
Application Independent Modeling and Simulation Environment for Systems with
Self-aware and Self-expressive Capabilities

Tatiana Djaba Nya, Stephan C. Stilkerich
Airbus Group Innovations

Airbus Group GmbH
Ottobrunn, Germany

Email: {tatiana.djabanya, stephan.stilkerich}@eads.net

Abstract—Self-awareness and Self-expression in computer sys-
tems promise a lot of abilities enabling us to deal with the
problems and challenges caused by their continuously increasing
complex and heterogeneous structures and requirements, and the
unpredictability and changes in their deployment environment.
For this reason, engineering self-awareness and self-expression in
computing systems has become a major research field in the com-
puter science. To fill the gap between research at the conceptional
level and the construction of first proof-of-concept demonstrators,
a novel modeling and simulation environment for self-aware and
self-expressive systems has been implemented. The environment
is the Transaction-Level-Modeling (TLM) description in SystemC
of the reference architectural framework for self-aware and
self-expression systems. Therefore, it enables to simulate any
topology of self-aware and self-expressive systems and deployed
applications. This paper presents the said environment along with
the developed reference architectural framework on which it is
based, as well as an example motivated in the avionic domain.

Keywords-SystemC; Transaction-Level-Modeling; Simu-
lation; Self-awareness; Self-expression.

I. INTRODUCTION
Self-awareness and self-expression, which is adaptive be-

haviour based upon it, have proven to have a lot of benefits for
computing systems [1]. A computing system with self-aware
and self-expressive capabilities is for example able to deal with
unpredictability and changes in its deployment environment;
it is also possible to implement more functionality in such a
system, such that it has the ability to execute the corresponding
functions according to the knowledge it has of itself and its
environment. Therefore, the engineering of self-awareness and
self-expression in computing systems has become an emerging
and major research field over the past years. In that regard,
there are some very important issues or questions like: what are
the requirements of a self-aware and self-expressive computing
systems? How to properly engineer self-awareness and self-
expression capabilities in a computing system? How to ensure
the correctness of a system after self-adaptation operations?
How to ensure and maintain the reliability, the fault tolerance
level in a system after self-expression? [2][3][4].

To be able to address these questions and many others
in this context, a reference architectural framework which
structures the requirements of a self-aware and self-expressive
system has been built. Based on this reference architecture, a
modeling and simulation environment that can serve as support
and test environment for the development and demonstration

of developed concepts has been implemented. An alternative
concept for realizing fault-tolerance in avionic systems using
self-awareness and self-expression that has been developed has
been used to validate the environment.

This paper presents the previous mentioned elements and is
organized as follows: Section II describes the self-aware and
self-expressive architectural framework. Section III presents
the modeling and simulation environment. Section IV presents
an example case of this environment representing a one single
node avionic system and showing the alternative idea of fault
tolerance for avionic systems. Finally, Sections V concludes
the paper.

II. THE REFERENCE ARCHITECTURAL FRAMEWORK
Inspired from the biology and cognitive science, we defined

in the EPiCS project [2] working definitions for self-awareness
and self-expression in the context of a computing node [5][6].
Underlying these working definitions, we then developed the
proposed reference architectural framework for a self-aware
and self-expressive computing node [7]. This framework is
shown here in Figure 1 and represents the conceptual compo-
nents of a computing node with self-ware and self-expressive
capabilities. Here, conceptual means that these components
don’t need to physically exit as separate components within an
application, but provide a logical structure for reasoning about
interactions between parts of a system, where these parts can
have different levels of knowledge, autonomy and distributed
decision making.

A. Self-Awareness
Self-awareness is achieved in this architecture by the sen-

sors, the private and the public self-aware engines. As in agent
architecture, the sensors are used here to collect information.
Two types of sensors can be distinguished: first, the internal
sensors named ”Sensor” in the architecture, which collect in-
formation about the node internal state and second, the external
sensors which collect information about the node’s context.
These are represented in the architecture by the conceptual
components named ”environment” and ”Other nodes”. Both,
the private and public self-aware engines are responsible here
for collection of information from the corresponding type of
sensors and for the processing of this information. Moreover
they will trigger the node’s reaction and adaptation process
after the information processing, if necessary. According to the
working definition, a self-aware system may possess historical
knowledge, predictors of future likely states or contextual

48Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

Figure 1. The conceptual components of a self-aware and self-
expressive node.

information, in addition to purely instantaneous sensor read-
ings. To enable this richer form of self-awareness, the self-
awareness engines may engage in learning or modeling of
information. We therefore introduce the possibility of internal
models (online learning schemes), which are located in the
component called ”Model(s)” and may be introduced as and
when required in enabling the required level of self-awareness.

