
Design Patterns for Addition of Adaptive Behavior in
Graphical User Interfaces

Samuel Longchamps, Ruben Gonzalez-Rubio

Sherbrooke University,
Sherbrooke, Québec, Canada

Email: {samuel.longchamps, ruben.gonzalez-rubio}@usherbrooke.ca

Abstract—Graphical user interfaces (GUI) in modern software
are increasingly required to adapt themselves to various situations
and users, rendering their development more complex. To handle
complexity, we present in this paper three design patterns,
Monitor, Proxy router and Adaptive component, as solutions to
the gradual implementation of adaptive behavior in GUI and
general component-based software. Rather than proposing new
adaptation mechanisms, we aim at formalizing a basic structure
for progressive addition of different mechanisms throughout the
development cycle. To do so, previous work on the subject
of design patterns oriented toward adaptation is explored and
concepts related to similar concerns are extracted and generalized
in the new patterns. These patterns are implemented in a
reference Python library called AdaptivePy and used in a GUI
application case study. This case study shows concrete usage of
the patterns and is compared to a functionally equivalent ad
hoc implementation. We observe that separation of concerns is
promoted by the patterns and testability potential is improved.
Moreover, adaptation of widgets can be previewed within a
graphical editor. This approach is closer to the standard workflow
for GUI development which is not possible with the ad hoc
solution.

Keywords–adaptive; design pattern; graphical user interface;
context; library.

I. INTRODUCTION

As applications become increasingly complex and dis-
tributed, adaptive software has become a research subject of
great interest to tackle related challenges. One area of modern
applications where adaptation requirements have flourished is
graphical user interfaces (GUI). Because they are generally
engineered using a descriptive language and oriented toward
specific platforms, it is hard to produce a single GUI which
automatically adapts itself to its multiple usage contexts.

Many researchers have proposed models and frameworks
to implement adaptive behavior in a generic manner for
components-based software [1]–[4]. These solutions typically
require significant effort to modify an existing software archi-
tecture and make many technological choices and assumptions.
They are limited both in terms of gradual integration to the
software and in portability, for a framework usually targets a
certain application domain (e.g. distributed client-server sys-
tems). As a more portable approach, we propose to use design
patterns for formalizing structures of components which can be
easily composed to produce specialized adaptive mechanisms.
While some work has been done to propose design patterns for
the implementation of common adaptive mechanisms [5]–[8],
the present work aims at generalizing widespread concepts

used in these patterns. In doing so, their integration in existing
software is expected to be easier and more predictable.

As a proof-of-concept, a reference implementation of the
design patterns has been done as a Python library called
AdaptivePy. An application was built as a case study using the
library to validate the gains provided by the patterns compared
to an ad hoc solution. Special attention was paid to the
compatibility to modern GUI design workflow. In fact, rather
than create a specialized toolkit or create a custom designer
tool which would include the design patterns’ artifacts, the Qt
cross-platform toolkit along with the Qt Designer graphical
editor was used. The application workflow is presented and
compared to original methods and advantages are highlighted.
We expect that through the case study, the patterns’ usage and
advantages will be clearer and offer hints on how to structure
an adaptive GUI.

The remainder of this paper is organized as follows.
Fundamental concepts of software adaptation extracted from
previous work are described in Section II. The design patterns
inspired from the concepts are presented in Section III. The
prototype application with adaptive GUI is presented in Section
IV and an analysis of the gains procured by the use of the
proposed design patterns are presented in Section V. The paper
concludes with Section VI and some future work is discussed.

II. CONCEPTS OF SOFTWARE ADAPTATION

This section presents major concepts of adaptation from
related work classified in three concerns: data monitoring,
adaptation schemes and adaptation strategies.

A. Adaptation Data Monitoring
Contextual data on which customization control rely, re-

ferred to as adaptation data in this paper, can come from
various sources, both internal (for “self-aware” applications
[9]) and external (for “self-situated” [9] or “context-aware”
applications). The acquisition of contextual data to be used
as adaptation data is part of a primitive level, which is
necessary for other more complex adaptation capabilities to
be implemented [10]. Contextual data is usually acquired by
a monitoring entity (sensors/probes/monitors) responsible for
quantizing properties of the physical world or internal state of
an application [7], [11]–[15]. Multiple simple sensors can be
composed to form a complex sensor, which provide higher-
level contextual data (Sensor Factory pattern [15]). Internal
contextual data can be acquired simply by using a component’s
interface, but when the interface does not provide the necessary
methods, introspection can be used (Reflective Monitoring

8Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

[15]). When a variety of adaptation data is monitored, it
provides a modeled view of the software context, sometimes
shared within a group of components. Some event-based mech-
anism with registry entities can be used to propagate adaptation
data to interested components (Content-based Routing [15]).
Quantization can be done on multiple abstraction levels and
thresholds can be used to trigger adaptation events (Adaptation
Detector [15]).

