
Efficiency Testing of Self-adapting Systems by Learning of Event Sequences

Jonathan Hudson, Jörg Denzinger
Department of Computer Science, University of Calgary

Calgary, Canada
Email: {hudsonj, denzinge}@cpsc.ucalgary.ca

Holger Kasinger, Bernhard Bauer
Department of Computer Science, University of Augsburg

Augsburg, Germany
Email: {kasinger, bauer}@informatik.uni-augsburg.de

Abstract—Adding self-adaptation as a property to systems
aims at improving the efficiency of this system. But there is
always the possibility for adaptations going too far, which is
very detrimental to the trust of users into a self-adapting
system. In this paper, we present a method for testing the
efficiency of a self-adapting system, more precisely the poten-
tial for inefficiencies after adaptation has taken place. Our
approach is based on learning sequences of events that set
the system up so that a second following learned sequence of
events is reacted to very inefficiently by the system. We used
this approach to evaluate a self-adapting system for solving
dynamic pickup and delivery problems and our experiments
show that the potential inefficiencies due to self-adaptation
are smaller than the inefficiencies that the non-adapting base
variant of the system is creating.

Keywords-testing; learning; dynamic optimization

I. I NTRODUCTION

Quality and thoroughness of testing are important factors
for the trust of users into any kind of system, be it physical
systems like power plants or cars or pure software systems.
Naturally, what constitutes thorough and high quality testing
depends very much on the system that is tested and the
properties it is tested for. While testing “conventional”
systems for their intended behavior essentially boils down
to having the time to go through all these behaviors, testing
them for “negative” properties, like under no circumstances
showing a certain behavior, already is a difficult task and the
quality of the testing heavily depends on the human tester
and his abilities. For self-adapting systems, this becomes an
even more difficult task, since unwanted or bad behavior
might only emerge after a series of adaptations of the
system. And if such a system consists of several interacting
components (agents), then a tester faces additionally the
danger of unwanted emergent behavior, also calledemergent
misbehavior(see [6]). Expecting every human tester to find
crucial problems with self-adapting systems with the poten-
tial for emergent behavior is a highly doubtful assumption
and does not instill trust in such systems in general.

In this paper, we present an automated approach to test a
self-adapting, self-organizing multi-agent system that solves
dynamic pickup and delivery problems. A key property for
such a system is the efficiency of the delivery behavior and,
with regard to its self-adaptation, the potential for (tempo-
rary) loss of efficiency due to self-adaptation and change of

the environment. Our testing approach is based on learning
sequences of events for the tested system to encounter and
react to. More precisely, we extend the evolutionary learning
approach of [2] to search for two sequences of events that
represent tasks and when they are announced to the tested
system. One sequence, the set-up, is aimed at having the
system adapt itself to it by exposing the system repeatedly
to this sequence. After the system is optimally adapted, the
break sequence is given to it and the aim of our learning test
system is to find two such sequences so that the efficiency
achieved by the tested system for the break sequence is much
worse after adaptation than without adaptation, providing
users with a practical example of how bad a temporary loss
of efficiency can get.

We applied our approach to the self-adapting improvement
of a system for dynamic pickup and delivery problems based
on digital infochemical coordination (see [4]). The self-
adaptation is achieved by a so-called advisor that identifies
recurring task sequences that are not well handled by the
base system, determines how the tasks should be handled
and creates exception rules for the transportation agents that
achieve the intended solution (see [9]). We used our testing
approach also to find problem instances for which the base
system of [4] is not very efficient. Our test system found
event sequences where the base system’s efficiency was on
average 3.5 times worse than the optimal solution, whereas
the self-adapting variant was only two times worse for the
break sequence than without self-adaptation. This is, in our
opinion, a rather good result for the self-adapting variant,
since for many instances this variant improves the behavior
substantially (as documented in [4]).

After this introduction, in Section II we present the
general idea of learning of event sequences for testing. Sec-
tion III introduces our application area and Section IV the
system to be tested. Section V instantiates the general idea
for the system and Section VI reports on our experimental
evaluation. After a view on the related work in Section VII,
Section VIII concludes with some ideas for future work.

