
Automated Fault Analysis and Filter Generation for Adaptive Cybersecurity

David J. Musliner, Scott E. Friedman, Jeffrey M. Rye
Smart Information Flow Technologies (SIFT)

Minneapolis, USA
email: {dmusliner,sfriedman,jrye}@sift.net

Abstract—We are developing the FUZZBUSTER system to auto-
matically identify software vulnerabilities and create adaptations
that shield or repair those vulnerabilities before attackers can
exploit them. Adaptive cybersecurity involves efficiently improv-
ing software security to minimize the window of attack, and also
preserving software functionality as much as possible. This paper
presents new tools that have been integrated into FUZZBUSTER
adaptive cybersecurity. These tools produce more general, ac-
curate adaptations, increase the efficiency of FUZZBUSTER’s
diagnoses and adaptation operations, and preserve the software’s
functionality. We report the results of FUZZBUSTER’s analysis of
16 fault-injected command-line binaries and six previously known
bugs in the Apache web server. We compare results over different
configurations of FUZZBUSTER to characterize the benefits of the
new fuzz-testing tools.

Keywords-cyber defense; automatic filter generation.

I. INTRODUCTION

Cyber-attackers constantly threaten today’s computer sys-
tems, increasing the number of intrusions every year [1], [2].
Firewalls, anti-virus systems, and patch distribution systems
react too slowly to newfound “zero-day” vulnerabilities, al-
lowing intruders to wreak havoc. We are investigating ways to
solve this problem by allowing computer systems to automati-
cally identify their own vulnerabilities and adapt their software
to shield or repair those vulnerabilities, before attackers can
exploit them. Such adaptations must balance the safety of the
system against its functionality: the safest behavior might be
to simply turn the power off or entirely disable vulnerable
applications, but that would make the systems useless. To
make a finer-grained balance between security and function-
ality, adaptations must be:

• General enough to shield the entire vulnerability (i.e., not
just blocking an overspecific set of faulting inputs).

• Specific enough to minimize the negative impact on
program functionality (e.g., by causing incorrect results
on valid inputs).

• Efficiently-generated, to minimize the window of expo-
sure to vulnerability over time.

These considerations for adaptive cybersecurity pose several
challenges, including: how faults are discovered and diag-
nosed, with and without direct access to source code or
binaries; how adaptations are generated from the diagnoses;
how the many possible adaptations are assessed and chosen;
and how all of these operations are orchestrated for efficiency.

This paper describes strategies for automatically discovering
vulnerabilities, diagnosing them, and adapting programs to
defend against them. We have implemented these strategies

	������
�����������
��������������

������������
��!!��������

����������������
�������� ��
����������

����������
���������
���������

��������

��������
����������� �

�������

��!!������
� ������!���
��������
�������

��������

	����������
�������������������

Fig. 1. FUZZBUSTER automatically finds vulnerabilities, refines its under-
standing of their extent, and creates adaptations to shield or repair them.

within the FUZZBUSTER integrated system for active cyber-
security [3], which includes metrics [4], and metacontrol [5]
for self-adaptative software immunity. FUZZBUSTER uses a
diverse set of custom-built and off-the-shelf fuzz-testing tools
and code analysis tools to develop protective self-adaptations.
Fuzz-testing tools find software vulnerabilities by exploring
millions of semi-random inputs to a program. FUZZBUSTER
also uses fuzz-testing tools to refine its models of known
vulnerabilities, clarifying which types of inputs can trigger a
vulnerability. FUZZBUSTER’s behavior falls into two general
classes, as illustrated in Figure 1:

1) Proactive: FUZZBUSTER discovers novel vulnerabilities
in applications using fuzz-testing tools. FUZZBUSTER
refines its models of the vulnerabilities and then repairs
them or shields them before attackers find and exploit
them.

2) Reactive: FUZZBUSTER is notified of a fault in an ap-
plication (potentially triggered by an adversary). FUZZ-
BUSTER subsequently tries to refine the vulnerability and
repair or shield it against attackers. Reactive vulnerabil-
ities pose a greater threat to the host, since these may
indicate an imminent exploit by an attacker.

FUZZBUSTER’s primary objective is to protect its host by
adapting its applications, but this may come at some cost.
For example, applying an input filter or a binary patch may
create a new vulnerability, re-enable a previously-addressed
vulnerability, or otherwise negatively impact an application’s
usability by changing its expected behavior. This illustrates
a tradeoff between functionality and security, and measuring
both of these factors is important for making decisions about
adaptive cybersecurity.

We begin by outlining FUZZBUSTER’s process of discov-
ering, refining, and repairing vulnerabilities in Section II,

56Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

which motivates our research on adaptation metrics. We then
describe FUZZBUSTER’s novel diagnosis tools for adaptive
cybersecurity in Section III, and we summarize the results of
several experiments in Section IV.