B. Adaptation Schemes in Components
Many researchers aimed at defining a design pattern for

an adaptive component that would allow for various schemes
of adaptation in a generic way. Two main approaches can
be extracted from previous work: component substitution and
parametric adaptation.

a) Component substitution: The underlying principle
of component substitution is to replace a component by a
functionally equivalent one with regard to a certain set of
features. This can also be done by adding an indirection
level to the dispatching of requests and forwarding them to
the appropriate component. The first pattern applying this
concept is probably the Virtual Component pattern by Corsaro,
Schmidt, Klefstad, et al. [5]. It is similar to the adaptive
component proposed by Chen, Hiltunen, and Schlichting [16],
but adds the principle of dynamic (un)loading of substitution
candidates. In both cases, an abstract proxy is used to dispatch
requests to a concrete component, which is kept hidden from
the client. This approach is also used by Menasce, Sousa,
Malek, et al. [17], who proposed architectural patterns to
improve quality of service on a by-request dispatch to one
or many components. To maintain the software in a valid state
before, during and after the substitution, many techniques have
been proposed, such as transiting a component to a quiescent
state [18], [19] and buffering requests [20]. State transfer
between components can be used when possible, otherwise
the computing job must be restarted [16], [19].

b) Parametric adaptation: Rather than substituting a
whole component by a more appropriate one, parametric
adaptation is when a component can adapt itself to be more
appropriate to a situation. This is usually done by tuning
knobs, configurable units in a component (e.g. variables used
in a computation). Knobs can be exposed in a tunability
interface [1] for use by external control components, either
included by design or automatically generated at the meta-
programming level (e.g. with special language constructs, such
as annotations [10]). The tunability domain of each knob
is explicit and may vary over time. For example, if a new
algorithm is discovered in the middle of a large computing
job, an adaptation mechanism that is kept aware of the knob’s
possible values is able to switch to it if it judges that it will
perform better overall [21].

C. Adaptation Strategies
No single adaptation strategy is universal for all software.

Most past work has been done on applying component substi-
tution using various strategies. For example, many researchers
have explored rule-based constraints along with an optimiza-
tion engine to devise architectural reconfiguration plans [1],
[13]. This popular approach has tainted proposed frameworks
that tend to be limited to this strategy only. An important
principle is that strategies are separate from the component’s

implementation and can be easily changed. In fact, it is
desirable to externalize adaptation strategies in order to be able
to easily develop, modify and test them separately. Ramirez [7]
calls this class of design patterns “decision-making”, since they
relate to when and how adaptation is performed. Because these
design patterns are concrete adaptation strategies, their artifacts
are mainly related to specific strategies (e.g. inference engines,
rules, satisfaction evaluation functions). The approach of this
class of patterns is typically related to rule-based constraints
solving, but a more general goal is to select which plan or
components from a set to reconfigure the system with.

III. DESIGN PATTERNS

This section presents design patterns which realize the
concepts presented in Section II with some improvements.
When used together, we believe they provide the sought
structure for adaptive software. Unified modeling language
(UML) diagrams are used to show the structure of the patterns
in a standardized way.

A. Monitor Pattern
Classification: Monitor and analyze.
Intent: A monitor provides a value for one type of adaptation
data to interested entities.
Motivation: There is a need to quantize raw contextual data as
parameters of adaptation data with explicitly defined domain
and in specialized modules decoupled from the rest of the
application. Adaptation data needs to be reasoned about in
arbitrarily high abstraction level and be proactive in the adap-
tation detection process. Agreement for monitored data should
be implied by design in order to allow for safe information
sharing among interacting components.
Structure: Fig. 1 shows the structure of the monitor pattern
as a UML diagram.