B. Self-Expression
To achieve self-expression, our architecture includes actu-

ators and a self-expressive engine. The self-expressive engine
has the role of taking decisions about the actions that must be
performed by the node itself in order to adapt its behaviour.
As required by the working definition, this decision making
process always take into account the node’s state, context,
goals, values, objectives and constraints which are available
in the node and later in this engine through the conceptual
component bearing the same name. The actions determined by
the self-expressive engine are passed to the actuators which
execute them. Actuators are represented in this architecture
by the conceptual components called ”Actuator” and the ones
called ”External actions”. As its name suggests, the latter
execute the actions targeting the node’s environment. The
”actuators” for their part executed the chosen actions targeting
the node itself.

C. Meta-Self-Awareness
Meta-Self-awareness is the higher level of self-awareness

in a computing node and represents the ability of the node
to be aware of its own awareness and to choose the level of
awareness suitable to the node situation, to better achieve its
goals. For this purpose, there is on the one hand a concep-
tual component named ”Monitor/Controller” in the reference
architecture of the node. As shown in Figure 2 through the
arrows, this component has access to the node’s goals, values,
objectives and constraints, to the self-aware and self-expressive
engines. In this way, it has a high-level view over the node’s
behaviour and can intervene, when necessary, to lessen or
increase the level of self-awareness and self-expression in the
node.

III. THE MODELLING AND SIMULATION ENVIRONMENT
The modelling and simulation environment has been imple-

mented in SystemC at the transactional level, i.e., Transaction-
Level Modelling (TLM). TLM is a modelling methodology
which is primary concerned with the efficient modelling of
bus systems and their transactions (hence the name TLM). It
reaches a higher abstraction level over the register transfer level

Figure 2. SystemC-TLM graphical view of the environment.

modelling and thus enables to implement virtual prototypes
of systems which can be used to test developed software or
to assess the performance of different system architectures
through simulation. SystemC is a system description language.
It enables both software and hardware description. The above
mentioned properties and advantages of SystemC and TLM
are the reasons which lead our decision to choose them for the
realization of our modeling and simulation environment. The
implemented SystemC TLM model is described in the follow-
ing subsections. The next subsection gives an brief introduction
in SystemC TLM in order to facilitate the understanding of
the subsequent subsections focussed on the detailed proper
description of the environment.

A. Theoretical background
A SystemC TLM Model is mainly composed of compo-

nents which communicate among each other over sockets by
initiating transactions by the means of processes.

A component has a role which can be of three types:
initiator, target and interconnect. An initiator is able to initiate
transactions to communication with other components; a target
cannot initiate transactions and is always the target of a
transaction. As for the interconnect component, it functions
as a bus or a router for the transactions and usually execute
address mapping operations. A component can act as an
initiator for some transactions and as a target for others. In
this case it is called a bridge.

As mentioned above, the communication in a SystemC
TLM model occurs here in form of transactions (method
calls) through which, in its simplest form, an initiator has the
possibility to write or read data to/from its target component.
The details of the transactions such as the size, the address and
the type of data are regulated by the initiator when initiating
the transactions and later by the interconnect components, if
present, to ensure the correct routing of data.

To be able to initiate transactions, initiators need thread
processes. A process describes the functional behaviour of a
TLM component. The SystemC simulator implements a coop-
erative multitasking environment, i.e. some process instances
execute without interruption, only a single process instance
can be running at any time, and no other process instance
can execute until the currently executing process instance has
yielded control to the kernel. A process shall not pre-empt or
interrupt the execution of another process. Each process has
a sensitivity list which is a set of events and time-outs which
can be defined during implementation to determine when it is
executed or resumed by the scheduler.