II. BACKGROUND: FUZZBUSTER ACTIVE CYBERSECURITY

FUZZBUSTER tests and adapts multiple applications on a
host machine. When FUZZBUSTER discovers a fault in one
of these applications— or when it is notified of a reactive
fault triggered by some other input source— it represents
the fault as an exemplar that contains information about the
system’s state when it faulted, as shown in Figure 1. Note
that FUZZBUSTER is not responsible for fault detection; we
assume that other security and correctness mechanisms detect
the fault and notify FUZZBUSTER.

An exemplar includes information for replicating the fault,
such as environment variables and data passed as input to
the faulting application (e.g., via sockets or stdin). Some
of this data may be unrelated to the underlying vulnerability.
For instance, when FUZZBUSTER encounters a fault in the
Apache web server in Section IV, it captures all environment
variables (all of which are unnecessary to replicate the fault),
and the entire string of network input that was sent to the
application (most of which is unnecessary to replicate the
fault). FUZZBUSTER uses fuzz-testing tools to incrementally
refine the exemplar, trying to characterize the minimal inputs
needed to trigger the fault. Since time and processing power is
limited, FUZZBUSTER uses a greedy meta-control strategy [5]
to orchestrate these tools.

Refinement is an iterative process, where each task improves
the vulnerability profile that FUZZBUSTER uses to characterize
the vulnerability. The refinement process turns the initial
(often over-specific) vulnerability profile into a more accurate
and general profile. While refining the Apache web server
vulnerabilities, FUZZBUSTER uses an environment variable
fuzzer to test and remove unnecessary environment variables
for replicating the fault, uses input fuzzers to delimit, test,
and remove/replace unnecessary network input, and thereby
develops a more accurate vulnerability profile.

FUZZBUSTER has several general adaptation capabilities,
including input filters, environment variable filters, and source-
code repair and recompilation. These protect against entire
classes of exploits that may be encountered in the future.
FUZZBUSTER uses each of these by (1) constructing the adap-
tation, (2) assessing the adaptation by temporarily applying it
for test runs, and (3) applying the adaptation to the production
application if it is deemed beneficial. FUZZBUSTER may apply
multiple adaptations to an application to repair a single under-
lying vulnerability. In the case of adapting the Apache web
server in Section IV, FUZZBUSTER creates input filters based
on its vulnerability profiles: it extracts regular expressions that
characterize the pattern of faulting inputs, including necessary
character sequences (e.g., “Cookie:”), length-dependent wild-
cards (e.g., “.{256,}?”), and more. FUZZBUSTER then uses
these input filters to identify potentially-faulting inputs and

then discard them or rectify them, based on the application
under test.

A. Assessing Adaptations

FUZZBUSTER cannot blindly apply adaptations, since they
might have a negative impact on functionality or, even worse,
they could create new faults altogether. Thus, FUZZBUSTER
uses concrete metrics to assess the impact of candidate adap-
tations on security and functionality.

FUZZBUSTER’s adaptation metrics are based on test cases:
mappings from application inputs (e.g., sockets, stdin,
command-line arguments, and environment variables) to ap-
plication outputs (e.g., stdout and return code). A faulting
test case terminates with an error code or its execution time
exceeds a set timeout parameter, while a non-faulting test case
terminates gracefully. FUZZBUSTER stores three sets of test
cases for each application under its control:

1) Non-faulting (reference) test cases are test cases that
were supplied with an application for regression test-
ing. FUZZBUSTER tracks which of these have correct
behavior (i.e., output and return code), and which have
different/incorrect behavior, given some adaptations.

2) Faulting test cases include exemplars that caused faults
on their first encounter, and other faulting test cases
encountered while refining the exemplar. FUZZBUSTER
tracks which of these have been fixed by the adaptations
created so far, and which are still faulting. There are two
specific types of faulting test cases:

a) Reactive faulting test cases: encountered by host
notification and subsequent refinement (see Fig-
ure 1). These pose more of a threat, since the
underlying vulnerability may have been caused by
an adversary.

b) Proactive faulting test cases: encountered by dis-
covery and refinement (see Figure 1). These pose
less threat, since they were discovered internally
and FUZZBUSTER has no evidence that an adver-
sary is aware of them.

We can calculate two important metrics from these sets of
test cases over time:

1) Exposure is computed as the number of unfixed fault-
ing test cases over time. This represents an estimated
window of exploitability.

2) Functionality loss is computed as the number of incor-
rect non-faulting (reference) test cases over time. This
represents the usability that FUZZBUSTER has sacrificed
for the sake of security.