+observed_update(observable, value)

Observer

+register_monitor(parameter, monitor)
+unregister_monitor(parameter)
+observed_update(observable, value, kwargs)
+subscribe(subscriber, parameter)
+unsubscribe(subscriber, parameter)
+snapshot(parameters = None)

MonitorEventManager

+value()
+possible_values()

Monitor

#set_latest_value(value)
+latest_value()
+start()
+stop()
+register(observer)
+unregister(observer)
+update()

DynamicMonitor

+register(observer)
+unregister(observer)
+notifyObservers(value)

Observable

+possible_values()

Parameter

+updated_monitored_value(parameter, old_value, new_value)

ParameterValueSubscriber

<<depends>>

Figure 1. Monitor pattern UML diagram

Participants:
• Parameter: A parameter is one type of adaptation

data as defined in Section II-A. Its possible values
domain is explicitly defined and forms a state space.
Many range types can be used to model a parameter’s
domain.

• (Static) Monitor: Provides a stateless (further referred
to as “static”) means of acquiring a value within

9Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

a subset of a certain parameter’s domain. Formally,
ΩM ⊆ ΩP for possible values Ω of monitor M and
parameter P . A monitor can be an aggregation of other
static monitors, but not of dynamic monitors.

• Dynamic monitor: Additionally to providing a value
for a parameter, schedules the acquisition of the value
and alerts an observer that a new value has been
acquired. Some form of polling or interrupt-based
thread awakening needs to be employed along with
a previous value to know if the value has changed
compared to the latest value, in which case an event
notification is triggered to interested entities. This
makes it inherently stateful. Like a static monitor, it
can be an aggregation of other monitors. The particu-
larity is that it can aggregate both static and dynamic
monitors.

• Monitor event manager: Registry entity which al-
lows for a client component to subscribe to a param-
eter and be alerted when a new value is acquired.
Similarly, a dynamic monitor can be registered within
the manager and provide a value to any subscriber
of the corresponding parameter. In such manager,
monitors and parameters are related by a one-to-one
relationship; a given parameter can only be monitored
by a single monitor.

• Observable/Observer: See Gang of Four observer
pattern [22]. Used for monitor registering mechanism.

• Parameter value subscriber: Provides a means to
be notified when a new value of a parameter it has
subscribed to has been acquired.

Behavior: An adaptation data type can be formalized as a
parameter in terms of the quantized values the system expects
to use. A static monitor provides a means to concretely
quantize raw contextual data from a sensor or introspection to
a value within a defined domain expected by the system. The
quantization can be done using fixed or variable thresholds.
A dynamic monitor adds scheduling behavior, which allows
to provide a value based on accumulated data over time
and apply filtering. The monitor event manager is alerted by
monitors and dispatches the new value to related subscribers.
The dependency regarding subscribers is with the parameters
for which they requested to be notified, but actual monitoring
is done separately.
Consequences: As monitors are hierarchically built, higher-
level abstraction information can be provided. This pattern
allows the analysis step of a MAPE-K loop [12] to be done
through hierarchical construction of monitors: a parameter
can define high-level domain values which are provided by
a monitor composed from lower-level ones and components
can use this to simplify their adaptation strategies. High-level
adaptivity logic is reusable in that parameters are abstract and
can easily be shared among projects. Monitors can be chained
such that only the concrete data acquisition has to be redone
between projects, keeping scheduling and filtering as reusable
entities.
Constraints: To assure agreement between interacting compo-
nents, it is necessary for adaptive components which depend
on a common parameter to also subscribe to the same monitor
event manager. These components are therefore part of the
same monitoring group. This can be checked statically or be

assumed by contract. The need for a one-to-one relationship
between a monitor and a parameter within a monitoring group
is based on this agreement requirement. A monitoring group
can be thought of as a single entity that cannot have duplicate
or contradicting attributes, e.g., it cannot be at two positions at
once. In this example, an attribute is a parameter and a monitor
is the entity providing the value for this attribute.
Related patterns: Sensor factory, reflective monitoring,
content-based routing, adaptation detector [7], information
sharing, observer [22].

B. Proxy Router Pattern
Classification: Plan and execute.
Intent: A proxy router allows to route calls of a proxy
to a component chosen among a set of candidates using a
designated strategy.
Motivation: When implementing component substitution, a
way to clearly separate concerns relating to the adaptation
logic (substitution by which component) and the execution of
substitution (replacing a component or forwarding calls to it)
are difficult to implement in an extensible way. The proxy
pattern [22] allows to forward calls to a designated instance,
but does not specify how control of the routing process should
be implemented. Candidate components need to be specified
in a way that does not necessitate immediate loading or instan-
tiation and which is mutable (to allow runtime discovery). To
maximize reusability, strategies should be devised externally.
Structure: Fig. 2 shows the structure of the proxy router
pattern as a UML diagram.

