
Decentralized Probabilistic Auto-Scaling for Heterogeneous Systems

Bogdan Alexandru Caprarescu, Dana Petcu
Research Institute e-Austria and West University of Timişoara

Timişoara 300223, România
{bcaprarescu, petcu}@info.uvt.ro

Abstract—Scalability has become a de facto non-functional
requirement for today’s Internet applications that start small
and aim to become a huge success. The ability of the system to
automatically scale is required by the dynamic nature of the
workload experienced by these applications. In this context, the
DEPAS (Decentralized Probabilistic Auto-Scaling) algorithm
assumes an overlay network of computing nodes where each
node probabilistically decides to shut down, allocate one or
more other nodes, or do nothing. DEPAS was formulated,
tested, and theoretically analyzed for the simplified case of
homogenous systems. In this paper, we extend DEPAS to
heterogeneous systems. Thus, we provide a new formula for
computing the node-level addition probability and evaluate it
both theoretically and experimentally.

Keywords-auto-scaling; decentralized computing; random-
ized algorithms; cloud computing

I. INTRODUCTION

As the main characteristic of cloud computing, the on-
demand provisioning of hardware resources creates the
premises for a theoretically infinite scalability of services
deployed in the cloud [1]. In this context, providing a
software system with the capacity to automatically scale in
order to accommodate the fluctuations of the workload has
become an interesting topic in both academia and industry.
On one hand, the researchers focus on complex solutions
that optimize the resource consumption and the QoS of the
services. On the other hand, some cloud providers, such as
Amazon EC2 and Rightscale, offer policy-based auto-scaling
solutions that can be easily configured by their customers.

A common characteristic of the large majority of research
and industrial solutions for auto-scaling consists in their
centralization. In this way, the infinite scalability that is
theoretically possible is jeopardized by the central compo-
nent running the auto-scaling algorithm. This is not only
a theoretical problem and the limitations of centralized
management were experienced with industrial systems such
as VMware [2]. Moreover, a central manager acts as a single
point of failure, too.

Our aim is to provide an auto-scaling algorithm that is
both scalable and fault tolerant. By being fault tolerant we
mean that the algorithm should continue to work in the
presence of node churn and message losses in the inter-node
communication. To achieve this goal, we take inspiration
from the unstructured P2P systems, which proved to be
highly scalable and robust [3]. Thus, in [4], we described

DEPAS, a decentralized probabilistic auto-scaling algorithm.
DEPAS assumes an overlay network of nodes. Each node
is a virtual machine that runs the same software comprising
the functional service and a few non-functional components:
overlay manager, load balancer, and auto-scaler. Each non-
functional component runs a decentralized algorithm. The
auto-scaler runs DEPAS.

The parameters of DEPAS are the desired load, L0, and
the load variation, δ. The goal of DEPAS is to maintain the
average load of the system in the interval (L0 − δ, L0 + δ).
To do that, each node estimates the average load of the
system and, if it is not within that interval, then the node
probabilistically executes the appropriate scaling action (i.e.,
remove itself if the load is lower than L0 − δ or allocate
additional nodes if the load is higher than L0 + δ). The
main problem is how to compute the node-level scaling
probability.

DEPAS was originally formulated and tested for the sim-
plified case of homogenous systems, in which all nodes have
the same capacity [4]. The link between δ, number of nodes,
and the probability of allocating the right number of nodes
was theoretically analyzed and we provided algorithms for
finding either the minimum δ (for a given number of nodes)
or the minimum number of nodes (for a given δ) so that a
minimum correctness probability is guaranteed [5].

