
Self-Adaptive Agents for Debugging Multi-Agent Simulations

Franziska Klügl
Modeling and Simulation Research Center

Örebro University
Örebro, Sweden

Email: franziska.klugl@oru.se

Carole Bernon
Institut de Recherche en Informatique de Toulouse

Paul Sabatier University (Toulouse III)
Toulouse, France

Email: carole.bernon@irit.fr

Abstract—In this contribution, we propose an adaptation-
driven methodology for the technical design and implementa-
tion of multi-agent simulations that is inspired by the concept of
“living design”. The simulated agents are capable of evaluating
their behavior and self-adapt for improving the overall model.
For this aim, the modeler describes critical, non valid situations
in the life of an agent, or the complete agent system, and
explicitly specifies repair knowledge for these situations.

Keywords-multi-agent systems, simulation, methodology.

I. INTRODUCTION

The development and usage of appropriate methodologies
for developing multi-agent simulations has become a focus
of scientific attention as it became obvious that traditional
approaches are not sufficient to handle the complexity of
design, implementation, testing or validation of multi-agent
simulations as they do not account for generative nature of
these form of simulation models. Our paper contributes to
this research on techniques supporting multi-agent simula-
tion development. We propose a procedure where agents
themselves improves the quality of the technical design and
implementation of an agent-based simulation model. The
part of the process that we address is often also referred
to as debugging in a quite wide sense.

The development of such a high quality model is chal-
lenging: first of all, agent-based models are generative [1].
That means the overall dynamics is generated from micro-
level agent behaviors and interactions. There is no explicit
relation between what is defined in the model and what is the
produced overall behavior, but this relation is just established
by simulation. Thus, there is a profound uncertainty on as-
sumptions mainly about agent-level structures and behavior
model but also on the constituents of the environmental
model. The appropriateness of assumptions can only be
tested and determined using a fully calibrated, runnable
simulation. On a more technical level, other challenges have
to be taken up such as the mere size of the simulation in
terms of number of agents or their level of heterogeneity.
The brittleness of a model coming from non-linear inter-
action outcomes and from the usage of so-called “knife-
edge thresholds” [2] in agent models may also aggravate
the general problem. From a practical point of view, the size
of a model with many parallel acting and interacting agents,

with different categories of agents in different local contexts
causes problems for implementation: it is problematic to
oversee the dynamics, to identify problems and locate bugs
in the implemented model.

In this contribution, we propose an approach for design
and implementation of a multi-agent simulation model that
is inspired by the “Living Design” concept [3]: in addition
to the behavior that shall be actually simulated, the agents
in the simulation are equipped with an additional meta-
level module for monitoring their performance, identifying
problems and repairing them. The necessary knowledge is
provided by the modeler either explicitly, for example, in
terms of constraints, or implicitly by interacting with the
simulated agent. Our suggestion is appropriate for those
agent-based simulations that possess an original system and
are developed with a clear question; in terms of [4] a case
study rather than a model abstraction.

After a short introduction to the background of this work,
the concept of self-debugging agents is introduced and
discussed. After comparing our approach to related works,
a conclusion and some outlook to future work are given.

II. AGENT ADAPTATION INSTEAD OF MANUAL REPAIR

Consider the following situation: a modeler has to develop
a multi-agent evacuation simulation where pedestrian agents
have to exit at best a train or a building. The initial test runs
produce a number of situations where agents are blocking
each others at exits or bottlenecks, agents are getting stuck
with obstacles. Clearly, the behavior model of the agents is
not valid, that means it is neither optimally calibrated nor
complete or correct. In a painful trial and error procedure,
the modeler now might adjust minimal acceptable distances,
add behavior elements for explicitly giving way to others or
for pushing past the other agents. Our idea is to avoid this
iterative manual improvement by the modeler by giving the
pedestrian agents the capability to recognize such critical
situations and modify their behavior and the elements of the
simulated environment to avoid them in the future.

In the Agent-Oriented Software Engineering (AOSE) area,
Adelfe [5], related to the concept of Adaptive Multi-Agent
Systems (AMAS) [6], is one of the rare methodologies
that explicitly suggests using self-designing agents to build

79

ADAPTIVE 2011 : The Third International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-156-4

a multi-agent system. Based on meta-rules describing the
prerequisites for “useful” interacting agents, the AMAS the-
ory identifies 7 categories of “Non-Cooperative Situations”
(NCS) in that these prerequisites are not fulfilled. NCS have
to be anticipated, avoided or eventually repaired by every
agent. The processing of NCS is separated from the actually
intended behavior of an agent. It possesses a “nominal”
behavior for performing the usual behavior and an additional
meta-level “adaptive” behavior to discover and eliminate the
NCS it encounters. Thus, the agent learns to adapt to its
environment when the nominal behavior is not sufficient.