Before FUZZBUSTER has discovered faults or been notified
of faults, there are no faulting test cases for any application.
As FUZZBUSTER encounters proactive and reactive faults and
refines those faults (e.g., by experimenting with different
inputs), it will accrue faulting test cases. FUZZBUSTER then
applies and removes adaptations to fix these faulting test
cases. These adaptations ultimately protect the host against
adversaries.

57Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

FUZZBUSTER’s assessment policy allows it to sacrifice
functionality to fix faulting test cases. The exact balance can
be tuned for different applications, but FUZZBUSTER’s default
priorities are:

1) Fixing reactive faulting test cases.
2) Fixing proactive faulting test cases.
3) Maintaining the behavior of non-faulting test cases.

This means that FUZZBUSTER will tolerate functionality loss
(i.e., by changing the behavior of non-faulting test cases) in
order to decrease exposure.

B. Pre-existing Tools for Discovery & Refinement

Since this paper presents new tools for discovery and refine-
ment (Section III), for the sake of comparison we first review
the set of fuzz tools we used in previous work [5], [3], [4].
Those tools included a random string generator for discovering
faults (called Fuzz-2001) and various minimization (i.e.,
unnecessary character removal) tools for refining faults.
Fuzz-2001 quickly constructs a sequence of printable

and non-printable characters and feeds it as input to the
program under test. This is effective for discovering some
buffer overflows, problems with escape characters, and other
such problems.

The minimization tools FUZZBUSTER uses to refine vulner-
abilities include:

• smallify: semi-randomly removes single characters from
the input string.

• line-relev: semi-randomly removes entire lines from the
input string.

• divide-and-conquer: Use a binary search to attempt to
remove entire portions of the input string.

Each of these tools is designed take a faulting test case as
input, and produce smaller faulting test case(s).

Minimization tools can operate in a black-box fashion,
where FUZZBUSTER does not have the source code or even
access to the binary. All they require is an output signal to
determine whether the program faulted.

III. NEW DISCOVERY & REFINEMENT TOOLS

We now discuss several new tools that we have incorporated
into FUZZBUSTER for discovering and refining faults. We
then present empirical results comparing the new and existing
tools to characterize the effects on the host’s exposure to
vulnerabilities.

Both of these tools work with input filter adapations; that
is, program adaptations that remove content from input data
before passing the data to the corresponding program.

A. Retrospective Fault Analysis

We implemented and tested Retrospective Fault Analysis
(RFA), a new tool for vulnerability discovery. RFA works by
finding the most recent faulting test case such that:

• The test case’s input is filtered by the most recent
adaptation applied, so some input data has been removed.

• The test case still faults, despite its input being filtered.

RFA then uses the test case— with filtered input— as an
exemplar. This effectively allows FUZZBUSTER to fix test
cases that still fault, despite incremental adaptations.

To illustrate why this is important, consider the following
simplified example, where a program faults if it receives either
CRASH or fault in an incoming message. Some messages
may have more than one fault within them, e.g.:

• Cookie: foo=...CRASH...fault...
• Cookie: foo=...faCRASHult...

This means that FUZZBUSTER can automatically build a
filter adaptation to address CRASH, but in both of the above
cases, there will still be a fault. Using RFA, FUZZBUSTER
will follow its CRASH adaptation with a retrospective investi-
gation of the remaining fault test case(s). This produces a
more complete analysis of problematic inputs, and it improves
the host’s exposure to vulnerabilities, as we demonstrate in our
experiments.

B. Input Generalization Tools

As described in Section II-B, minimization tools remove
unnecessary characters for a fault. Unfortunately, refining
vulnerabilities based on removal alone will tend to produce
overspecific adaptations.

Consider the example of IP addresses within a packet
header: minimization tools might trim 192.168.0.1 to 2.8.0.1,
which might still produce the fault; however, an adaptation
based on this model will only be effective when 2, 8, 0, and
1 are all present in the address.

FUZZBUSTER’s new generalization tools go the extra step
of replacing characters and inserting characters to generalize
FUZZBUSTER’s regular expression model of the faulting input
pattern. This means that FUZZBUSTER will be able to substi-
tute the IP address’ digits with other digits to develop a more
general, accurate adaptation.