II. T ESTING USINGLEARNING OF EVENT SEQUENCES

In this section, we present our general scheme for testing
a self-adapting system for potential loss of efficiency due
to self-adaptation using learning of event sequences. While

200

ADAPTIVE 2010 : The Second International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-109-0

a self-adapting system naturally does not have to consist
of several agents, the system we present in Section IV for
instantiating our approach does, so that we assume that
our self-adapting system to be tested is a setAtested =
{Agtested,1, ..., Agtested,m} of agents. Our systemAtested

will work within an environmentEnv. There might be other
systems acting inEnv, either single agents or groups, that
interact withAtested and the environment itself might also
change. We see the actions of other systems as well as
all environmental changes as events that may or may not
influenceAtested. In order to allow for events caused by
other systems, for our testing we add a new group of agents
Aevgen = {Agevgen,1, ..., Agevgen,n} that are controlled by
a learner and that are generating events in the environment
for Atested to react to. This general setting is depicted in
Figure 1.

Figure 1. General setting of our approach

Formally, each agentAgevgen,i creates a sequence of
events ((evi

1, t
i
1), (ev

i
2, t

i
2), ..., (ev

i
l , t

i
l)), which along with

the reaction of the agents ofAtested produce a sequence
of environmental statese0, e1, ..., ex. This sequence of en-
vironmental states is utilized by the machine learner to
evaluate the associated sequence of events to find better
event sequences.

While several different machine learning techniques can
be used to learn event sequences, we will use an evolutionary
learning approach as suggested in [2]. Starting with a set of
randomly created event sequences for eachAgevgen,i, each
element (individual) is evaluated by running the events in
the environment and analyzing the resulting sequence of
environmental states using afitness function. Then the best
individuals are used to create new individuals usinggenetic
operators. The best individuals together with the new ones
form a new set (generation) and this process is repeated for
a given number of rounds.

III. D YNAMIC PICKUP AND DELIVERY PROBLEMS

The general pickup and delivery problem (PDP, see [7])
is a well-known problem class. Many of its instantiations
require solving dynamic instances of this problem and many
of those have many instances that allow for a self-adapting

system to improve efficiency. There are also several variants
of the PDP, for example PDP with time windows, that
add additional constraints to the problem. While our testing
method can be used for systems for all of these variants,
in our experiments we used a system solving the following
variant.

As the name suggests, a PDP consists of a sequence
of pickup and delivery tasks and in a dynamic PDP these
tasks are announced not all at the beginning but over a
period of time. The tasks are performed by one or several
transportation agents. The variant of PDP we are interested
in requires repeatedly solving such sequences of tasks, where
a sequence is called arun instance, and, in order to have
a chance for self-adaptation, we require that run instances
have at least several recurring tasks.

More formally, a run instance for a dynamic PDP is a se-
quence of task-time pairs((ta1, t1), (ta2, t2), ..., (tak, tk)),
where eachtai consists of a pickup locationlpick,i, a
delivery locationldel,i, and a required capacityncapi and
ti ∈ Time, ti ≤ ti+1, with Time being the time interval
in which the run instance is to be performed.ti is the time
at which tai is announced to the transportation agents. A
transportation agentAg has a transport capacitycapAg and
has to perform both the pickup and the subsequent delivery
to complete a task.

The solutionsol produced by a set of transportation agents
{Ag1,...,Agm} is represented as

sol = ((ta′1, Ag′1, t
′
1), (ta

′
2, Ag′2, t

′
2), ..., (ta

′
k, Ag′k, t′k))

where ta′i ∈ {ta1, ..., tak}, ta′i 6= ta′j for all i 6= j, Ag′i ∈
{Ag1, ..., Agm}, t′i ≤ t′i+1, t′i ∈ Time. A tuple (ta′i, Ag′i, t

′
i)

means that the pickup ofta′i was done byAg′i at time t′i.
There are many possibilities how to measure the efficiency

eff(sol) of the agents when producingsol. Examples are
distance covered by the agents, time needed to fulfill all
tasks, balance among the agents and many more, especially
all kinds of combinations. For our variant, we use as
efficiency measure the total distance traveled by all agents.
There are also many different environments in which agents
can work on the tasks. In our variant, we use a simple grid,
where each node represents a possible location.