Transferred to the problem of technical design and im-
plementation in multi-agent simulation, NCS correspond to
situations that do not occur in the original system. We call
these Non-Valid Situations (NVS) for denoting the partic-
ular relation to producing valid simulations. They are not
restricted to blocking situations as sketched in the beginning,
but may also characterize discrepancies between simulated
and real data on a macro-level, the missing production of
organizational structures, etc. Situations that might be judged
as non-cooperative for an artificial multiagent system may
actually occur in the real world and thus must occur in the
corresponding context in the simulation. Looking through
a developers eye, there is no basic conceptual difference
between NCS and NVS; Nevertheless, we think that “NVS”
is more appropriate in the simulation context focusing on
the model development level.

III. ADAPTIVE AGENTS FOR MODEL DEBUGGING

A. General Concept

The general concept of a self-debugging agent is based
on the idea that an adaptation component can be added to
the standard agent model for identifying and repairing NVS.
The respective phases (illustrated in fig. 1) are the following:

1) The starting point is a runnable initial prototype for
the full agent-based simulation model.

2) The modeler develops the adaptive module for iden-
tifying NVS and how the simulated agents deal with
these critical situations.

3) The original nominal agent behavior is connected to
the adaptive behavior and both are running concur-
rently while the simulation is executed and repeated.

4) The nominal model and the adaptive behavior are
separated again when all identified NVS are solved.
Parts of the adaptive elements may remain in the agent
program.

5) The validity of the final model is tested thoroughly
again. If previously hidden or new NVS are discov-
ered, an adaptive behavior has to be added and the
adaptation starts again, otherwise the model is ready
for final documentation and deployment.

Figure 1: Adaptation-driven design process starting from
an initial model M0 and a corresponding adaptive repair
component A0. After iteratively testing and adapting, an
improved model is produced that may contain some built-in
adaptive elements.

B. Agent Architecture

The particular agent architecture for self-debugging agents
consists of two parts: the original nominal behavior and the
adaptation module. All agents, a subpopulation or even just
one agent, may be equipped with an adaptation component.
In principle, also entities without agent properties – such as
resources, obstacles or the modeled environment – may be
equipped with an adaptation component that modifies their
parameters. This enables handling adaptations that are not
isolated to an entity but need to affect more than one entity
in a coordinated fashion. The overall architecture is sketched
in Figure 2.

Figure 2: Architecture of a self-debugging agent with both
nominal (left side) and adaptive behavior (right side).

The adaptation module has its own perception that may
include the agent’s status and perceptions, but also additional
perceptions from the simulated environment or even connec-
tions to external data sources. The actions of the adaptation
module may directly effect only the agent to which it is
assigned.

80

ADAPTIVE 2011 : The Third International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-156-4

C. Self-Debugging Phases

In the following, the three major (iterated) tasks that a
self-debugging agent has to execute are discussed. First,
the adaptation module has to notice that something in the
simulation is going wrong. The identified problem has to be
reduced to one or more NVS that are basically capturing
assumptions for possible causes for the problems. Instruc-
tions for repairing the model in reaction to the NVS are then
associated with the NVS. In the third phase, the instructions
are executed and the model is adapted. This cycle has to be
repeated again and again until no problem is observable any
more.

A problem might be the availability of appropriate meta-
knowledge to run this cycle. This problem is depending
on the particular model that is to be debugged. With an
appropriate – model depending – interface between adaptive
module and human system expert, human intelligence and
implicit knowledge can be used for filling the gaps in
explicitly formulated knowledge.

1) Problem Identification: The identification of a problem
is directly connected to criteria for determining the validity
of a simulation model. As we are addressing multi-agent
simulation, these criteria can be found on different levels of
observation. If a criteria for model validity does not hold, a
problem can be detected. Criteria may be both quantitative
or qualitative.

1) Most frequently, values, trends and dynamics of global
output variables are used for validation: macro-level
descriptors are compared to corresponding values ob-
tainable from the simulation. Invariants and similar
conditions involving one or more output values may be
formulated as a criterion of model validity that must be
satisfied. An adaptation module that should be capable
of identifying a problem on the macro-level needs a
global perspective.