We have implemented the following generalization tools:

• replace-all-chars: replaces all characters with dif-
ferent characters, reruns the test case, and then general-
izes. This determines whether the test case is an instance
of a buffer overflow. For example:
ABCDEFGH ==> .{8,}

• replace-delimited-chars: splits the input into
chunks, using common delimiters, removes and replaces
delimited chunks, and then generalizes. For example:
host: 1.1.1.1\nCookie ==> .{0,}?Cookie

• replace-individual-chars: removes and re-
places individual characters, sensitive to character classes
(e.g., letters, digits, whitespace, etc.), and generalizes. For
example:
GCOJR34A59S94H ==> .*C.*R.*A.*S.*H

• insert-chars: inserts characters in-between consec-
utive concrete characters, to relax adjacency constraints.
For example:
CRASH ==> .*C.*R.*A.*S.*H

58Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

• shorten-regex: removes characters within wildcard
blocks to provide more accurate buffer overflow thresh-
olds. For example:
host: .{951,} ==> host: .{256,}

We conducted experiments on multiple programs to charac-
terize the effect of generalization tools and RFA. We discuss
these experiments and results next.

 0

 20

 40

 60

 80

 100

 120

 140

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Fa

ul
tin

g
Te

st
 C

as
es

Time (s)

PA
TC

H
 1

 (0
, 1

7,
 2

7)

PA
TC

H
 2

 (0
, 3

4,
 2

7)

PA
TC

H
 3

 (0
, 5

4,
 2

7)

PA
TC

H
 4

 (0
, 8

0,
 2

7)

PA
TC

H
 5

 (0
, 9

2,
 2

7)

PA
TC

H
 6

 (0
, 1

05
, 2

7)

PA
TC

H
 7

 (0
, 1

20
, 2

7)

PA
TC

H
 8

 (0
, 1

39
, 2

7)

Reference Test Cases
Reference Test Cases Preserved

Faulting Test Cases Fixed
Faulting Test Cases Found

Fig. 2. Results using RFA, minimization, and generalization.

IV. EXPERIMENTS

We conducted an empirical evaluation on different programs
to measure the effect of RFA and the new generalization fuzz-
tools. We divide this into four discussions: (1) a compara-
tive analysis of minimization, generalization, and RFA on a
single program; (2) an example of FUZZBUSTER sacrificing
functionality in order to increase security; (3) a quantitative
comparison of minimization and generalization using FUZZ-
BUSTER to shield a web server against known vulnerabilities;
and (4) adaptation statistics across multiple programs using
FUZZBUSTER with generalization and RFA.

A. Comparative Analysis: Generalization, Minimization, RFA

For this experiment, we used a fault-injected version of
dc, a unix-based, stdin-based desktop calculator program.
The fault in dc was injected within the internal modulo (i.e.,
remainder) operation. This operation is reached by invoking
the % command with at least two numbers on the stack,
printing with a non-decimal output radix, changing the input
radix, or invoking base conversion.

We ran FUZZBUSTER in five settings: with RFA using
both minimization and generalization tools (Figure 2); and
then with and without RFA, under either minimization or
generalization tools (Figure 3).

Each of these plots display the following important data for
adaptive cybersecurity:

• The number of faulting test cases FUZZBUSTER has
identified through discovery and refinement (solid light
red line).

• The number of those faulting test cases that FUZZBUSTER
has fixed (dashed light red line).

• Exposure to vulnerabilities (area between light red lines).
• The number of reference (non-faulting) test cases FUZZ-

BUSTER has for the application (solid dark line).
• The number of those non-faulting test cases whose return

code and output behavior is preserved in the patched
version (dashed dark line).

• Loss of functionality (area between dark lines).
• The patches that have been applied.
The comparison plots in Figure 3 illustrate the trade-

offs of generalization and RFA. Minimization tools (Fig-
ure 3, left) produce quick, overspecific patches. For instance,
PATCH 16 in the Figure 3 upper-left plot filters the pattern
.*9.*5.*%.*. While this is a legitimate example of the
fault, it does not characterize the fault in its entirety. By com-
parison, the generalization patches are slightly more general.

Figure 3 also illustrates the effect of retrospective fault
analysis. In the RFA trials, the exposure (distance between
the light red lines) is significantly reduced. This is because
FUZZBUSTER often deploys a filter that addresses some – but
not all – problems in a faulting input, and then RFA allows
FUZZBUSTER to focus on the remainder of the problematic
input. For instance, if a single test case has both a modulo
operation and a base conversion, filtering out only one of these
operations will not repair the test case.

In the setting with both generalization and RFA, FUZZ-
BUSTER filters against the entire vulnerability within 15 min-
utes; in the other cases, FUZZBUSTER does not level off for
over three hours.

Note that in all settings in Figure 3, FUZZBUSTER did not
lose functionality of the underlying application, as measured
by the correctness of the reference test cases.

Figure 2 shows the results of FUZZBUSTER with both
minimization and genralization enabled. It fixes the entire
vulnerability and levels off in 18 minutes, but it also destroys
the functionality of one of the reference test cases, since its
PATCH 5 was overgeneral.