Some tests with heterogeneous nodes were also performed
in [4] under the assumption that each node randomly choses
the capacity of the node to be added with the same distri-
bution as the capacity distribution of the existing nodes. For
example, in a system with 70% nodes with a low capacity
and 30% nodes with a high capacity, a newly allocated node
would have 70% chances to be a low capacity one and 30%
chances to be a high capacity node. However, this is a highly
constrained scenario for which it is difficult to imagine a
practical applicability. This is because in practice the type
of a new virtual machine is chosen so that to optimize
a certain client-defined criterion (e.g., the VM type with
the minimum cost per capacity unit). The selection of the
optimal node type may be related to the criterion to select
it, certain aspects of the cloud infrastructure, or the bid for
resources from other customers, but it has nothing to do with
the capacity distribution of the existing nodes.

Therefore, in this paper, we extend DEPAS to hetero-
geneous systems without imposing any constraint on the

7Copyright (c) IARIA, 2012. ISBN: 978-1-61208-219-6

ADAPTIVE 2012 : The Fourth International Conference on Adaptive and Self-Adaptive Systems and Applications

capacity distribution of the new nodes. Thus, we provide
a formula for computing the addition probability that works
no matter the capacity of the new nodes. The correctness
of the formulas for computing the addition and removal
probabilities is proven both theoretically and experimentally.

The remaining of this paper is organized as follows. The
DEPAS algorithm for heterogeneous systems is described in
Section II and experimentally verified in Section III. Related
work is discussed in Section IV, while Section V concludes
the paper.

II. DEPAS FOR HETEROGENEOUS SYSTEMS

We assume a system composed of n nodes with capacities
Ci, i = 1..n. The capacity of a node is the maximum number
of requests per second that can be processed by the service
deployed on that node. Let C be the total capacity of the
system (the sum of the capacities of all nodes). A complete
list of notations is given in Table I. The load of a node,
noted with Li, is computed at a given moment in time as
a ratio between the average number of requests per second
that were either processed or rejected by that node over a
certain timeframe and the capacity of the node. Depending
on the load balancing algorithm, a node may reject a request
in certain cases (e.g., when the system is overloaded and
the maximum response time of the request can not be met).
Then, the average load of the system, L, is computed as a
ratio between the workload of the system and the capacity
of the system as expressed by equation (1). Note that in the
case when the workload received by the system overcomes
its capacity, the average load is supra-unitary.

L =

∑n
i=1 LiCi∑n
i=1 Ci

=

∑n
i=1 LiCi

C
(1)

The DEPAS algorithm for heterogeneous systems is
shown in Algorithm 1. It is periodically run with period T
by each node and begins by retrieving an estimation of the
average load of the system. Note that the average load is not
computed at this time, but just retrieved from the component
running the average protocol. If the load is less than or equal
to L0 − δ, then the node computes a removal probability
indicator using formula (2) and, because the indicator is
sub-unitary in this case, the node uses it as the probability
to remove itself. Otherwise, if the load is higher than or
equal to L0 + δ, then the node obtains its own capacity and
the capacity of the node type that is the most convenient to
be allocated at this time. Then, the probability indicator is
computed using formula (3). In this situation, the indicator
can be supra-unitary, where its integer part represents the
number of nodes to be added for sure, while its fractional
part is used as the probability to add another node. Note
that the random() function generates a uniformly distributed
random decimal number between 0 and 1.

piremi =
L0 − L?

i

L0
(2)

Algorithm 1 DEPAS for Heterogeneous Systems
while true do
wait(T)
L?
i ← getEstimatedAverageSystemLoad()

if L?
i ≤ L0 − δ then
piremi ← computeRemovalProbInd(L?

i , L0)
pi ← piremi

if pi < random() then
removeSelf()

end if
else

if L?
i ≥ L0 + δ then
Ci = getSelfCapacity()
Cadd

i = computeNewNodesCapacity()
piaddi ← computeAdditionProbInd(L?

i , L0, Ci, C
add
i)

m← bpiaddi c
pi ←

{
piaddi

}
if pi < random() then
m← m+ 1

end if
addNodes(m,Cadd

i)
end if

end if
end while

piaddi =
L?
i − L0

L0

Ci

Cadd
i

(3)