B. Model description
The objective of achieving the functionality described in

the reference architecture (Section II) of a self-aware and self-

49Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

TABLE I: DESCRIPTION OF THE TLM MODEL

Component Role Equivalent in the architecture Transactions target(s) Process(es) Execution order Transactions type
SenEnv Initiator Sensor, Environment SAE B 3 WRITE

OtherNode Initiator OtherNode SAE B 4 WRITE

GVOC Initiator Goals - Values - Objectives - Constraints Monitor A1 1 WRITESEE A2 2

LModel Bridge Model(s) SAE C1 5 READ
SEE C2 7 WRITE

SEE Bridge Self-expressive Engine Actuator D 9 WRITEExtAction

Monitor Bridge Monitor/Controller LModel E1 6 READSEE E2 8
SAE Target Private and Public Self-aware Engines

Actuator Target Actuator
Extaction Target External actions

IC1, IC2, IC3, IC4 Interconnect
node Module F

expressive node as well as the data flow among its components
in compliance with the rules and mechanisms of TLM lead us
to the model presented in Figure 2. Complementary to Figure
2, Table I clearly listed the TLM components of this model,
their roles, their processes, the transaction types and most
importantly their equivalent in the reference architecture and
the execution chronology of processes or rather transactions
among them.

1) Functional Behaviour of components:
The first component to come into operation inside a node
when the simulation is started is the Goals-Values-Objectives-
Constraints (GVOC) component. As shown in Table I, it
embodies the node’s goals, values, objectives and constraints.
It is an initiator and as such, it forwards the goals, values,
objectives data respectively to the monitor through process
A1 and to the component SEE through process A2. For this
purpose, each of both processes A1 and A2 initiates WRITE
transactions to the corresponding targets. The interconnect
components IC3 placed between the GVOC component and
its targets ensures the data sent by the GVOC components
always reach the intended target.

The second component(s) to come into play are the sensors:
the SenEnv first, then the OtherNodes components. They are
respectively responsible for the gathering of private and public
information inside the node. A node can possess as many sen-
sors as necessary. Each of them has a process B that initiates
WRITE transactions to forward its collected information to
the common target component named SAE. The SAE acts as
a memory on which every sensor possesses a reserved space
for its data with read access only. In other words, the memory
space on the SAE is divided equally between all the sensors
components. The interconnect component IC1 placed between
the sensors and the SAE in the figure ensures the correct
addressing of the memories areas by the different sensors
during transactions as well as the prevention from overwriting
of data by a sensor in its reserved memory area. This is
achieved by the implementation through a linear mapping
function for transactions addresses.

The LModel component is the third initiator component
to come into play after the simulation starts. It is responsible
for the evaluation of sensor data available inside the node, i.e,
in the SAE memory, on the one hand. On the other hand, it
is responsible for the initiation of the self-expressive behavior
of the node. Thus, its has a process C1 which initiates read
transactions to read the sensor data out of the SAE memory

and let them be evaluated. Through its second process C2,
the LModel component finally initiates WRITE transactions
to forward the results or the necessary information to the
SEE component to trigger the self-expression of the node, if
necessary.

After the LModel follows the SEE component. As de-
scribed in the Table I, the SEE component is a bridge com-
ponent which embodies the self-expressive engine. Accord-
ingly, it analyses the information previously received from
the LModel component and selects the action to be taken.
Following this, its process D starts WRITE transactions either
to the actuators embodied here by the target component of
the Model bearing the same name or to the external actuators
embodied here by the target components named ExtActions or
to both.

The monitor, which embodies the Monitor/Controller of
the self-aware and self-expressive node, is here implemented
in its simplest form, which is a monitor of the self-aware and
self-expressive engines’ actions. To this end, it has a process
E1 which initiates READ transactions towards the LModel
component to read the report data of its actions stored in
its internal report memory. This occurs immediately after the
evaluation of the sensor data in C1. It also has a process E2
which, similarly to E1, initiates WRITE transactions to read
the report data in the report memory of the SEE component
right after the actions in the node has been taken. In contrast to
other components, the monitor actions must not be executed
in every transaction cycle. According to its needs, the user
has the possibility to give the period for the activation of the
monitor actions.