B. Sacrificing Functionality to Increase Security

We ran another FUZZBUSTER trial on a different fault-
injected version of the dc binary. This version faulted when-
ever an arithmetic operation is invoked on an empty stack,
so for instance, the sequence ‘‘9 5 +’’ would not fault,
but the inputs ‘‘+’’ or ‘‘4 n +’’ would fault due to an
empty stack (and ‘‘n’’ pops the stack).

The results are shown in Figure 4. Using generalization
tools and RFA, FUZZBUSTER isolates individual arithmetic
operations and generates filters for each, ultimately disabling
its arithmetic operations to prevent any faults. Note that
almost every adaptation has an adverse impact on program
functionality, but by design, these are acceptable losses to
increase safety of the host.

C. Adapting a Web Server

We conducted FUZZBUSTER experiments on known Com-
mon Vulnerabilities and Exposures (CVEs) on the Apache web
server. This demonstrates FUZZBUSTER working on larger

59Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Fa

ul
tin

g
Te

st
 C

as
es

Time (s)

PA
TC

H
 1

 (0
, 1

, 2
7)

PA
TC

H
 2

 (0
, 7

, 2
7)

PA
TC

H
 3

 (0
, 1

4,
 2

7)

PA
TC

H
 4

 (0
, 2

1,
 2

7)

PA
TC

H
 5

 (0
, 2

1,
 2

7)

PA
TC

H
 6

 (0
, 2

2,
 2

7)

PA
TC

H
 7

 (0
, 2

9,
 2

7)

PA
TC

H
 8

 (0
, 2

9,
 2

7)

PA
TC

H
 9

 (0
, 3

9,
 2

7)

PA
TC

H
 1

0
(0

, 3
9,

 2
7)

PA
TC

H
 1

1
(0

, 3
9,

 2
7)

PA
TC

H
 1

2
(0

, 4
6,

 2
7)

PA
TC

H
 1

3
(0

, 4
6,

 2
7)

PA
TC

H
 1

4
(0

, 5
2,

 2
7)

PA
TC

H
 1

5
(0

, 5
8,

 2
7)

PA
TC

H
 1

6
(0

, 6
7,

 2
7)

PA
TC

H
 1

7
(0

, 7
4,

 2
7)

PA
TC

H
 1

8
(0

, 7
6,

 2
7)

PA
TC

H
 1

9
(0

, 7
6,

 2
7)

Reference Test Cases
Reference Test Cases Preserved

Faulting Test Cases Fixed
Faulting Test Cases Found

 0

 50

 100

 150

 200

 250

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Fa

ul
tin

g
Te

st
 C

as
es

Time (s)

PA
TC

H
 1

 (0
, 1

3,
 2

7)
PA

TC
H

 2
 (0

, 2
0,

 2
7)

PA
TC

H
 3

 (0
, 2

9,
 2

7)

PA
TC

H
 4

 (0
, 3

6,
 2

7)

PA
TC

H
 5

 (0
, 4

8,
 2

7)

PA
TC

H
 6

 (0
, 5

6,
 2

7)

PA
TC

H
 7

 (0
, 6

8,
 2

7)

PA
TC

H
 8

 (0
, 7

7,
 2

7)

PA
TC

H
 9

 (0
, 8

7,
 2

7)

PA
TC

H
 1

0
(0

, 9
1,

 2
7)

PA
TC

H
 1

1
(0

, 9
7,

 2
7)

PA
TC

H
 1

2
(0

, 1
11

, 2
7)

PA
TC

H
 1

3
(0

, 1
16

, 2
7)

PA
TC

H
 1

4
(0

, 1
24

, 2
7)

PA
TC

H
 1

5
(0

, 1
35

, 2
7)

PA
TC

H
 1

6
(0

, 1
46

, 2
7)

PA
TC

H
 1

7
(0

, 1
51

, 2
7)

PA
TC

H
 1

8
(0

, 1
58

, 2
7)

PA
TC

H
 1

9
(0

, 1
72

, 2
7)

PA
TC

H
 2

0
(0

, 1
84

, 2
7)Reference Test Cases

Reference Test Cases Preserved
Faulting Test Cases Fixed

Faulting Test Cases Found

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Fa

ul
tin

g
Te

st
 C

as
es

Time (s)

PA
TC

H
 1

 (0
, 4

, 2
7)

PA
TC

H
 2

 (0
, 1

1,
 2

7)

PA
TC

H
 3

 (0
, 1

7,
 2

7)

PA
TC

H
 4

 (0
, 2

5,
 2

7)

PA
TC

H
 5

 (0
, 3

2,
 2

7)

PA
TC

H
 6

 (0
, 3

9,
 2

7)
PA

TC
H

 7
 (0

, 3
9,

 2
7) PA

TC
H

 8
 (0

, 5
4,

 2
7)