The remaining of this section proves that the formulas (2)
and (3) are correct. They are correct if the expected capacity
to be removed or added is equal to the optimal capacity to
be removed or added, respectively. The optimal capacity is

Table I
DEPAS NOTATIONS

T The duration of a DEPAS cycle (in seconds)
n Number of nodes of the system
C Total capacity of the system
Ci Capacity of node i
Cadd

i Capacity of the nodes to be added by node i in the
current cycle

Crem
opt Optimal capacity to be removed

Cadd
opt Optimal capacity to be added

Crem
exp Expected capacity to be removed

Cadd
exp Expected capacity to be added

L0 Desired load threshold (percent with respect to the
capacity)

δ Defines the allowed load variation
Li Load of node i (percent with respect to node capacity)
L Average load of the system (percent with respect to the

capacity)
L?
i An estimation of the average load of the system done

by node i
piaddi Addition probability indicator computed by node i
piremi Removal probability indicator computed by node i
pi Node-level probability computed by node i

8Copyright (c) IARIA, 2012. ISBN: 978-1-61208-219-6

ADAPTIVE 2012 : The Fourth International Conference on Adaptive and Self-Adaptive Systems and Applications

defined as the amount of capacity that needs to be subtracted
from or added to the system so that the new average load
is equal to the desired load. Theorems 1 and 2 provides
formulas for computing the optimal capacity to be removed
and the optimal capacity to be added, respectively.

Theorem 1. Let L0 ∈ (0, 1) be the desired load. Consider
a system with total capacity C and average load L < L0.
Then, the optimal capacity to be removed from the system
is computed as follows:

Crem
opt =

L0 − L
L0

C

Proof: As the system has the same workload before
and after removing capacity we have LC = L0(C−Crem

opt),
from where it results the formula given by the theorem.

Theorem 2. Let L0 ∈ (0, 1) be the desired load. Consider
a system with total capacity C and average load L > L0.
Then, the optimal capacity to be added to the system is
computed as follows:

Cadd
opt =

L− L0

L0
C

Proof: Analogues with the proof of Theorem 1.
The expected capacity to be removed/added is computed

for a cycle of DEPAS. A cycle has a duration of T seconds,
in which each node runs DEPAS exactly once. In order
to be able to compute the expected capacity we assume
that each node precisely estimates the average load of the
system, which means that L?

i = L∀i = 1..n. Under these
considerations, theorems 3 and 4 prove the correctness
of the formulas for computing the removal and addition
probabilities.

Theorem 3. Let L0 ∈ (0, 1) be the desired load. Consider
a system with n nodes, total capacity C and average load
L < L0. The expected capacity to be removed in a cycle of
DEPAS is equal to the optimal capacity to be removed.

Proof:

Crem
exp =

n∑
i=1

L0 − L
L0

Ci =
L0 − L
L0

C = Crem
opt

Theorem 4. Let L0 ∈ (0, 1) be the desired load. Consider
a system with n nodes, total capacity C and average load
L > L0. The expected capacity to be added in a cycle of
DEPAS is equal to the optimal capacity to be added.

Proof:

Cadd
exp =

n∑
i=1

L− L0

L0

Ci

Caddi
Caddi =

L− L0

L0
C = Cadd

opt

In a previous paper [4], the addition probability indicator
was computed with formula (4). We are interested in which
conditions this formula leads to a correct allocation in a
heterogeneous systems. A correct allocation happens when
Cadd

exp = Cadd
opt . By replacing the expected and optimum

capacities with their formulas and making the simplifications
it results equation (5).

piaddi =
L− L0

L0
(4)

n∑
i=1

Cadd
i = C (5)

From equation (5) it turns out that formula (4) can be
used to compute the addition probability in a heterogeneous
system only if the sum of the potential capacities to be added
by each node is equal to the total capacity of the system. This
is obviously a very particular situation without any practical
motivation.

Therefore, in this section, we provided a general formula
– expressed by equation (3) – for computing the addition
probability of the DEPAS algorithm in a heterogeneous
system.

