initial stack symbol only).

2) The lookahead is compared with the lookahead deco-
ration of the node.

3) If there is a path corresponding to the lookahead, the
corresponding edge is entered; if no such edge exists,
the parsing ends with rejection of the input (or error
handling is started).

4) The label type of the current edge is checked:

a) terminal: The input is read and matched with
the label — if they do not correspond, the input
is rejected and a syntax error is reported. If
full lookahead handling is used, the check is
redundant. However, in case of lazy lookahead
handling (lookaheads are computed for branch-
ing nodes only), it can be a necessity.

b) nonterminal: The current position in the forest
is put on the stack, the root of the non-recursive
production tree is entered.

¢) production: The lookahead is checked whether
it conforms with the lookahead of the root of
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Figure 4. Production tree for nonterminal F' with precomputed lookaheads

the corresponding recursive tree. If it does, the
parsing continues here. If not, the Follow set
of the given nonterminal (covering only non-
recursive cases) is checked. If the current looka-
head does not fit, the input is rejected or a
syntax error handling procedure is started. If
there is a stored position on the stack, it is
retrieved and the parsing continues from that
parsing position. If the entire input has been read,
it is accepted, otherwise only the read part of the
input conforms to the input language.

The parsing process of a kind pushdown automaton is
described in [14] or [2].

V. PARSER EXTENSION

A kind parser extension is quite simple: New productions
are inserted into production trees in such a way that new
paths are created there. It holds that all existing nodes
and edges of the trees are preserved, only new edges and
nodes are added. If new nonterminals are introduced, new
production trees occur. Every reference to a node or an
edge from the parsing stack existing before the extension
is available and usable also after the extension. Every input
acceptable without the extension is accepted the same way
also after the extension. Hence on-line extensions of kind
parsers are safe.

On-line language extensions can be of different extent
(their validity may have a different span):

« permanent — from the extension forever;
« temporal — from a given point to another given point
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a) original production trees

production without left recursion (£ — T)
{ Gidnum ] T | +,),e0i HEL

left-recursive production (F — E + T)

i CCidnum ] T P ) e0i HHEED

b) extended production trees

productions without left recursion (E — T | —T)

— () Gidnum [T P T ) e0i HFEES:

E(,id,num —>| T P +,)e0i i#EL

left-recursive productions (E — E+T | E—1T)

= Gidnum T P ol - HEE:
+ Gidnum =] T P +,)e0i -5}

Figure 5. An extension of production trees for nonterminal E with
productions £ — —T and £ — E - T

(the validity can be, e.g., limited to a language con-
struct);
« semi-permanent — from the extension to a parser restart.

Similarly, extension definitions may have different origin:
They are either pre-defined in the language definition, or
even part of the input text that is being parsed (or derived
from it). A request to switch to the extended language can
also be part of the input text or it is an asynchronous event
generated by the application that uses the parser. The same
holds for parsed language restrictions and modifications
discussed below.

The design of extensible grammars may differ from the
usual grammar design. It can be advantageous for later
extensions to handle also grammars that are not reduced
(according to, e.g., [15, p. 273] a context-free grammar
G is said to be reduced if it contains neither inaccessible
nor useless nonterminals; simply said, all symbols must be
reachable from the starting symbol and it must be possible to
rewrite all nonterminals to a terminal string) — see Example
5.1.

Example 5.1 (Possible use of a non-reduced grammar):
Let us have a language L = {a"cb"ea™cb™|m,n >
0} U {a™db"ea™db™|m,n > 0}. The language can be
generated by the semantic grammar

N = {S5A B}
Y = {a,b,cde},
o = {o,7},
G=| S ,
S — AeB
P = A — aAb|co|dr
B — aBb
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where semantic action ¢ adds production B — ¢ and
semantic action 7 adds production B — d.

Extensions also give us an elegant and clear way to
express some grammar constructs or even a possibility to
express context conditions at the level of the syntax analysis
and still use a parser based on lookahead automata and
context-free grammars.

VI. OuTPUT

There are several types of output that parsers can produce.
The simplest one has mainly theoretical value — parsers just
return a logical value stating whether the input word belongs
to the accepted language or not.

Practical parsers produce an output that can be further
used. One option is a parsing (derivation) tree or information
usable for its construction — the sequence of used produc-
tions (e.g., the sequence of visited end-of-production edges
of our structure).