After the SEE component or the monitor is activated, the
LModel component operates again. It reads the next available
data out of the SAE memory and the whole process described
above from that point on is repeated. This occurs until all the
sensor data stored on the SAE memory are evaluated. Then,
the whole operation cycle, named here as process-cycle, starts
again. Here, the number of process-cycles inside a node during
the simulation of a model depends on the whole amount of
sensor information to be processed inside the node and in
each process-cycle. The latter is defined by the user before
simulation starts.

All the above described TLM components of a self-aware
and self-expressive node are encapsulated inside a SystemC
module named ”node” as shown in Figure 2. This module
represents the highest hierarchy in the model and is responsible

50Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

Figure 3. The implemented execution chronology of processes.

for the generation and instantiation of the TLM components
inside each node according to the user specifications as well as
for the resulting sockets and port-bindings for the communica-
tion among the components inside the node and between the
system nodes at simulation start. Furthermore it has a process
F that is the last to be executed in the process-cycle. Process
F is just a synchronization process, i.e., it does not initiate any
transactions, it is executed only once in each a process-cycle
and ensures that processes in all node of a multi-node self-
aware and self-expressive system end at the same simulation
time in a process-cycle.

2) Processes:
From the model description above, it appears that there
is a precise execution chronology of transactions and thus
of processes in the environment that is a prerequisite
and must always be maintain during simulation in or-
der to reflect the functionality of a self-aware and self-
expressive node prescribed by the architecture. This is:
A1→ A2→ B→ {C1→ [E1]→ C2→ D→ [E2]}. It rep-
resents the so-called process-cycle previously mentioned. The
processes within the curly brackets, here referred to as process
chain, are executed alternately after each transaction until all
sensor information available in the SAE memory are evaluated.
Finally, the processes E1 and E2 of the monitor in the square
bracket are activated in specific process-cycle intervals. A
more detailed and precise view of the execution chronology of
processes within a node is shown in Figure 3 and the following
explain how this has been ensured through implementation.

For the temporal processes in a TLM Model, SystemC
offers two possibilities [8]: The loosely-timed modeling style,
which just models the start and end times of transactions
but enables fast simulation times. The second one is the
approximately-timed modeling style, which really details the
phases of a transaction but at the cost of simulation perfor-
mance. Giving the fact that the environment has to deal with
industrial size systems, the simulation performance was a main
concern during the implementation and has therefore lead us to
the choice of loosely-timed modeling style. The Loosely timed
modeling style implies the temporal decoupling of processes.
This is implemented by means of the so called global time
quantum tglobQ. The global time quantum is a time values that
defines the synchronization (suspension) times of all processes
tsync. Each process run ahead simulation time and is executed
as many times as possible till the next synchronization point is
reached. The next synchronization point tsync,next of a process

Figure 4. Delta-cycles within each process-cycle.

depends on the latency times of the transactions it executes
after the previous synchronization and the actual simulation
time tsim. Within each process, the latency time ttrans delay

of each executed transaction is added up to the so-called local
time offset toff , which is then used to verify, if the process
has to synchronize, i.e., be suspended. A suspended process
can run again, only when the scheduler has advanced the
simulation time tsim of this same local time offset. So, for
every process of the model the following formulas always hold:

synchronization points: tsync = N ∗ tglobQ, N ∈ N (1)

between 2 subsequent tsync :
n∑

i=1

ttrans delay,i = toff , n ∈ N∗

(2)
synchronization condition: toff ≥ tsync,next − tsim (3)

From the above described behavior of temporal decoupled
processes and their formulas, it results that the execution time
of a process after a synchronization relies on the following
three key parameters, which can be modified during implemen-
tation: The first execution time at simulation start, the global
quantum and the local time offset, which is the sum of the
latency times of the transactions.