III. EXPERIMENTAL RESULTS

In the previous section, we proved that the formulas for
computing the removal and addition probabilities are correct
providing that each node knows the average load of the
system. In this section, we relax this requirement and exper-
imentally show that those formulas lead to good allocations
even if the average load of the system is approximated
at each node with the average load of the node and its
neighbors.

For running the experiments, we adapted the simulator
that was used in a previous paper [4]. This simulator is based
on the Protopeer library [6] and is available for download
[7]. The simulator is described in Subsection III-A, while
the results of the experiment are shown in Subsection III-B.

A. Settings

In the simulator, we designed three types of peers: client,
entry point, and worker. In the experiment that is described
in this section we use only one client and one entry point.
The client issues requests according to an exponential dis-
tribution whose mean value follows a given workload track
(see Subsection III-B). The requests arrive at the entry point,
which knows a percent of all workers but not less than
a given minimum. The workers known by the entry point
are randomly selected and periodically renewed. The entry
pointed dispatches each request to one worker according to
a capacity-weighted random load balancing strategy. The
values used in the experiment for the parameters that are
discussed in this subsection are listed in Table II.

9Copyright (c) IARIA, 2012. ISBN: 978-1-61208-219-6

ADAPTIVE 2012 : The Fourth International Conference on Adaptive and Self-Adaptive Systems and Applications

Table II
PARAMETERS OF THE SIMULATOR

Min no of entry point neighbors 50
Percent of entry point neighbors 2%
Entry point neighbor reshuffle period 120s
Overlay degree 50
Overlay management cycle 0.5s
Max queue size 3
Max no of hops 10
Mean execution time 1
Load monitoring period 60s
T (DEPAS cycle duration) 60s
L0 0.7
δ 0.1

The nodes are organized into an unstructured overlay
network where each node runs an overlay management
algorithm to maintain a list of neighbors. We adapted the
gossip-based overlay management algorithm developed by
Jelasity et al. [8] to obtain two characteristics needed by
our system: quick removal of links to dead nodes (needed
by both load balancing and average load estimator) and low-
deviation in-degree (needed for proper load balancing). The
resulted overlay management algorithm will be described in
a dedicated paper. The values of the main parameters related
to overlay management (overlay degree and cycle duration)
are given in Table II.

The first-level load balancing performed by the entry point
is accompanied by a decentralized load balancing that is
performed by the workers. The decentralized load balancing
algorithm is taken from [9] and adapted for heterogeneous
systems. The idea is that, when a worker receives a request
(which may come from either an entry point or other
worker), an admission function is called to decide whether
the request is scheduled on the current node, routed to a
neighbor, or rejected. More concretely, each node uses an
internal queue to store the requests that are pending for
execution and prioritize them depending on the time they
were issued by the client (i.e., older requests get priority
over newer requests). If the length of the queue divided by
the capacity of the node is higher than a threshold then the
request is added to the queue. Otherwise, if the number of
nodes already visited by the request without being scheduled
on neither of them (called number of hops) is less than a
threshold, then the request is routed to a neighbor of the
current node in the overlay network. The neighbor is selected
using the same capacity-weighted random strategy that is
used by the entry point. Finally, if the maximum number of
hops is reached, then the request is rejected.

The request execution time is exponentially distributed
with a constant mean. The capacity of a node is expressed
in the simulator using an integer number c, which means
that the node can execute c requests in parallel. The mean
execution time is always the same no matter the capacity of
the node.

The average load of a node is computed per second by
counting the requests that were either processed or rejected
by the current node over a timeframe called load monitoring
period. The average load of the system is approximated with
the average load of the current node and its neighbors. The
load monitoring period and the DEPAS cycle duration (i.e.,
the time between two consecutive executions of DEPAS on
the same node) are important parameters because they affect
the reactivity and accuracy of DEPAS. On one hand, small
values of these parameters make DEPAS to quickly react to
workload changes but also very sensible to oscillations (i.e.,
additions and removals of nodes mixed in a row). Of course,
the oscillations should be avoided because they waste the
money of the customer. On the other hand, higher values of
the load monitoring period and the DEPAS cycle make the
system more stable at the cost of delaying its reactivity and
thus rejecting more requests when confronted with workload
bursts.