PA
TC

H
 9

 (0
, 6

2,
 2

7)

PA
TC

H
 1

0
(0

, 6
2,

 2
7)

PA
TC

H
 1

1
(0

, 7
2,

 2
7)

PA
TC

H
 1

2
(0

, 8
5,

 2
7)

Reference Test Cases
Reference Test Cases Preserved

Faulting Test Cases Fixed
Faulting Test Cases Found

 0

 50

 100

 150

 200

 250

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Fa

ul
tin

g
Te

st
 C

as
es

Time (s)

PA
TC

H
 1

 (0
, 1

0,
 2

7)

PA
TC

H
 2

 (0
, 2

6,
 2

7)

PA
TC

H
 3

 (0
, 3

7,
 2

7)

PA
TC

H
 4

 (0
, 4

5,
 2

7)

PA
TC

H
 5

 (0
, 5

7,
 2

7)

PA
TC

H
 6

 (0
, 6

5,
 2

7)

PA
TC

H
 7

 (0
, 7

8,
 2

7)

PA
TC

H
 8

 (0
, 8

7,
 2

7)

PA
TC

H
 9

 (0
, 9

4,
 2

7)

PA
TC

H
 1

0
(0

, 1
02

, 2
7)

PA
TC

H
 1

1
(0

, 1
08

, 2
7)

PA
TC

H
 1

2
(0

, 1
21

, 2
7)

PA
TC

H
 1

3
(0

, 1
27

, 2
7)

PA
TC

H
 1

4
(0

, 1
39

, 2
7)

PA
TC

H
 1

5
(0

, 1
48

, 2
7)

PA
TC

H
 1

6
(0

, 1
58

, 2
7)

PA
TC

H
 1

7
(0

, 1
69

, 2
7)

PA
TC

H
 1

8
(0

, 1
78

, 2
7)

PA
TC

H
 1

9
(0

, 1
91

, 2
7)

PA
TC

H
 2

0
(0

, 1
95

, 2
7)

PA
TC

H
 2

1
(0

, 2
01

, 2
7)

Reference Test Cases
Reference Test Cases Preserved

Faulting Test Cases Fixed
Faulting Test Cases Found

Minimization Fuzz-Tools Generalization Fuzz-Tools
W

ith
ou

t R
FA

W
ith

 R
FA

Fig. 3. Results comparing the exposure window of Retrospective Fault Analysis and minimization vs. generalization tools.

production-quality applications with real vulnerabilities, and
it shows the generality of FUZZBUSTER and its fuzz-tools.

For each trial, we initialized FUZZBUSTER with the Apache
web server as the only application under test. We then sent
a faulting message to the server— as dictated by the cor-
responding CVE— and FUZZBUSTER detected the reactive
fault and began its fuzzing. Table I reports how many minutes
FUZZBUSTER took to produce an input filter adaptation (from
simulation start to patch time) for the corresponding CVE us-
ing only minimization tools (i.e., “Min.”), only generalization
tools (i.e., “Gen.”), and the speedup provided by generalization
tools.

TABLE I
FUZZBUSTER’S REACTION TIME ON CVES OF THE APACHE WEB SERVER.

CVE RT (Min.) RT (Gen.) Speedup
2011-3192 96 4 24x

2011-3368-1 53 10 5x
2011-3368-2 32 10 3x
2011-3368-3 77 11 7x

2012-0021 36 3 12x
2012-0053 30 7 4x

Reaction times reported in minutes; speedup reported as quotient.

In addition to producing more general patches, the gener-
alization tools also yield a significant speedup factor between
3x and 24x, and on average, produce useful adaptations in an

order of magnitude less time.
For these CVE trials, RFA was not necessary since FUZZ-

BUSTER fixes all faulting test cases with the first patch it
produces.

D. Statistics Across Programs

We now present additional results from using FUZZBUSTER
with the generalization tools and retrospective fault analysis
on 16 fault-injected binaries.

We used GenProg [6], an evolutionary program repair
tool, to create faulty binaries from the source code of unix
command-line applications including dc, fold, uniq, and
wc. We achieved this by modifying the GenProg test cases—
which GenProg uses as a fitness function— to expect a fault on
certain inputs. This way, GenProg would generate selectively-
faulting binaries based on our specifications.

FUZZBUSTER automatically analyzed each faulty binary
for two hours, using a mix of proactive fuzz-tools (e.g.,
Fuzz-2001 and RFA), refinement fuzz tools (e.g., the gen-
eralization fuzz-tools), and adaptation strategies (e.g., input
filters).