In order to fix this execution and obtain the precise exe-
cution chronology illustrated in Figure 3, we, therefore firstly
chose the adequate first execution times of some processes.
Secondly, we determined the value range for the global quan-
tum. Third and finally, with the assumption that all transactions
of a process always have the same latency time, we decided to
let the user input the number of transactions to be executed per
process-cycles and we established formulas for the automatic
calculation of the latency times of the transactions between
the synchronization points during the elaboration and the
generation of the simulation model, such that the local time
offset between two synchronization points always equals the
global quantum.
• The first executions times tbeg:
To fix the first execution times of processes in our envi-

ronment, we make use of time-outs. A time-out occurs when
the method wait(t) is called with a time-object t ∈ Z+ as
parameter. When executed, the running process is suspended
and resumed after the given time period has elapsed.

So, with respect to the prerequisite execution chronology of
processes and independently of the time unit, we respectively
chose the following times tbeg for the processes A2, C1 and
F: 0.1, 0.2, 0.5. For the processes B’s, for a better overview,

51Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

we chose tbeg = 0.2 respectively chose tbeg = 0.3 for the ones
located inside the SenEnv components and tbeg = 0.4 for the
others located in the OtherNodes components. This method
call is executed only once at simulation start in each of these
processes.

To achieve the alternate execution of processes in the
process chain, we make use of time-outs and events. Each
process of the chain notifies an event belonging to the dynamic
sensitivity list of the next process and calls the method wait()
with t = 0 as parameter, after it has executed a transaction (see
Figure 3). This produces a so-called delta-cycle, i.e., a process
is suspended and resumed at the same simulation time, but in
the next delta-cycle. So, the processing of a sensor data set and
the reaction based upon the processing results always happens
at the same simulation time but in different delta-cycles. And
all sensor data set stored in a the SAE in a process-cycle are all
processed by the process chain within the same process-cycle.
• The global time quantum tglobQ:
In [9], it is proved that the global time quantum of a

TLM Model should be determined, in accordance with the
whole simulation time period, so that the number of resulting
synchronizations nsync or delta cycles ndeltacycles doesn’t
exceed a few hundred thousands. So the following inequalities
should hold:

nsync ≤ 100000 (4)
or ndelta cycles ≤ 100000 (5)

Assuming that tsim denotes the whole simulation period, the
number of synchronizations in the model can be calculated
with the following formula:

nsync =

⌊
tsim
tglobQ

⌋
(6)

In our model, the number of generated delta-cycles by the
processes between two synchronization points is always the
same and is illustrated in Figure 4. The temporal decoupled
processes A1, A2, B’s, and F always generate one delta-cycle.
Because of the additional time-outs used in process chain to
ensure the prerequisite alternate behavior, as described in the
previous paragraphs, the process chain always produces two
delta-cycles to complete the evaluation of a single sensor data
set. Given that the process chain has to evaluate all sensor
data set available on the SAE memory within a process-
cycle, the number of generated delta cycles by the process
chain therefore depends on the number of (read) transactions
initiated by process C1 during a process-cycle. Finally there
is an additional delta-cycle generated at the end of the process
chain’s execution for the synchronization of its processes.
Thus, we have:

ndelta cycles = (NT ∗ 2 + 6) ∗ nsync ∗ nnodes nr (7)

where nnodes nr is the number of nodes in the simulated
system and NT is the number of (read) transactions of C1
between two subsequent synchronizations points. The formulas
(4), (5), (6), (7) above lead us to the following formulas for
the value range of the global time quantum:⌊

tsim
tglobQ

⌋
≤ 100000

(NT ∗ 2 + 6) ∗ nsync ∗ nnodes nr
(8)

• The latency times of transactions:

From the given synchronization condition (3) for tempo-
rally decoupled processes, it results that the global quantum
is always less or equal to the sum of the latency times of
all executed transactions between two synchronization points.
Thus, with ttrans delay denoting the latency time of the ith
transaction of a process between two synchronizations points,
we have:

tglobQ ≤
n∑

i=1

ttrans delay,i = toff (9)

Assuming that the value of local time offset is equal to the
global quantum and that all the transactions between the syn-
chronization points have the same latency times ttrans delay,
we were able to derive the formulas below for the number of
transactions of the processes between every two subsequent
synchronization points:

ttrans delay = tglobQ/NT (10)

where NT denotes the number of transactions of each of the
processes per process-cycle . This is given by the user before
simulation start for the processes A1, A2 and B. Given the fact
that process C1 and C2 have to read and evaluate all sensor
information stored inside the node in a simulation cycle within
the same simulation cycle, the number of transactions that they
generate in each simulation cycle is equal to the mathematical
product of the number of transactions nTB

generated by each
sensor and the number of available sensors ns in the system.
Thus,