Finally, the values of the desired load and load variation
threshold are also given in Table II.

B. Results

Provided that a list of fresh neighbor information is
available at each node and that the system is properly load
balanced, the DEPAS algorithm works properly and is very
scalable and fault tolerant. It is very scalable because (i)
it is very simple and is run once every T seconds and
(ii) it does not require any message exchange between
neighbors. It is robust because it does not care about node
crashes as the update of neighbors information is the task
of the overlay management algorithm. Therefore, a complete
solution based on DEPAS is scalable and robust as long as it
employs scalable and robust overlay management and load
balancing algorithms. But the scalability and robustness of
these algorithms were already experimentally proved in [4].
This is why, in this paper, we experimentally check only
the correctness of the DEPAS algorithm for heterogeneous
systems. More concretely, for a dynamic workload scenario
we verify that the allocated capacity is close to the optimum
capacity.

The overlay management, load balancing, and auto-
scaling algorithms are non-deterministic. Therefore, mean-
ingful results can be obtained only by averaging the results
of several identical, but independently performed experi-
ments. The results presented in this paper are the average
results of 32 identical experiments. All experiments were
sequentially executed on one Amazon High-CPU Medium
Instance (1.7 GB of memory, 2 virtual cores with 2.5 EC2
Compute Units each) running Amazon Linux 64-bit.

Figure 1 shows the mean workload track used in our
experiment. The actual workload is exponentially distributed
with the dynamic mean given by the workload track. The
simulated experiment lasts 2600 seconds. The mean work-
load is 70 requests/s at the beginning of the experiment and

10Copyright (c) IARIA, 2012. ISBN: 978-1-61208-219-6

ADAPTIVE 2012 : The Fourth International Conference on Adaptive and Self-Adaptive Systems and Applications

500 1000 1500 2000 2500
Time HsL

500

1000

1500

2000

Workload Hrequests�sL

Figure 1. Mean workload track

500 1000 1500 2000 2500
Time HsL

500

1000

1500

2000

2500

3000

3500

Capacity Hrequests�sL

Opt. cap. at min. load

Opt. cap. at max. load

Opt. cap. at desired load

Allocated capacity

Figure 2. Allocated vs. optimal capacity

increases in a few steps to reach 2200 requests/s at its peak.
Then, to also test the scale out branch of DEPAS, the mean
workload is decreased in steps.

We use two types of nodes: low capacity nodes with
a capacity of 1 request/s and high capacity nodes with a
capacity of 5 requests/s. The system is initialized with 100
low capacity nodes, which have the perfect capacity for
handling the initial workload of 70 requests/s. The existing
nodes can add high-capacity nodes in the first 1099 seconds
and low capacity nodes after second 1100 inclusive (which
marks the last workload burst as shown in Figure 1).

Figure 2 shows the capacity allocated by DEPAS versus
the optimum capacity computed for the desired load (L0),
min load (L0−δ), and max load (L0+δ). It can be seen that,
after a period of adaptation, DEPAS allocates a capacity that
is between the optimum capacity at max load and optimum
capacity and min load. The delay in adaptation is caused
by the duration of the DEPAS cycle (60 seconds) and by
the fact that the load is averaged over the last 60 seconds.
But, as explained in Subsection III-A, the good side of these
setting consists in the fact that, despite its randomized and
decentralized nature, DEPAS is very stable and did not cause
any capacity oscillation.