IV. SOLVING PDPUSING DIGITAL INFOCHEMICALS AND

AN ADVISOR

Solving all kinds of dynamic PDP variants is rather
difficult, simply because of the dynamic nature that requires
to make decisions without really knowing what additional
tasks might come up later. Usually, the time frames for a
run instance do not allow to create an optimal plan every
time a new task is announced (the static PDP problem is
already in NP for most variants). As a consequence, many of
the systems used to solve dynamic problems mostly ignore
the efficiency aspect and concentrate on other useful system

201

ADAPTIVE 2010 : The Second International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-109-0

properties, like robustness against failure, graceful degrada-
tion, easy extendibility and general openness of the system.
Digital infochemical coordination (see [4]) is a coordination
concept for self-organizing multi-agent systems that shows
these properties and it has been used as the coordination
concept for a system solving the variant of PDP presented
in the last section. Essentially, each location in each task is
represented by an agent emitting infochemicals that lead the
transportation agents to them when a task is announced. The
transportation agents also emit infochemicals to coordinate
and avoid having all of them moving to the same pickup
location. If a location agent has been served, it, again, uses
specific infochemicals to inform the transports that they are
not needed by it anymore. Due to lack of space and because
a deeper understanding of this base system is not necessary
for understanding our instantiation of the testing idea from
Section II, we will not go into any more detail of this base
system. The interested reader should consult [4].

From a practical application perspective, efficiency of a
pickup and delivery system cannot be ignored! Therefore,
[9] extended the system from [4] to improve efficiency
using an additional agent, anefficiency improvement advisor
AgEIA, that essentially adds to the base system the ability
to reflect on the behavior shown by the transportation
agents and to adapt this behavior after having seen really
inefficient behavior that is likely to happen again in future
run instances. SinceAgEIA is part of the system, the system
as a whole is self-adapting.

The advisor works as follows: when the agents have dealt
with a run instance, they go back to their depot at which
the advisor is located and report their local history to it.
The advisor uses this data to compile a global history for
the whole system over a given number of run instances.
Using this global history,AgEIA identifies a sequence
(tarec

1 , ..., tarec
l) of recurring tasks by clustering all tasks

from the run instances using Sequential Leader Clustering
(see [3]). Every cluster with a size slightly smaller or equal
to the number of run instances indicates a recurring task. The
clustering makes use of a similarity measure for tasks, but
for our testing this measure is not of interest. ThenAgEIA

computes an optimal (or at least very good) solution for
the sequence of recurring tasks according to the efficiency
measureeff using an optimization algorithm for the static
variant of our PDP (in our case, we used a genetic algorithm
that uses or-trees as basis for the genetic operators). If
the optimal solution is much better than what the agents
generated in the last run instance,AgEIA starts creating
advice for the agents.

The advice consists of so-calledignore rules that are
iteratively produced byAgEIA. It compares the produced
solution with the optimal one and identifies the first position
where the two solutions are not identical (with regard to task
or agent). It then creates an ignore rule for the agent that
performed the task in the produced solution that essentially

has as condition the task (its pickup location and the needed
capacity) and as action the advice to the agent tonot do this
task. Since the base system is self-organizing, another agent
will pick up the task now ignored by the previous (and from
the perspective of efficiency wrong) agent. After an ignore
rule was given to an agent, the advisor waits until after the
next run instance to see if now the produced solution is
near enough to the efficiency of the optimal one. If not, the
production step for an ignore rule is repeated.

By repeating the clustering every time new data is avail-
able allows for dealing with a change of recurring tasks over
time. Theoretically a big change of tasks between two run
instances could result in a big (temporary) loss of efficiency
for the second run instance. Getting some practical idea how
bad this potential loss can get can improve a user’s trust into
the system dramatically, which is what our testing system
in the next section is aimed at producing.