+candidates()
+proxy()
+route(target)
+choose_route()

ProxyRouter +delegate()
+update_delegate()

Proxy

+proxy()

InternalProxyRouter

+proxy()

ExternalProxyRouter

+choose_route(candidates)

ChooseRouteStrategy DelegateComponent

+create(args)

CandidateFactory

<<uses>>

Figure 2. Proxy router pattern UML diagram

Participants:
• Proxy: Gang of Four [22] proxy pattern, with the

exception that the interface is not necessarily speci-
fied (e.g. forwarding to introspected methods). It is
responsible for making sure no calls are lost when a
new delegate is set.

• Delegate component: Concrete component which is
proxied. It must be specified as part of the proxy
router’s candidates set.

• Proxy router: Keeps a set of component candidates
and allows to control the routing of the calls a proxy
receives to the appropriate candidate chosen by some
strategy. The proxy router is responsible for ensuring
any state transfer and initialization of candidate in-
stances.

• Candidate factory: Gang of Four [22] factory pattern
for a candidate. Used as part of candidates definition.

10Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

Can do local loading/unloading for external candi-
dates.

• Choose route strategy: Concrete strategy to choose
which candidate among a set to use, based on Gang of
Four [22] strategy pattern. It uses accessible informa-
tion from the application, candidates (e.g. adaptation
space, descriptor, static methods) or any inference
engine available to make a choice.

• External/Internal proxy router: Depending on the
use, a proxy router can use an external proxy (as
a member) or internally be a proxy (through inheri-
tance). To allow for both schemes, a means to acquire
the proxy is provided and returns either the member
object (external) or a reference to the proxy router
itself (internal).

Behavior: A set of candidates is either statically specified
or discovered at runtime (e.g. looking for libraries providing
candidates). The proxy router is then initialized by choosing
a candidate using the strategy and controls the proxy to set
an instance of the chosen candidate as active delegate. At any
time, a new candidate can be chosen and set as active delegate
of the proxy.
Consequences: The proxy router pattern allows for flexible
and extensible specification of component substitution. The
strategies to choose a candidate to route to can be reused in any
project with consistent information acquisition infrastructure,
such as the one provided by the monitor pattern. Candidates
need not be specified statically and control related to routing
can be done both internally and externally.
Constraints: Strategies might rely on certain project specific
information which is not portable. Separating specific from
generally applicable strategies and composing them should
help with this constraint.
Related patterns: Adaptive component [16], virtual com-
ponent [5], master-slave [23], component insertion/removal,
server reconfiguration [7], proxy [22].

C. Adaptive Component Pattern
Classification: Analyze and plan.
Intent: Use monitored adaptation data to control parametric
adaptation and component substitution by making adaptation
spaces explicit.
Motivation: A basic structure is needed to easily add adaptive
behavior in the form of parametrization or substitution. Com-
ponents need a way to explicitly provide means for adaptation
strategies to reason about their adaptation space in order to
formulate plans. This information should be external to a base
component if the adaptation is to be added gradually. Most
importantly, an adaptive component must behave like any non-
adaptive component and be used among them without any
impact on the rest of the system.
Participants:

• Adaptive: An adaptive component which defines
means for acquiring the adaptation space. It can be
used as a subscriber to a parameter value provider.

• Monitor event manager: Parameter value provider
realized with the monitor pattern (see Section III-A).

• Parameter value subscriber: Provides a means to
be notified when a new value of a parameter it has
subscribed to has been acquired (see Section III-A).

• Proxy router: Proxy router pattern (see Section III-B)
• Adaptive proxy router: Adaptive version of a proxy

router allowing to drive the routing process (substitu-
tion) using monitored data.

Structure: Fig. 3 shows the structure of the adaptive compo-
nent pattern as a UML diagram.