Figure 3 shows the variation of the total number of nodes,
number of low capacity nodes, and number of high capacity
nodes. We can see that the system, initially composed of
100 low capacity nodes, adapts to the increasing workload

500 1000 1500 2000 2500
Time HsL

200

400

600

800

1000

1200

1400

No. of workers

High cap. workers

Low cap. workers

Total workers

Figure 3. Number of nodes

by adding high capacity nodes before the second 1100 and
low capacity nodes afterwards. Then, during the scale out,
the system removes both low capacity and high capacity
nodes. As expected, the percent of both types of nodes out
of the total number of nodes seems to remain constant while
scaling out. Figure 3 confirms that DEPAS does not make
any over-provisioning (i.e., allocation of more nodes that
needed) or over-de-provisioning (i.e., removal of more nodes
than needed).

In conclusion, the experimental results show that, facing
a variable workload in a heterogeneous system, DEPAS
allocates the right capacity even if each node works with
a local approximation of the average load.

IV. RELATED WORK

In this paper, we discussed a few other decentralized
approaches to auto-scaling. A detailed state of the art on
autonomic resource provisioning for cloud computing can
be found in [4].

A decentralized economic-inspired solution to the auto-
scaling of component-based systems was proposed by Bon-
vin et al. [10]. They use a multi-agent approach, in which
each server is managed by a server agent. This agent makes
decisions related to the migration/replication/removal of the
components deployed on that server. The problem is that
each agent stores a complete mapping (maintained through
gossiping) of components and servers. In other words, each
agent has a complete view of the system. Because of that,
although the approach is decentralized in the sense that there
is no central manager, it is not scalable with respect to the
number of components and servers.

Another decentralized auto-scaling approach was pro-
posed by Wuhib et al. [11]. They aim to develop a Platform
as a Service for hosting sites in the cloud. In their approach,
each virtual machine is managed by a VM manager, which
is connected through a custom overlay network to other
VM managers that store instances of the same sites. The
utility of a site instance is computed as the ratio between the
allocated CPU capacity and the CPU demand. The utility of
the system is the minimum utility of all instances of all sites.

11Copyright (c) IARIA, 2012. ISBN: 978-1-61208-219-6

ADAPTIVE 2012 : The Fourth International Conference on Adaptive and Self-Adaptive Systems and Applications

A decentralized heuristic algorithm is used to maximize the
utility of the system while minimizing the cost of adaptation.
The resulting system is scalable with respect to the number
of virtual machines and the number of sites, but it is not
scalable with respect to the number of instances of a site.

Montresor and Zandonati proposed a decentralized algo-
rithm for selecting a slice of a P2P system [12]. This slice
may contain nodes with given characteristics that are needed
for running a certain distributed application. Their approach
shares the same idea with DEPAS: each node probabilis-
tically decides to join the slice or depart from the slice.
But their approach is more complex and less scalable than
DEPAS because they use an epidemic broadcast algorithm
to inform all nodes about the slice to be created and a
peer counting algorithm that provides each node with an
estimation of the slice size. The key to the high scalability
of DEPAS is that a node does not need to know either the
total number of nodes or the total capacity of the system.

V. CONCLUSION AND FUTURE WORK

The Decentralized Probabilistic Auto-Scaling (DEPAS)
algorithm can be used to deploy large-scale service systems
whose scalability is limited only by the amount of virtu-
alized resources that can be rented from IaaS providers.
DEPAS assumes that the computing nodes are organized
into an unstructured overlay network and run a scalable
load balancing algorithm. DEPAS is run by each node,
which probabilistically decides to scale in and out. The main
problem in DEPAS is how to compute this probability.

In [4] and [5], DEPAS was formulated, tested, and the-
oretically analyzed for the simplified case of homogenous
systems. In this paper, we provided scaling probabilities
formulas that work in the general case of heterogeneous
systems. We proved both theoretically and experimentally
that, by using the proposed formulas, DEPAS reacts to
workload variations by allocating the right capacity in the
first place.

DEPAS implementation will be included in the near future
in the elasticity mechanism of the second version of the
open-source and deployable Platform-as-a-Service named
mOSAIC (www.mosaic-cloud.eu, bitbucket.org/mosaic) and
will be the starting point in the research activities re-
lated to auto-scaling that are foreseen in MODAClouds
(www.modaclouds.eu).