Fuzzing leveled off (i.e., FUZZBUSTER patched the entire
injected fault, based on our manual analysis of patches) on
10/16 binaries. Of these leveled-off binaries, FUZZBUSTER
took an average of 5.87 minutes to level off, and it sacrificed
an average of 6% functionality (i.e., by changing the output of

60Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 100 200 300 400 500 600 700 800 900 1000 1100

Fa

ul
tin

g
Te

st
 C

as
es

Time (s)

PA
TC

H
 1

 (6
, 0

, 3
0)

PA
TC

H
 2

 (6
, 0

, 3
0)

PA
TC

H
 3

 (6
, 0

, 3
0)

PA
TC

H
 4

 (6
, 1

, 3
0)

PA
TC

H
 5

 (6
, 1

0,
 3

0)

PA
TC

H
 6

 (6
, 1

0,
 3

0)

PA
TC

H
 7

 (6
, 4

0,
 3

0)

PA
TC

H
 8

 (6
, 4

0,
 3

0)

PA
TC

H
 9

 (6
, 4

0,
 3

0)

PA
TC

H
 1

0
(6

, 6
2,

 3
0)

PA
TC

H
 1

1
(6

, 6
2,

 3
0) PA

TC
H

 1
2

(6
, 7

8,
 3

0)

Reference Test Cases
Reference Test Cases Preserved

Faulting Test Cases Fixed
Faulting Test Cases Found

Disable
addition

Disable
division

Disable
subtraction

Disable
modulo

Disable
exponentiation

Disable
multiplication

Fig. 4. FUZZBUSTER sacrifices functionality to protect the program against vulnerabilities.

non-faulting reference test cases). FUZZBUSTER retained full
functionality on 7 of the 10 leveled-off binaries.

Over all 16 fault-injected binaries, FUZZBUSTER created
an average of 8.2 adaptations and applied an average of 7.8,
which amounts to a 95% usage of the adaptations it created.
Over all binaries, FUZZBUSTER fixed an average of 82%
of the faulting test cases and sacrificed an average of 10%
functionality during each 2-hour trial. This suggests that when
FUZZBUSTER cannot generate a perfect adaptation, it still
manages to close the exposure window over time.

V. RELATED WORK

As previously noted, the FUZZBUSTER approach has roots
in fuzz-testing, a term first coined in 1988 applied to software
security analysis [7]. It refers to invalid, random or unexpected
data that is deliberately provided as program input in order
to identify defects. Fuzz-testers— and the closely related
“fault injectors”— are good at finding buffer overflow, cross-
site scripting, denial of service (DoS), SQL injection, and
format string bugs. They are generally not highly effective in
finding vulnerabilities that do not cause program crashes, e.g.,
encryption flaws and information disclosure vulnerabilities [8].
Moreover, existing fuzz-testing tools tend to rely significantly

on expert user oversight, testing refinement and decision-
making in responding to identified vulnerabilities.

FUZZBUSTER is designed both to augment the power of
fuzz-testing and to address some of its key limitations. FUZZ-
BUSTER fully automates the process of identifying seeds for
fuzz-testing, guides the use of fuzz-testing to develop general
vulnerability profiles, and automates the synthesis of defenses
for identified vulnerabilities.

To date, several research groups have created specialized
self-adaptive systems for protecting software applications.
For example, both AWDRAT [9] and PMOP [10] used
dynamically-programmed wrappers to compare program ac-
tivities against hand-generated models, detecting attacks and
blocking them or adaptively selecting application methods to
avoid damage or compromises.

The CORTEX system [11] used a different approach, plac-
ing a dynamically-programmed proxy in front of a replicated
database server and using active experimentation based on
learned (not hand-coded) models to diagnose new system
vulnerabilities and protect against novel attacks.

While these systems demonstrated the feasibility of the self-
adaptive, self-regenerative software concept, they are closely
tailored to specific applications and specific representations of
program behavior. FUZZBUSTER provides a general approach

61Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

to adaptive immunity that is not limited to a single class of
application. FUZZBUSTER does not require detailed system
models, but will work from high-level descriptions of com-
ponent interactions such as APIs or contracts. Furthermore,
FUZZBUSTER’s proactive use of intelligent, automatic fuzz-
testing identifies possible vulnerabilities before they can be
exploited.

VI. CONCLUSION AND FUTURE WORK

FUZZBUSTER is designed to discover vulnerabilities and
then quickly refine and adapt its applications to prevent
them from being exploited by attackers. This paper presented
two advances in FUZZBUSTER’s tools — retrospective fault
analysis and generalization fuzz-tools — aimed at improv-
ing the quality and efficiency of FUZZBUSTER’s adaptations.
We presented empirical results of FUZZBUSTER’s automated
analysis of fault-injected programs and real CVEs, using ob-
jective metrics for adaptive cybersecurity such as vulnerability
exposure, functional loss, and reaction time. When analyzing
fault-injected programs, the generalization fuzz-tools and RFA
reduced vulnerability exposure by a factor of five on fault
injected programs, and allowed FUZZBUSTER to filter out
more of the vulnerability in less time. When analyzing the
Apache HTTP server, the fault generalization tools yielded an
order of magnitude speedup in reaction time over the existing
fault minimization tools.