Another possible output type is a sequence of extra
symbols — semantic actions. Usually each semantic action
corresponds to some activity of the application using the
parser. A special case of such activity can be an extension,
a reduction, or even a general modification of the parser.

Parsers can be extended to be transducers. They can trans-
form a message in the input language to another message in
the output language. In such a case another type of symbols
called output symbols or output terminals are used. This kind
of the parser output can correspond to SAX events known
from XML processing.

VII. PARSED LANGUAGE RESTRICTION

Having an extensible tool is good. Having an opportunity
to remove unnecessary constructs gives some further advan-
tages.

In contrast to a language extension (which is safe for
kind parsing), a language restriction requires to be done with
some care. For an off-line language restriction usual checks
performed for parser construction are sufficient. If we want
to reduce the language on-line, we must be more careful, as
the already parsed part of the input produced some results
that should be preserved for the rest of the parsing process.

It can happen (if we are not careful enough) that a too
strong restriction (removal of some parts of the parsing
forest) may affect already made computations or even the
opportunity to finish the computation itself successfully.

Therefore, some rules must be set, which would guarantee
that even after a parser restriction the computation can be
finished for a proper input (and the input accepted). We can
consider these safety levels:

1) no checking;

2) postponed checking — non-correctness is detected dur-

ing lookahead recomputation or even during parsing
(in case of lazy lookahead handling or when a deleted
symbol is popped from the stack);
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3) a sequence of steps leading (for proper input) to
the next syntax change or to an accepting situation
must be preserved; (We use a situation instead of a
configuration, as in the parsing theory a configuration
means a triple (state, stack, unread part of input));

4) a sequence of steps leading (for proper input) to the
final configuration must be preserved;

We can also check whether the resulting grammar is reduced
or not.

The real complexity of checks of resulting grammars
depends not only on the grammar size, but also on the
current parser stack depth (all the symbols on the stack
should be checked). The number of different stack symbols
is limited by the grammar, so we can bind the complexity
of the checks to the grammar size.

A tool, built according to the theory summarised in this
paper, is available in [16] or [17]. It is an implementation of
a modifiable kind parser that manages to extend or modify
the input language at parse time, both permanently and
temporarily. As a demonstration of its power, see Example
7.1. It makes possible to start a program in one language,
then switch to another, go back to the first one, and so on.

The whole source can be processed in a single pass.
Example 7.1 (Two languages in one source):

paslike
var A : array[l..10] of integer;
n : integer;

{Quicksort procedure}

procedure QS (start, stop integer) ;
var P,

il j

pom : integer;
integer;

begin

if start < stop then

begin

P:=(A[start]
i:=start;
j:=stop;

+ A[stop]) div 2;

while 1 <= j do

begin
clike
/* find items to change =*/
while (A[i] < P) ++1i;
while (A[]J] > P) —--3;
if (1 <= J){
pom=A[i]; A[i]=A[]J]; A[j]l=pom;
++1i;
-=3Ji
}
finish
end;

QS (start, j);
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QS (i, stop)

end;
end;

clike

int main (int argc,char *=*argv) {
fill (A);
Qs (1, 10);
present (A) ;
return 0;

}
finish
finish
VIII. CONCLUSION

Kind parsing presented in this paper can be — as an
adaptive technology — a very useful tool for adaptive system
development. It is an efficient and easy to understand pars-
ing technique that supports on-line and off-line adaptation
(extensions, reductions, general changes) of the accepted
language.

The on-line changes can be induced by information con-
tained in the input that is being parsed (processed as a
semantic action) or even by an asynchronous parser chang-
ing event generated by the application using the parser, i.e.,
the application can change the behaviour of the underlying
parser processing a data stream.

The theory introduced in this paper was practically veri-
fied by implementing tools.

We suppose that such adaptive parsers can be used at least
in these cases:

« parsing/compiling extensible languages,

« (adaptive) front-end gates [18],

« input parts of adaptive systems controlled from outside

(other applications or adaministrators),

« input parts of (self-)adaptive systems controlled by the

input text/data,

« input parts of self-adaptive systems controlled by the

application logic.
The only restriction is that the cooperating parts of the
system influenced by the adaptation must be adapted cor-
respondingly.
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