+adaptation_space()
+parameter_value_provider()
+updated_monitored_value(parameter, old_value, new_value)

Adaptive

+candidates()
+proxy()
+route(target)
+choose_route()

ProxyRouter

AdaptiveProxyRouter

+register_monitor(parameter, monitor)
+unregister_monitor(parameter)
+observed_update(observable, value, kwargs)
+subscribe(subscriber, parameter)
+unsubscribe(subscriber, parameter)
+snapshot(parameters = None)

MonitorEventManager

+updated_monitored_value(parameter, old_value, new_value)

ParameterValueSubscriber

Figure 3. Adaptive component pattern UML diagram

Behavior: A component to be made adaptive can inherit the
adaptive interface or a specific decorator can be created if
the component’s code should remain unchanged. The adaptive
implementation defines what base adaptation space it will
support. Then, knobs can be defined within the component and
used as variables to compute, for example, its size or lay outing
specifications. Tuning can be done when an updated parameter
value is received. For substitution, the process is the same, but
uses the AdaptiveProxyRouter interface. Specific strategies can
be created, using as many generic filters as possible (e.g. filter
out candidates which adaptation space does not overlap with
a snapshot of the current state).
Consequences: Because of the explicit declaration of adapta-
tion space, strategies can easily reason about how a component
can behave in a situation. For example, a strategy can use
the fact that a component’s space is too specific or too wide.
Any component can be made adaptive and does not require
modifications to other components. Because of the support
for both parametric adaptation and component substitution,
the basic structure proposed in this pattern is suitable for
virtually any adaptive mechanism based on monitored data and
components adaptation spaces.
Constraints: Like stated in Section III-A, interacting adap-
tive components must subscribe to the same monitor event
manager to assure consistency in decision-making processes.
While arbitrarily large hierarchies of adaptive components
can be composed, there is an inherent overhead induced in
the adaptation and routing process. Because a component
subscribing to some parameter value provider such as the
monitor event manager has no guarantee that this parameter is
being actively monitored, adaptive components need to define
a default behavior or immediately request a snapshot of the
current state. To minimize this effect, it is preferable to register
monitors prior to creating any adaptive component.
Related patterns: Monitor (III-A), proxy router (III-B), adap-
tive component [16], virtual component [5].

IV. PROTOTYPE

This section presents AdaptivePy, a reference library im-
plementing the three design patterns presented in this paper,

11Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

along with a prototype as a case study for analyzing the gains
they procure compared to an ad hoc implementation.

A. AdaptivePy
AdaptivePy implements artifacts from all three design pat-

terns described in this paper. The Python language was chosen
because it is reflective, dynamically typed and many toolkit
bindings are freely available. Beyond the patterns, AdaptivePy
provides some useful implementations, such as enum-based
discrete-value parameters, push/pull dynamic monitor decora-
tors, operations over adaptation spaces (extend, union, filter)
and an adaptation strategy based on substitution candidates’
adaptation space restrictiveness. The library is freely available
from the PyPi repository under the name “adaptivepy” and is
distributed under LiLiQ-P v1.1 license.

B. Case Study Application
The case study application is a special poll designed to fa-

vor polarization. Five yes/no questions are asked to a user and
answered by selecting the most appropriate response among a
list of options. The options provided include yes, no, mostly
yes, mostly no and 50/50. To favor polarization, statistics
from the previous answers are used to restrict the range of
options provided to the user. If the polarization is judged
insufficient because of mixed responses (low polarization),
fewer options are provided. On the contrary, if virtually all
users have answered yes (high polarization), more options in
between will be given. The workflow of the application is to
start the “quiz” using a Start button, choose appropriate options
and send the form using a Submit button. If some options
remain unselected, a prompt alerting the user is shown and
the form can be submitted again once all options are selected.

The adaptation type used is a form of alternative elements
[24]. The GUI is made plastic by replacing control widgets
displaying the available options at runtime, conserving the
option selection feature in any resulting interface. Because
there is a varied number of options, some widgets are more
appropriate than others to display them, while some cannot
display certain amounts of options. A checkbox can handle
two options, radio buttons could be used for ranges of two to
four options and a combo box for five and more options. Of
course, radio buttons can hold more options and the combo
box less, but the amounts suggested represent the ranges they
are subjectively considered most appropriate for. These can be
chosen by a designer and further refined through user testing,
which means they must be easy to edit.

Polarization levels act as adaptation data to drive adapta-
tion. An appropriate solution would allow to design the GUI
within Qt’s graphical editor “Qt Designer” and to preview of
the adaptation directly, rather than having to add the business
logic beforehand. It would also allow for gradual addition
and modification of control widget types without necessitating
changes in unaffected modules.