2) Output values may serve as a basis for comparison
also on a meso (group) or micro (individual agent)
level. The latter may be important if prominent, unique
agents are part of the simulation.

3) Macro-level structures, that shall emerge from the
interaction of the whole collective of agents, may
be characterized. Their failure to express emergent
behavior or the possible inadequateness (shape, time,
etc.) of this latter may lead to identification of a
problem.

4) Interaction outcomes can be characterized and may
form a source for criteria determining whether a
simulation is not running smoothly. Agents block each
other where they should not, do not interact when they
should or interact with the wrong partners.

5) A similar source of criteria for validity are individ-
ual behavior paths. Agents decide for other than the
rational option or stop when they should not.

Clearly, these criteria are not independent from each other
as macro-level outcomes are generated from the micro-level.
Nevertheless, it is useful to define them on different levels
of abstraction.

2) NVS Identification: Having perceived that there is a
problem, a reason for the problem has to be found for being
able to modify the agent behavior in a way that the problem
is avoided. As in multi-agent simulations all dynamics are
generated by the agents behavior and interactions, the reason
for a problem can be found solely on the micro-level. Thus,
the original seven NVS of AMAS can also be identified in
the context of multi-agent simulations:

1) INCOMPREHENSION. An agent receives an informa-
tion but has no interpretation for this information. For
example, an agent bumps into something, is not able to
recognize it as an obstacle and cannot avoid it, getting
blocked by it.

2) AMBIGUITY. The perception can be interpreted in
more than one way. The behavior model is not refined
enough with respect to the environmental complexity
or the messages sent by other agents. For example, an
agent which is roaming in an environment is not able
to distinguish an obstacle from a source of energy, it
will therefore be unable to know how it has to behave
(avoiding the obstacle or recharging its batteries).

3) INCOMPETENCE. The agent possesses no rule for
dealing with a particular internal status. That means
the state variables of an agent possess values that
are beyond the values that can be dealt with by its
reasoning. For example, an agent which wants to
recharge and finds a source of energy, finds a source
which has a failure, it is therefore incompetent to
recharge.

4) UNPRODUCTIVENESS. Given the current information
situation, the reasoning is not capable of producing an
output. For example, an agent receives a message that
is not meant for it, it is not able to do something by
using this message.

5) CONCURRENCE. When an agent attempts to execute
the selected action, another agent executes the same
action resulting in redundancy when this action has
just to be done once. If there are these inefficiencies
in the original system, they have to be reproduced in
the simulation model for developing a realistic repro-
duction of the original system. Nevertheless there are
cases when this redundancy may point to a problem
of inappropriate action selection. For example, two
agents roaming in an environment want to move in
the same place at the same simulated time whereas
there is a clear coordination in the real world.

6) CONFLICT. Two or more agents possess a conflict
over resources. That means, if one agent executes its
actions, the others cannot reach their goals. As with
CONCURRENCE, this situation may actually occur,

81

ADAPTIVE 2011 : The Third International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-156-4

but real-world agents may have invented mechanisms
to cope or solve the conflict. For example, when
two simulated pedestrians want to concurrently pass
through a narrow door, they are not blocked for a
longer time, but one of the agents will proceed while
the more polite one will give way. Thus, the task of
the adaptive component may not be just to modify the
simulated agent for avoiding the critical situation from
the beginning, but to add appropriate, timely rules
about how agents can decide in the case of conflict.

7) USELESSNESS. The action of an agent has no effect.
In the simulation case, it might happen that the action
has no impact neither on the environment nor on
the internal status of the agent. For example, a car
agent that travels between two locations in a town
environment is blocked because of a traffic jam at
a unrealistic position. Being obliged to stay still is
useless for the agents since this situation does prevent
it (and may be others that are blocked behind it) from
reaching its goal.

3) Adaptation: For every identified problem there might
be a number of critical situation descriptions for explaining
the identified problem. With a critical situation serving
as explanation, there should be an assigned adaptation or
“repair” plan – a sequence or skeletal plan – stating what
can and shall be modified for tackling the critical situation.
The selection of the modifying actions is not necessarily
deterministic. Optimality and convergence can only be de-
termined for a particular model.