At present, FUZZBUSTER uses a wrapper around the pro-
grams it controls, and its wrapper filters all incoming data
according to the current adaptations (e.g., input filters) before
sending the data to the binary. One next step is to revise
the program’s binary directly, and embed the input filters as
preprocessors.

The generalization fuzz-tools and RFA are all domain-
general strategies, and we demonstrated this by using them
to improve program analysis on command-line filter pro-
grams (e.g., wc), state-dependent standard input programs
(e.g., dc), and grammar-specific web programs (e.g., Apache
HTTP server). The most domain-specific enhancement is the
replace-delimited-chars tool that uses common de-
limiters to analyze portions of data. This tool contributed sig-
nificantly to the speedup of FUZZBUSTER’s analysis of HTTP
headers in the Apache HTTP server experiment. We believe
that we will see additional performance benefits by adding
more domain-specific structures to FUZZBUSTER, including
input grammars (e.g., packet header structure) and deeper
application models (e.g., recording application command-line
options and values).

We anticipate using the adaptive cybersecurity metrics from
this paper (see also [5], [4]) to evaluate future design decisions
for FUZZBUSTER and other active cybersecurity projects.

ACKNOWLEDGMENTS

This work was supported by DARPA and Air Force Research
Laboratory under contract FA8650-10-C-7087. The views expressed
are those of the author and do not reflect the official policy or position
of the Department of Defense or the U.S. Government. Approved
for public release, distribution unlimited.

REFERENCES

[1] T. Kellerman, “Cyber-threat proliferation: Today’s truly pervasive global
epidemic,” Security Privacy, IEEE, vol. 8, no. 3, pp. 70 –73, May-June
2010.

[2] G. C. Wilshusen, “Cyber threats and vulnerabilities place federal systems
at risk: Testimony before the subcommittee on government management,
organization and procurement,” United States Government Accountabil-
ity Office, Tech. Rep., May 2009.

[3] D. J. Musliner, J. M. Rye, D. Thomsen, D. D. McDonald, and M. H.
Burstein, “FUZZBUSTER: A system for self-adaptive immunity from
cyber threats,” in Eighth International Conference on Autonomic and
Autonomous Systems (ICAS-12), March 2012.

[4] D. J. Musliner, S. E. Friedman, T. Marble, J. M. Rye, M. W. Boldt, and
M. Pelican, “Self-adaptation metrics for active cybersecurity,” in SASO-
13: Adaptive Host and Network Security Workshop at the Seventh IEEE
International Conference on Self-Adaptive and Self-Organizing Systems,
September 2013.

[5] D. J. Musliner, S. E. Friedman, J. M. Rye, and T. Marble, “Meta-control
for adaptive cybersecurity in FUZZBUSTER,” in Proc. IEEE Int’l Conf.
on Self-Adaptive and Self-Organizing Systems, sep 2013.

[6] W. Weimer, T. Nguyen, C. L. Goues, and S. Forrest, “Automatically
finding patches using genetic programming,” Software Engineering,
International Conference on, vol. 0, pp. 364–374, 2009.

[7] B. Miller, L. Fredriksen, and B. So, “An empirical study of the
reliability of unix utilities,” Communications of the ACM, vol. 33, no. 12,
December 1990.

[8] C. Anley, J. Heasman, F. Linder, and G. Richarte, The Shellcoder’s
Handbook: Discovering and Exploiting Security Holes, 2nd Ed. John
Wiley & Sons, 2007, ch. The art of fuzzing.

[9] H. Shrobe, R. Laddaga, B. Balzer, N. Goldman, D. Wile, M. Tallis,
T. Hollebeek, and A. Egyed, “AWDRAT: a cognitive middleware system
for information survivability,” AI Magazine, vol. 28, no. 3, p. 73, 2007.

[10] H. Shrobe, R. Laddaga, B. Balzer et al., “Self-Adaptive systems for
information survivability: PMOP and AWDRAT,” in Proc. First Int’l
Conf. on Self-Adaptive and Self-Organizing Systems, 2007, pp. 332–335.

[11] “Cortex: Mission-aware cognitive self-regeneration technology,” Final
Report, US Air Force Research Laboratories Contract Number FA8750-
04-C-0253, March 2006.

62Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