V. I NSTANTIATING OUR TESTING APPROACH

There are several potential sources for a system as de-
scribed in the last section to produce rather inefficient
solutions to run instances and thus several sources for
distrust in the system. We are interested in the effects of the
advisor and especially the potential for overadaptation and
the consequent loss of efficiency when the system encounters
a run instance with a unique set of tasks after adapting to a
different recurring set of tasks.

When instantiating the general idea from Section II to
create a test system for the self-adapting system presented in
Section IV, we followed the usual approach of human testers
to concentrate on the test goal and to eliminate influences
that are not in the test goal. So, in order to speed up
adaptation in our test system, there are no non-recurring
tasks in the setup run instance. The test system concentrates
of finding a setup sequence of tasks (events), that the systems
repeatedly encounters and adapts to, along with a second
sequence, which is encountered after the setup adaptations.
And the test goal is to find such a pair of sequences for
which the efficiency for the second sequence after adaptation
is much worse than without adaptation taking place. The
transportation agents (and the advisor) form the setAtested.
In [4] and [9], agents at the appropriate locations for a task
announce the tasks to the tested agents, so that we have
indeed a set of event generating agents. But for the number
of tasks we use in our experiments, we have a lot of locations
that are not used by them. Therefore we use run instances
in our individuals and create them centrally in our learner.

More precisely, an individual of our evolutionary learner
is a pair (essetup, esbreak), where each of the two run
instances is a sequence of task-time pairs. As evolution-
ary operators we use the usual single point mutation and
crossover on lists by first selecting a positiono in either
essetup or esbreak. A mutation then takes the run instance
((ta1, t1), ..., (tal, tl)) and creates

202

ADAPTIVE 2010 : The Second International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-109-0

((ta1, t1), ..., (tanew
o , tnew

o), ..., (tal, tl))

where eithertanew
o is a different task thantao or tnew

o 6= to.
Crossover takes two run instances((ta1

1, t
1
1), ..., (ta

1
l , t

1
l))

and ((ta2
1, t

2
1), ..., (ta

2
l , t

2
l)), and creates a new instance

((tanew
1 , tnew

1), ..., (tanew
l , tnew

l))

where each(tanew
i , tnew

i) is either equal to(ta1
i , t

1
i) or to

(ta2
i , t

2
i). Then the new individual copies the not selected

run instance from the first parent pair and adds the newly
created run instance as the other element of the new pair.

We also added a so-called targeted operator, which is a
twin point mutation operator that attempts to create similar
tasks between the two run instances of the individual to
allow the ignore rules created for adaptation to the setup
instance to negatively impact the break instance. This is
achieved by aligning a task-time pair between the instances.
If the individual (essetup, esbreak) is

(((ta1,1, t1,1), ..., (ta1,l, t1,l)), ((ta2,1, t2,1), ..., (ta2,l, t2,l)))

then the targeted twin point mutation operator selects a
position i and creates the new individual

(((ta1,1, t1,1), ..., (tanew
1,i , tnew

1,i), ..., (ta1,l, t1,l)),
((ta2,1, t2,1), ..., (tanew

2,i , tnew
2,i), ..., (ta2,l, t2,l)))

wheretanew
1,i andtanew

2,i are identical tasks andtnew
1,i = t+ε1

andtnew
2,i = t+ ε2 for randomly chosent ∈ Time and small

numbersε1 and ε2.
While an obvious fitness measure for an individual

(essetup, esbreak) would be to simply compute the difference
in efficiency between the created solution foresbreak with
adaptation (eff(sol+ad(esbreak)) and without adaptation
((eff(sol−ad(esbreak)), our initial experiments showed that
the learner needed some more “advice” to create the indi-
viduals we wanted quickly. More precisely, the learner had
problems due to many early individuals where no adaptation
took place and due to individuals wheresol+ad(esbreak) was
too near to the optimal solution. Both types of individuals
clearly are not of interest for our test goal and therefore we
created a fitness measure punishing them:

fit+ad((essetup, esbreak)) =
pract(esbreak)+theo(esbreak)+adapt(essetup)

eff(solopt(esbreak))

with

pract(esbreak) = max[(eff(sol+ad(esbreak))−
eff(sol−ad(esbreak))) ∗ wpract, 0]

theo(esbreak) = max[(eff(sol+ad(esbreak))−
eff(solopt(esbreak))) ∗ wtheo, 0]

adapt(essetup) = max[(eff(sol−ad(essetup))−
eff(sol+ad(essetup))) ∗ wadapt, 0]

andsolopt(esbreak) being the optimal solution for the break
run instance.