ACKNOWLEDGMENT

This research has been partially funded by the Romanian
National Authority for Scientific Research, CNCS UEFIS-
CDI, under project PN-II-ID-PCE-2011-3-0260 (AMICAS)
and by the European Commission, under project FP7-ICT-
2009-5-256910 (mOSAIC). Bogdan Caprarescu is partially
supported by IBM through a PhD Fellowship Award.

We would like to thank to Nicola Calcavecchia and Daniel
Dubois for their contribution to the development of the
DEPAS simulator.

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz,
A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica,
and M. Zaharia, “A view of cloud computing,” Commun.
ACM, vol. 53, pp. 50–58, April 2010. [Online]. Available:
http://doi.acm.org/10.1145/1721654.1721672

[2] S. Meng, L. Liu, and V. Soundararajan, “Tide: achieving self-
scaling in virtualized datacenter management middleware,” in
Proceedings of the 11th International Middleware Conference
Industrial track, ser. Middleware Industrial Track ’10. New
York, NY, USA: ACM, 2010, pp. 17–22. [Online]. Available:
http://doi.acm.org/10.1145/1891719.1891722

[3] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim,
“A survey and comparison of peer-to-peer overlay network
schemes,” IEEE Communications Surveys and Tutorials,
vol. 7, no. 1-4, pp. 72–93, 2005.

[4] N. M. Calcavecchia, B. A. Caprarescu, E. Di Nitto, D. J.
Dubois, and D. Petcu, “Depas: A decentralized probabilistic
algorithm for auto-scaling,” CoRR, vol. arXiv:1202.2509,
2012.

[5] B. A. Caprarescu, E. Kaslik, and D. Petcu, “Theoretical anal-
ysis and tuning of decentralized probabilistic auto-scaling,”
CoRR, vol. arXiv:1202.2981, 2012.

[6] W. Galuba, K. Aberer, Z. Despotovic, and W. Kellerer,
“Protopeer: a p2p toolkit bridging the gap between simulation
and live deployement,” in Proceedings of the 2nd Interna-
tional Conference on Simulation Tools and Techniques, ser.
Simutools ’09, ICST, Brussels, Belgium, Belgium, 2009, pp.
60:1–60:9.

[7] “Simulator of depas for heterogenous systems,” 2012,
http://bogdan.softinvent.org/research/depas/ (accessed Mar 11
2012).

[8] M. Jelasity, A. Montresor, and O. Babaoglu, “Gossip-
based aggregation in large dynamic networks,” ACM Trans.
Comput. Syst., vol. 23, pp. 219–252, August 2005. [Online].
Available: http://doi.acm.org/10.1145/1082469.1082470

[9] C. Adam and R. Stadler, “A middleware design for large-
scale clusters offering multiple services,” IEEE Transactions
on Network and Service Management, vol. 3, no. 1, pp. 1–12,
2006.

[10] N. Bonvin, T. G. Papaioannou, and K. Aberer, “Autonomic
sla-driven provisioning for cloud applications,” in Proceed-
ings of the 2011 11th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing, 2011, pp. 434–443.

[11] F. Wuhib, R. Stadler, and M. Spreitzer, “Gossip-based re-
source management for cloud environments,” in Proceedings
of the 2010 International Conference on Network and Service
Management (CNSM), 2010, pp. 1–8.

[12] A. Montresor and R. Zandonati, “Absolute slicing in peer-
to-peer systems,” in Proc. of the 5th Int. Workshop on Hot
Topics in Peer-to-Peer Systems (HotP2P’08). Miami, FL,
USA: IEEE, Apr. 2008.

12Copyright (c) IARIA, 2012. ISBN: 978-1-61208-219-6

ADAPTIVE 2012 : The Fourth International Conference on Adaptive and Self-Adaptive Systems and Applications