One can identify the following action repertoire usable in
such a plan:

1) Move(<destination>) modifies the agents embedding
into its environment – move changes its local con-
text by moving the agent to another location. The
movement has to be seen figuratively: movement not
just in metric space, but also within networks and
organization, adapting addressees of information, com-
munication partners, etc.

2) AdaptParameter(Parameter, [<direction>]) modifies
an individual parameter of the modeled agents. For
example, AdaptParameter(DesiredSpeed, [Increase])
increases the parameter that determines the desired
speed of an agent. This might lead to more hetero-
geneity in the agent population as every agent modifies
its parameters individually. However, if the parameter
of all agents have to be adapted, this individual-based
adjustment may not be efficient.

3) InsertRule(<condition>→<action>) means struc-
turally modifying the agent behavior by adding rules
For discovering the appropriate model modifications,
agents may use learning techniques.

4) Generate(<agentType> [at <time>]) generates new
agents to the current situation at a given time. This

time may be “now” or any point during the simulation
or the start situation. For reproducibility, this gener-
ation must be integrated into the model description
– therefore changing the model input adding a new
external event from a local perspective. Since the
simulated environment is treated as an explicit entity
in the simulation model, it may also be equipped with
an adaptive component changing the input behavior
from a global perspective.

5) Delegate(<situation>→<list of agents>) notifies a
set of other agents about the occurrence of a specific
critical situation. Basically, the agent has detected that
there is a particular critical situation that cannot be
solved by itself but by other agents involved in the
situation.

6) Delegate(ResponsibleModeler). The adaptive compo-
nent of the model entity has detected that there is a
specific situation, but has no information or plan for
coping with the situation. Thus, it notifies the modeler,
or the domain expert, about the occurrence of the
situation and asks for modifications by the human
involved. Such a “repair” plan element has similar-
ity to some break points in traditional programming
languages.

These actions for modifying the simulated agents nominal
behavior can be configured and used to set up a repair plan.
This has to be done for each identified NVS. The identified
NVS gives the particular addressee (particular parameter,
network position, etc.) of the modifications. However setting
up such a repair plan may not be simple. As indicated in
the last possible action, a solution might be delegating the
problem solution to an involved human expert.

After modification, whether the modified agents are now
able to produce the intended overall behavior has to be
tested. Depending on the particular simulation endeavor,
the simulation run has to be completely restarted or can
be resumed from the simulated time where it was stopped
due to the identification of the problem. When blocking
situations are involved, resuming might be sufficient to see
whether the USELESSNESS or CONFLICT situation resolves.
On the other side, when population dynamics are involved,
restart may not be avoidable.

IV. RELATED WORKS

Due to their main features – distribution, heterogeneity,
parallelism, scalability, autonomous behaviors of agents,
emergent collective behavior, etc. – multi-agent systems are
difficult to test and debug. Agent-oriented methodologies are
becoming mature enough to study how phases of testing and
validation can be integrated into their process development
[7]. However, very few are specifically interested in guiding
the development of agent-based simulations and less aim
at helping the modeler by providing him with tools to
facilitate the implementation of the model, to observe how

82

ADAPTIVE 2011 : The Third International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-156-4

it behaves and to improve this behavior. In Ingenias, for
instance, a graphical modeling language helps modelers to
design a model and code generation is then enabled toward
some simulation platforms (Mason, Repast) [8]. In Adelfe,
a fast prototyping ability is offered to see how the agents
behave, however this tool is based on state machines and
does not offer a visual aid that would enable detection of
wrong behaviors by observing agents moving in a simulated
environment [5]. Also in [9] agent self-modification using
is suggested for adapting to a dynamic environment.

Debugging in multi-agent systems is often provided by
observation and visualization tools, see [10] for a suite of
visualization tools devoted to debugging. However, display-
ing a huge quantity of information to the designer, most of
the time about interactions between agents, is not always
helpful and automatic correlation or/and analysis of these
data (e.g., using graph as in [11]) or automatic detection of
wrong behaviors is highly desirable. In Prometheus, this help
is brought by a tool, which observes conversations between
agents, tests if they conform to the specified interaction
protocols, and notifies violations to the developer [12]. This
kind of debugging can only validate specifications initially
made during the design and cannot discover ways of com-
municating that could enable a better behavior at the micro
or macro-levels. Since agent-based systems can be consid-
ered from different perspectives, the approach proposed in
[13], for notably testing simulations, is to study problems
(mainly deadlocks, bottlenecks and performance problems)
that can occur at the agent level before considering errors
at the interaction level for eventually testing problems at
the system one. To avoid a deterministic approach, tests
are made in a stochastic way and repeated several times.
Here also, testing at an agent level compares its behavior
with the way it was specified and designed; may be the
result of testing may lead to notify the designer of problems
but nothing is done to enable discovering a behavior better
adapted to some constraints or environment.