We account for the difference of the solution quality
produced foresbreak before and after adaption weighted by

a parameterwpract. We also take account of the difference
between the emergent solution foresbreak after adaptation
and the optimal solution weighted by a parameterwtheo

measuring how far the solution is from the theoretical opti-
mum, along with taking account of the difference between
the solution produced foressetup before and after advice,
usingwadapt as parameter for its importance.

The learning testing system for the self-adapting system
for PDP as described above can be easily modified for other
testing goals around efficiency of a system. For example,
the efficiency of the underlying self-organizing base system
can be tested using only one run instance as individual
(essentially just havingesbreak), not using the targeted twin
point mutation operator and using as a fitness function

fitbase(esbreak) = eff(sol−ad(esbreak))
eff(solopt(esbreak)) .

In the next section, we will not only report on our experi-
ments testing the self-adapting system for PDP, we will also
provide results on how bad the efficiency of the base system
can be compared to an optimal solution, to put our results
for the self-adapting system into perspective.

VI. EXPERIMENTAL RESULTS

In this section, we describe several experiments performed
using our test system to evaluate the self-adapting system for
PDP from Section IV. First we present the general settings
for the experiments and then the results of our test system for
the settings. To put these results in perspective, we also used
the variant of the test system described in the last section
for the base system for PDP.

A. Experimental Settings

Each experiment used a10× 10 grid with a depot in the
middle. We used the settings for the various parameters of
the base system and advised variant reported in [9]. Our
testing used the following percentages for a new population
to be created by the evolutionary operators: 10 percent
best survived, 30 percent generated using crossover and 60
percent via mutation, 30 for each kind of mutation.

Every experimental series consisted of 5 runs of the
testing system due to the random effects of the evolutionary
learning process. In all experiments we used two transporta-
tion agents,Ag1 andAg2, and 2, 4, 6, 8 and 10 tasks. This
limitation to two agents is because within the chosen range
of task sizes the addition of other agents was unnecessary so
that also self-adaptation would not be necessary. Also, from
a testing perspective we are interested in small examples that
show a problem.Time was an integer interval of[0, 50] for
2 tasks,[0, 100] for 4 tasks,[0, 150] for 6 tasks,[0, 200] for
8 tasks and[0, 250] for 10 tasks. For each number of tasks
we performed one run to get an idea after what generation
no improvement seemed to occur anymore and we used this
number to limit the run length of the other test runs. For the
provided results we indicate both the average efficiency loss
and the maximal loss among the 5 runs.

203

ADAPTIVE 2010 : The Second International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-109-0

B. Quantitative Results

Table I summarizes our experimental results for testing
the self-adapting system for the PDP as set up in the last
subsection. For the fitness function we used weights of
wpract = 25, wadapt = 5, and wtheo = 1. This means
that the primary component is how much worse the break
run instance is solved after adaptation, compared to the
efficiency the system shows for the break instance without
the adaptation. The other components are there to make sure
that the setup instance really leads to an adaptation and that
the break instances are solved badly, as described in the last
section.

Tasks Generations Average Maximum
2 35 1.7 1.9
4 70 1.8 1.9
6 105 2.0 2.1
8 140 1.9 2.1
10 175 2.0 2.0

Table I
EFFICIENCY LOSS RESULTS FOR SELF-ADAPTING SYSTEM

Table I shows the average efficiency loss due to the
adaptation is around a factor of 2 and the worst found
examples are also very near to that factor1. This means
that in the rather extreme situation where a total change
of the tasks to fulfill can happen (which is usually not the
case in the scenarios for which the advisor was developed)
the system result is only two times worse than without the
advisor. With regard to the efficiency of our test system
itself, the 5 runs accounted for in the 10 task entry of the
table took 19.4 hours to complete.