NTC1,C2
= nTB

∗ ns (11)

This also applies the processes E1, E2 and D of the process
chain, because they run in each simulation cycle as many times
as the processes C1 and C2. Thus,

NTE1,E2,D
= NTC1,C2

(12)

A transaction can be either a single transaction or a burst
and the latency times of a single transaction tsingle delay differs
from the latency times of a burst transaction, which is actually
what formula (10) computes. The interrelation between both
latency times is:

ttrans delay = tsingle delay ∗BL (13)

with BL =

⌈
DLmax

BUSWIDTH/8

⌉
By substituting (11) in (10), we finally obtain the following
formulas for the latency times of the single transactions for
the processes A1, A2, B’s

tsingle delay = tglobQ/(nTB
∗BL) (14)

and for the process chain:

tsingle delay = tglobQ/(nTB
∗ ns ∗BL) (15)

Applying the above computed formulas as well as the
simulation-execution mechanisms as described above enabled
us to meet our objective relative to the execution chronology
of processes during simulation. For each process, we

ti = tbeg + i ∗ tglobQ mit i = n− 1 und i ∈ N (16)

where i denotes the i-th process-cycle in the simulation.

52Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

IV. USE CASE
For test and validation purposes, an avionic subsystem

consisting of a single self-aware and self-expressive node with
an alternative concept of fault-tolerance has been modeled
and simulated using the introduced simulation and modeling
environment. This concrete system is presented in the next
section. Additionally the simulation results are presented and
discussed.

A. Scenario description
The system under investigation is an avionic subsystem

on which an application composed of a safety relevant thread
Cr and two optional, i.e., not safety relevant, threads O1 and
O2 is installed. The safety relevant thread is designed with
triple modular redundancy [10] according to the reliability
requirement standards [11]. This subsystem consists of a single
self-aware and self-expressive node and the idea here is to
make use of the self-aware and self-expressive capabilities of
this node to drive fault tolerance and mitigation strategies.

In details, some physical properties of the system, here in
our exemplary use case scenario the temperature, are measured
by the sensors during service and compared with their known
empirical values. Differently than in today’s traditional fault
tolerance designs, The 1st and 2nd copy of the critical thread,
Cr(1) and Cr(2), are running at the system start. And its
3rd copy, Cr(3) is only generated and turned on in case of
discrepancy between the measured temperature values and the
given empirical values of the temperature. At the same time,
the optional threads are progressively shut down. Both, the
generation and the turn-on procedure of the third copy of
Cr as well as the turn-off procedures of the optional threads
happen progressively. The objective here is to secure the
operation of the critical thread Cr, which execute the safety
relevant operations of the subsystems. If the measured value
of the temperature still hasn’t fall back in the desired value
range after the actions cited above have been taken, then the
system is restarted and the threads are bring back to the start
configuration. But, as soon as the temperature values measured
by the sensors comply with the given empirical values, the
optional threads are progressively turned on while the 3rd
copy of the critical thread is progressively switched back and
deleted.

An example of the modification of the threads’ execution
state according to the monitoring of the system temperature as
described above is illustrated in Figure 5.

B. Prototyp Building
1) The threads:

To model this concrete system, we implement the threads as
classes with a constructor parameter of type string representing
the type of the thread, here typ = {critical, optional} and a
value s of type float representing the state of a thread, here
s ∈ [0, 1]. During simulation, with respect to the results of the
continuously comparison between the measured and empirical
value of the temperature (self-awareness), this state variable is
altered by the actuator of the node (self-expressive behavior)
to model the behavior of the corresponding threads. For the
optional threads, this indicates the progressive switch-on and
off processes. For the critical thread Cr(3), it indicates its
progressive generation, switch-on, switch-off as well as its
deletion. For an optional thread, i.e, typ = critical, s = 0
means that the thread is switched off and s = 1 means that the

Figure 5. Example of the threads’ execution state in the system
according to the comparison results.

thread is switched on or running. For a critical thread, s = 0
means that it is deleted, s = 0.5 means that it is generated and
s = 1 means that it is switched on or running.