As discussed in the beginning, the situation for multi-
agent simulation is difficult as testing and debugging for
implementation bugs is only secondary. Due to their gener-
ative nature and often restricted data availability, “guessing”
about the agent level behavior and interaction is based on
experience and creativity. Explicit handling of information
on the original system is central. Most suggested tests
for simulations are therefore based on humans evaluating
model structure, behavior and outcome [14]. Our suggestion
is a realistic intermediate step between full human-done
modeling, implementing and debugging and approaches such
as [15] that try to transfer the agent modeling problem to a
learning problem.

V. DISCUSSION

There are aspects in the proposed approach to debugging
in multi-agent simulation that need to be discussed. The

most important issues are the availability of explicit meta-
knowledge, dependencies between adaptations, the conver-
gence of adaptation and the simplicity and understandability
of the outcome.

The approach described so far can only work when criteria
for validity can be formulated and tested automatically by
the agents, and changes be given on how to react on the
perceived deficiencies. The former is especially depending
on the particular model. For many multi-agent simulations
only statistical data are available on the macro level, pop-
ulation numbers, average turnovers, road link load over
a certain time, etc. However, for the described approach,
the validity criteria have to be broken down to individual
values, behavior paths or the outcomes of interactions.
Whether such information is formulate-able is depending
on the particular model. However, often a modeler, domain
expert or stakeholder can, based on their experience with the
original system, identify situations and features that do not
“look” realistic although they might not be able to explicitly
describe what are the reasons for this invalid observations.
When having identified that there is a problem, they can
often tell how the situation should “look” like or what should
happen. Thus, based on an appropriate user interface, human
intelligence should be used when automatic detection and
repair is not possible. Actually, this would be a fall back
to the previous way of debugging, it is now embedded into
systematics.

There is a second critical aspect: one can find application
scenarios where model modifications cannot be done for
agents independently from modifications in other agents or
entities. For example, the metabolism of an agent has a
connection to available resources in the environment when
intending to produce some sustainable agent population
growth. Interdependent modifications in different model el-
ements cannot be formulated based on adaptive components
added to individual agents. Higher level entities can be
created that do not have a role, or just may have a passive
role in the original model. These entities or the explicitly
modeled environment can be augmented with the meta-level
module for testing and adaptation.

A priori, we cannot guarantee that the proposed approach
has any noticeable impact on model quality properties such
as simplicity or understandability. These are highly depend-
ing on the way the modeler formulated the initial nominal
and the adaptive behaviors. However, the distinction between
nominal and adaptive behavior and their explicit handling
may support understandability, as the modeler is forced
to explicitly treat and add meta-level knowledge about the
model. We would also expect that the explicitness of such
information is also of great relevance for the reusability and
maintainability of the model.

83

ADAPTIVE 2011 : The Third International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-156-4

VI. CONCLUSION

We proposed a concept and architecture for self-
debugging agents for multi-agent simulation. A modeler
can start with a model prototype, augment it with addi-
tional explicit knowledge on how the outcome looks like.
Then, systematically non-valid situations are identified and
repaired. This forms an iterative, yet consequent debugging
and modification process towards a sufficiently valid repre-
sentation of the original system. Our framework relies on the
ability of a human modeler to identify and formulate critical
situations. Yet, yhe modeler does not need to provide direct
solutions about how to adapt the agents’ behavior for coping
with or avoiding such situations, but just needs to indicate
what the agents might have to change for improving future
simulation runs. Thus, the process is different from trial and
error debugging but supports systematic design. From the
beginning, the modeler has to think about potential critical
situations. He explicitly classifies what may be adapted and
what is sacrosanct. This is not only a deliberate treatment
of potential non valid situations but also a clear and concise
elaboration of what are the parts of a model that are fixed
(e.g., because the data are clear or the underlying theory does
not allow adapting these model elements) or which ones can
be varied to what extent.