Before we look more closely at one of the runs from
Table I to see what causes the loss of efficiency, we will
first look at the results of our testing system when modified
to evaluate the efficiency of the base self-organizing system.
Table II presents the results of our test system for the same
numbers of tasks and the same grid setting as for Table I.
As can be seen, the worst event sequences found by our test
system are clearly worse than the efficiency loss potential
found for the self-adapting system. One of the goals of the
particular self-adapting system we are testing was to keep the
strengths of the base system, especially the self-organization
ability, so that big changes in events from one run instance
to the next would have no big impact. Tables I and II show
that this goal was indeed achieved.

C. A “bad” problem instance

Figures 2 and 3 visualize one of the examples with 4
tasks. The setup run instance is

((F,K),19),((L,H),35),((C,G),74),((J,A),75)

1As already stated, the efficiency loss is computed as the efficiency of
the solution foresbreak after adaptation divided by the efficiency of the
base system without adaptation foresbreak.

Tasks Generations Average Maximum
2 40 2.6 2.8
4 80 3.4 4.9
6 120 3.4 3.7
8 160 3.6 4.5
10 200 3.6 4.5

Table II
EFFICIENCY PROBLEMS OF BASE SYSTEM(fitbase)

and the break instance is

((D,E),18),((F,I),38),((B,D),55),((J,F),78).

Without the advisor, the system solves the setup instance
by having Ag1 (indicated by the dashed lines) fulfill task
((F,K),19), starting to respond to task ((C,G),74) but then
switching to task ((J,A),75).Ag2 does ((L,H),35), starts
to respond to ((C,G),74), switches to start to respond to
((J,A),75) and then switches back to fulfilling ((C,G),74).
The advisor realizes that one agent should do all tasks and
creates exception rules forAg1 to ignore tasks starting at
F after time 19, L after time 35, C after time 74 and J
after time 75. As the bottom left part of Figure 2 shows,
this does not result in a perfect solution after the advice,
sinceAg2 fulfills ((F,K),19) then ((L,H),35), then starts to
fulfill ((C,G),74), but switches to ((J,A),75) and then comes
back to fulfilling ((C,G),74). This shows a limitation of the
existing ignore exception rules provided by the advisor since
it cannot enforce a time for the agents to complete tasks in.

Without having the advisor, the break run instance is
solved by the system by havingAg1 fulfill (((D,E),18), then
((F,I),38) and then ((J,F),78).Ag2 fulfills ((B,D),55). As with
so many of the instances for a system with two agents, the
optimal solution would be to have one agent do all tasks.
After having adapted to the setup instance, the system solves
the break instance in the following manner.Ag1 fulfills task
((D,E),18), ignores ((F,I),38) because of the exception rule,
partially responds to ((B,D),55), discards this task and then
ignores ((J,F),78) due to the other exception rule. This means
that Ag2 fulfills first ((F,I),38), then does ((B,D),55), and
then performs ((J,F),78).

Figure 2. Setup without Advice (Right) vs. Setup with Advice (Left)

This example shows the importance of having targeted
operators to bring knowledge about the tested system into the

204

ADAPTIVE 2010 : The Second International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-109-0

Figure 3. Break without Advice (Right) vs. Break with Advice (Left)

learning process. The twin point mutation operator connects
tasks in the setup and the break instance to create events
that trigger the exception rules, which may then result in
unwanted behavior. These unintended consequences are the
danger of an advisor and our test system gives us an idea
of the potential inefficiencies produced.

VII. R ELATED WORK

The use of learning/self-adapting systems to test systems
for certain properties/test goals has become a very active
research area over the past years, although not under the
terms “learning” or “self-adaptation” (many use “search
based” instead). Many of the evolutionary approaches for
testing reported at [8] are, in fact, learning systems. For
example, [1] evolves a schedule of given events for a
scheduler (resp. an executable model of it) with the goal to
find times for the announcement of the given events that lead
to infeasible schedules. [1] comes nearest to our approach,
but the tasks have to be given, not learned, and the tested
system is a single agent, not a group.