2) The functionality of the components:
• The SenEnv component
Due to the fact that, there is only one physical parameter to be
observed, the system’s own temperature, the model only needs
one SenEnv component. The measured temperature values are
given here in a matlab file. Thus, the SenEnv component
reads out the file at program start and stores the data in a
vector. In each process-cycle, the SenEnv component executes
a transaction to transfer a single temperature value t of the
vector to the SAE component.
• The LModel component

The value previously stored in the SAE component by the
sensor is read by the LModel and compared with the given
maximal empirical value Tmax of the system temperature.
Using the given frequency distribution of the temperature
empirical values and depending on the comparison results,
a value v(t), which will help to initiate the self-expressive
behavior of the system, is computed as follows:

v(t) =

{
−1.0 when t > Tmax

N [i] else with i = round(t− Tmax)

(17)
The frequency distribution is given as a matlab file and stored
at simulation start in the LModel component in a vector N .
Here, N [i] denotes the frequency density of this distribution.
The computed value of v(t) is thereupon transferred to the
SEE component by the process C2 of LModel.
• The SEE component

This component uses the received value v(t) to compute a so-
called decision vector E(v). This vector consists of 5 values
and represents the choice of the self-expressive engine of the
node regarding the action to be performed on the threads

53Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

according to the node’s awareness and reasoning.

E(v) = (e1︸︷︷︸ e2︸︷︷︸ e3︸︷︷︸ e4︸︷︷︸ e5︸︷︷︸)
Cr(1) Cr(2) Cr(3) O1 O2

(18)

with ei ∈ [−1, 1]and i ∈ {1, 2, 3, 4, 5}. So, each element of
this vector E is the update value to be used by the actuator to
alter the state of the corresponding thread of the system. In case
that the system must restart, the SEE component will compute
the following decision vector: E(v) = {−1,−1,−1,−1,−1},
else the following formula is used:

ei(v) =

{ −0.01 with v = −1
v −Nmax with v ≤ 0.9 ∗Nmax

v −Nmax + 0.1 else
e3(v) = −1 ∗ ei(v)

(19)
with i ∈ {4, 5} and Nmax maximal value of the frequency
density. After computation, the SEE component finally for-
wards this vector to the actuator of the node.
• The actuator component

As already mentioned above, the actuator component uses the
received decision vector E(v) to update the threads execution
state according to the nodes self-awareness. So, for each of
the threads i we have the following:

snew,i = sactual,i + ei. (20)

During the simulation, the computed values in each process-
cycle are stored in a matlab file.
• The monitor component

Here, the task of the monitor is to read the report data of
the SAE and SEE components and to monitor them, i.e., to
write them in a matlab file that is used to control the values
v(t) and E(v) computed respectively by the SAE and the SEE
components.
• The GVOC component

The only constraint given here is the maximum value Tmax

for the system temperature. So, in each process-cycle, GVOC
just forwards Tmax to the SEE and Monitor components.
• The OtherNode and the ExtActions components

As we have mentioned above, this system under investigation
comprises a single node. Thus, this prototype don’t need any
OtherNode component. In addition, there is no actions to be
performed on the node’s environment. This implies that there
is also no need for ExtActions components in this prototype.

C. Simulation and Evaluation
With a total of 2500 given temperature values to be

processed inside the self-aware and self-expressive node, the
number of temperature value to be process within a process-
cycle set to one, i.e., one transaction of the sensor per process-
cycle, a simulation time period tsim = 5002ms and a global
quantum time of 2ms were chosen according to (8) derived in
section 3. Our model needed exactly 17500 transactions for all
processes, 2001 synchronisations and lasted around 3 minutes.
A total of 16008 delta-cycles were generated, which agrees
with (7).