Clearly there are some weaknesses and potential perils
that have to be analyzed and tackled in future research:
in the current approach, there are only local adaptation
actions suggested, initiated by agents with local view on
NVS. A solution might be introducing adaptive agents
on higher aggregation levels. The most critical issue is
whether the modeler actually can provide sufficient meta-
level information for specifying the adaptive part of the
agent behavior, the NVS including the repair plans. If he just
can specify the NVS but has to delegate all repair actions
to a manual modification, the overall process is reduced to
defining constraints and invariants and automatically testing
them, notifying the modeler in cases that they are violated.
This is nevertheless a valuable modeling support. Our future
research will therefore be directed to the application of the
self-modeling agents in a variety of application domains
gathering experience about forms of accessible and explain-
able meta-knowledge that can be used for systematically
defining critical situations and repair plans. Also, we will
test data mining methods for supporting the elicitation of
model meta-knowledge that can be used for guiding the
modifications towards better multi-agent models.

REFERENCES

[1] J. M. Epstein, “Agent-based computational models and gen-
erative social science,” Complexity, vol. 4, no. 5, pp. 41–60,
1999.

[2] L. R. Izquierdo and J. G. Polhill, “Is your model susceptible
to floating-point errors?” Journal of Artificial Societies and
Social Simulation, vol. 9, no. 4, p. 4, 2006.

[3] J.-P. Georgé, G. Picard, M.-P. Gleizes, and P. Glize, “Living
design for open computational systems,” in Int. Workshop
on Theory And Practice of Open Computational Systems
(TAPOCS at WETICE 2003), Linz, June, 2003. IEEE
Computer Society, 2003, pp. 389–394.

[4] R. Boero and F. Squazzoni, “Does empirical embeddedness
matter? methodological issues on agent-based models for
analytical social science,” Journal of Artificial Societies and
Social Simulation, vol. 8, no. 4, p. 6, 2005.

[5] C. Bernon, V. Camps, M.-P. Gleizes, and G. Picard, “Engi-
neering adaptive multi-agent systems: the Adelfe methodol-
ogy,” in Agent-Oriented Methodologies, B. Henderson-Sellers
and P. Giorgini, Eds. Idea Group Pub, June 2005, pp. 172–
202.

[6] M.-P. Gleizes, V. Camps, and P. Glize, “A theory of emergent
computation based on cooperative self-organization for adap-
tive artificial systems,” in 4th European Congress of Systems
Science, L. Ferrer Figueras, Ed. Spanish Society of System
Science, 1999.

[7] B. Henderson-Sellers and P. Giorgini, Agent-Oriented
Methodologies. Idea Group Pub, June 2005.

[8] C. Sansores and J. Pavón, “Agent-Based Modeling of Social
Complex Systems ,” in Current Topics in Artificial Intelli-
gence (CAEPIA 2005), ser. LNAI, R. Marı́n, E. Onaindı́a,
A. Bugarı́n, and J. Santos, Eds., vol. 4177. Springer, 2006,
pp. 99–102.

[9] F. Brazier and N. Wijngaards, “Designing self-modifying
agents,” in Proc. of the Creative Design Workshop, Dec. 2001,
2001.

[10] D. T. Ndumu, H. S. Nwana, L. C. Lee, and J. C. Collis,
“Visualising and debugging distributed multi-agent systems,”
in Proc. of the 3rd Conf on Autonomous Agents. New York,
NY, USA: ACM, 1999, pp. 326–333.

[11] E. Serrano, J. J. Gómez-Sanz, J. A. Botı́a, and J. Pavón,
“Intelligent data analysis applied to debug complex software
systems,” Neurocomputing, vol. 72, no. 13-15, pp. 2785–
2795, 2009.

[12] L. Padgham, M. Winikoff, and D. Poutakidis, “Adding debug-
ging support to the prometheus methodology,” Engineering
Applications of Artificial Intelligence, vol. 18, pp. 173–190,
2005.

[13] T. Salamon, “A three-layer approach to testing of multi-
agent systems,” in Information Systems Development, G. A.
Papadopoulos, W. Wojtkowski, G. Wojtkowski, S. Wrycza,
and J. Zupancic, Eds. Springer US, 2010, pp. 393–401.

[14] O. Balci, “Validation, verification and testing techniques
troughout the life cycle of a simulation study,” Annals of
Operations Research, vol. 53, pp. 121–173, 1994.

[15] R. Junges and F. Klügl, “Evaluation of techniques for a
learning-driven modeling methodology in multiagent simu-
lation,” in Proc. of the 6th Int. Conf. MATES, Leipzig, 2010.

84

ADAPTIVE 2011 : The Third International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-156-4