With regard to testing self-adapting or even just self-
organizing systems, this topic has not drawn a lot of at-
tention, so far. Naturally, for testing the wanted behavior of
such systems, standard testing methods can be and are used.
But the added difficulty to “negative” testing has not been
the focus of research beyond the already mentioned works.

VIII. C ONCLUSION AND FUTURE WORK

We presented a method to test self-adapting systems for
adaptations that result in a loss of efficiency and for the
tasks that are solved less efficiently. By learning sequences
of events that set up the system so that a follow-up sequence
is badly solved, our method provides users of self-adapting
systems with an idea what can go wrong and allows them
to evaluate this risk compared to the gains the self-adapting
system is providing. This aims at increasing the trust into
the system. Naturally, the developers of the system also can
use the found sequences to improve their system.

We used a system based on our method to test a self-
adapting, self-organizing multi-agent system for one variant
of dynamic pickup and delivery problems. Our experiments
showed that while our system was only able to find event

sequences for the self-adapting system that were around 2
times worse than what the system without the self-adaptation
would have achieved, for this base system without adaptation
a variant of our test system was able to find on average event
sequences that it solved around 3.5 times worse than would
be the optimum solution. In our opinion, this strengthens
the claim of the self-adapting system developers that their
adaptation approach is very targeted to situations in which
the base system is bad and represents only a minimal
intrusion into the base mechanism.

Naturally, like all testing, our method cannot guarantee
to find the worst event sequence there is for the tested
system. But, compared to a human tester, it has no bad days
and works always on a consistent level, especially if a test
consists of several runs of the system as in our experiments.
And our system does not retire and leave a company with
novice testers.

There are several directions for future research. The
developers of the self-adapting system we used have ideas
for additional types of exception rules that are more invasive
into the base system than the ignore rules (see [5]). Testing
these new rules should provide an idea if this increases
the potential for inefficiency. Along the development and
integration of these new exception rules, our test system can
also be used to realize some kind of test-driven development
for self-adapting systems. Finally, we plan to use our method
to develop test systems for other self-adapting systems for
other applications.

REFERENCES

[1] L. Briand, Y. Labiche, and M. Shousha: Using Genetic Algo-
rithms for Early Schedulability Analysis and Stress Testing
in Real-Time Systems, Genetic Programming and Evolvable
Machines 7(2), 2006, pp. 145–170.

[2] B. Chan, J. Denzinger, D. Gates, K. Loose, and J. Buchanan:
Evolutionary behavior testing of commercial computer games,
Proc. CEC 2004, Portland, 2004, pp. 125–132.

[3] J.A. Hartigan: Clustering Algorithms, John Wiley and Sons,
1975.

[4] H. Kasinger, B. Bauer, and J. Denzinger: Design Pattern for
Self-Organizing Emergent Systems Based on Digital Info-
chemicals, Proc. EASe 2009, San Francisco, 2009, pp. 45–55.

[5] H. Kasinger, B. Bauer, J. Denzinger, and T. Holvoet: Adapting
Environment-Mediated Self-Organizing Emergent Systems by
Exception Rules, Proc. SOAR 2010, Washington, 2010.

[6] J.C. Mogul: Emergent (mis)behavior vs. complex software
systems, SIGOPS Operating Systems Review 40(4), 2006,
pp. 293–304.

[7] M.W.P. Savelsbergh and M. Sol: The General Pickup and
Delivery Problem, Transp. Science 30, 1995, pp. 17-29.

[8] SEBASE: Software Engineering By Automated SEarch
Repository, http://www.sebase.org/sbse/publications/, as seen
on Jun. 18, 2010.

[9] J.P. Stegḧofer, J. Denzinger, H. Kasinger, and B. Bauer: Im-
proving the Efficiency of Self-Organizing Emergent Systems
by an Advisor, Proc. EASe 2010, Oxford, 2010, pp. 63–72.

205

ADAPTIVE 2010 : The Second International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-109-0