Figure 6 displays on the top line chart, the run of the given
measured temperature values and, on the bottom line chart,
the run of the threads states values computed over the whole
simulation period according to the temperature values. Here,
the maximal empirical temperature value is Tmax = 87 ◦C.
One can realize from this illustration that the temperature of

Figure 6. Temperature and threads execution state during the
simulation period.

the system is not constant. But the first and last thousand values
remain below the given maximum Tmax while the remaining
five hundred values exceed it. As expected, the state values
s of the threads vary accordingly over the simulation period.
Indeed, the state value of Cr(3), the 3rd copy of the critical
thread, is also not constant but always remains under the value
0.5 when the temperature isn’t to near to the given maxi-
mum. When the temperature continues to rise, approaches,
reaches or exceeds the given maximum, Cr(3) is generated
(sCr(3) = 0.5), progressively switched on and remains in
this state (sCr(3) = 1). Meanwhile, the optional threads are
switched off (sO1,O2 = 0). As soon as the temperature falls
back, the state value of sCr(3) decreases while sO1 and sO2

increase. Some specific points of the simulation have been
captured in Figure 7 and underpin the above statement.

V. CONCLUSION
In this paper, we described a reference architectural frame-

work developed to structure the requirements for the design
of computing system with self-aware and self-expressive be-
haviour. Subsequently, we presented a modelling and simula-
tion environment developed in SystemC using the Transaction-
Level Modelling (TLM) and based on the previous mentioned
framework for the construction of prototype and the tests and
validation of novel concepts developed based on both proper-
ties. The presented environment can be used to build virtual
prototypes of self-aware and self-expressive systems for indus-
trial systems. Moreover, through the clear separation between

54Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7. Threads’s execution state according to the temperature at specific simulation points.

the proper components’ functionalities and the communication
among them on the one hand, the implemented accurate and
reliable execution chronology of temporal decoupled processes
used to encapsulate them, the environment achieves fine timing
resolutions and ensures the functionality described in the
reference architecture. As the third and final part of this paper,
we presented the model was used to build a prototype of a
single-node self-aware and self-expressive system presenting a
novel concept for fault-tolerance in avionics systems could be
built with the model using the test environment. The simulation
results have also been presented and discussed.

Ongoing work is devoted to the optimization of the imple-
mentation of the presented environment and the development
of more novel fault-tolerance concepts and approaches that are
better suitable to the next generation of computing systems,
systems with self-properties, and can lessen the performance
and functionality restraining high redundancy level of safety-
critical systems, most particularly of avionics embedded sys-
tems.

ACKNOWLEDGMENT
The research leading to these results has received funding

from the European Union Seventh Framework Program under
grant agreement no 257906.

REFERENCES
[1] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”

Computer, vol. 36, no. 1, 2003, pp. 41–50.

[2] epics, “EPiCS Project,” Jan 2014. [Online]. Available: http://www.epics-
project.eu/

[3] sapere, “SAPERE Project,” Mar 2014. [Online]. Available:
http://www.sapere-project.eu/

[4] recognition, “Recognition Project,” Mar 2014. [Online]. Available:
http://www.recognition-project.eu/

[5] S. Parsons, R. Bahsoon, P. R. Lewis, and X. Yao, “Towards a better
understanding of self-awareness and self-expression within software
systems,” University of Birmingham, School of Computer Science, UK,
Tech. Rep. CSR-11-03, Apr 2011.

[6] P. R. Lewis et al., “A survey of self-awareness and its application in
computing systems,” in Proc. Int. Conference on Self-Adaptive and Self-
Organizing Systems Workshops (SASOW). IEEE Computer Society,
2011, pp. 102–107.

[7] T. Becker et al., “EPiCS: Engineering proprioception in computing
systems,” in Computational Science and Engineering (CSE), 2012 IEEE
15th International Conference on, 2012, pp. 353–360.

[8] I. C. Society, IEEE Standard for Standard SystemC Language Reference
Manual - IEEE Std 1666TM-2011, 2012.

[9] F. Kesel, Modeling of digital Systems with SystemC: From the RTL-
to the Transaction-Level-Modeling. Oldenbourg Wissenschaftsverlag,
2012.

[10] R. Orsagh, D. Brown, P. Kalgren, A. Byington, C.S. ; Hess, and
T. Dabney, “Prognostic health management for avionic systems,” in
Aerospace Conference, IEEE , 2006, pp. 1213–1219.

[11] M. Pignol, “COTS-based applications in space avionics,” in DATE 2010,
2010, pp. 1213–1219.

55Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