The toolkit used for this application is Qt 5 through the
PyQt5 wrapper library. It is a cross-platform toolkit library
which provides implementations of widgets like checkboxes,
combo boxes are radio buttons groups. The concrete work
is therefore limited to implementing how these components
can replace each other at the appropriate time and how they
are included in a main user interface. We are therefore more
interested in the underlying structure of adaptation within the

Figure 4. Adaptive case study application “Polarized Poll”

+set_text(text)
+text()
+set_options(options)
+options()
+value()
+set_selection()
+state_transfer(source)

<<Interface>>
OptionsSelector

low
medium
high

<<enumeration>>
Polarization

ComboboxQt

CheckboxQt

RadioboxQt

-questions_widgets : List<QWidget>
-candidates : Map<class, List<OptionsSelector>>
-timer : QTimer
-quiz_started : Boolean

+on_start()
+on_submit()
+initialize_widgets()
+set_option_selector_components(component)
+update_option_selectors()

QuizMainWIndow

<<use>>

Figure 5. Simplified UML diagram of ad hoc implementation of case study
application

application than specific adaptation strategies and their user-
perceived effectiveness. Once an appropriate structure is in
place, we expect these can be more easily devised, tested and
improved.

V. RESULTS

The windows shown on Fig. 4 are the resulted GUI for the
application in all three polarization states. Because this case
study’s focus is on GUI, the monitoring of past responses was
simulated and a random monitor is used instead which updates
its value by means of a polling dynamic monitor every second,
allowing to easily observe adaptation.

A. Ad hoc Application
A simplified UML diagram of the ad hoc implementation

is shown on Fig. 5. The chosen approach is to add placeholder
widgets in QuizMainWindow which will be substituted by
an appropriate component instance at runtime: CheckboxQt,
ComboboxQt or RadioboxQt. A polarization level defined in
the enum Polarization is bound to each of these types. A timer
within QuizMainWindow polls the polarization value and calls
set_options_selector_components with the appro-
priate type. Adaptation control, along with any customization
necessary, is entirely done in QuizMainWindow.

12Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

Figure 6. Qt Designer using plain widgets as placeholder for ad hoc
implementation

Fig. 6 shows Qt Designer as the main window is created
for the ad hoc implementation. Notice that because placeholder
components are blank, no feedback is given to the designer.
It is therefore not possible to test the controls or set the
question label. This makes the approach incompatible with
the usual GUI design workflow, which involves previewing
the application in the graphical editor before adding business
logic.

When analyzing the ad hoc code, it is obvious that separa-
tion of concerns is not respected since the option selection
logic is tangled to its owner element, the main window.
Concerns such as scheduling for recomputing polarization and
component substitution are mixed with GUI setup and handling
of the business flow. This leads to a lack of extensibility, a
tangling of concerns and limits unit testing of components.
A method is used to select which control component to use
based on the polarization, but this solution remains inflexible.
The knowledge of adaptation is hidden and cannot be used to
devise portable strategies.

One of our goals is to gradually add adaptation mechanisms
to GUI implementations, but this is difficult since modification
of important classes will add risk of introducing defects. Also,
there is no easy way to work on adaptation mechanisms
separately from the application. In fact, we cannot separately
test the adaptation logic and integrate it after. Generally, the
lack of cohesion induced by the inadequate separation of
concerns is a sign of low code quality. Because no adaptation
mechanism can easily be introduced, modified and reused in
other projects, the ad hoc implementation works for its specific
application case, but is subject to major efforts in refactoring
when requirements and features will be added throughout its
development cycle.

B. Application Using AdaptivePy
A simplified UML diagram of the application is shown

on Fig. 7. From it, we see that the polarization is a discrete
parameter and is used by AdaptiveOptionsSelector, specifically
to define its adaptation space based on the ones provided
by its substitution candidates: CheckboxQt, ComboboxQt and
RadioboxQt. Additionally to adaptation by substitution, Ra-
dioboxQt can parametrically adapt to changes of polarization
levels {low, medium}, since they respectively correspond to 2
and 4 options. Its behavior is that the appropriate number of
options is shown depending on the polarization level. Adap-
tiveQuizMainWindow is free of adaptation implementation

+set_text(text)
+text()
+set_options(options)
+options()
+value()
+set_selection()
+state_transfer(source)

<<Interface>>
OptionsSelector

+adaptation_space()

ComboboxQt

+adaptation_space()

CheckboxQt

+adaptation_space()

RadioboxQt

+choose_route()
+route(target)
+candidates()

AdaptiveOptionsSelector

AdaptiveInternalProxyRouter

<<enumeration>>
DiscreteParameterlow

medium
high

<<enumeration>>
QuizOptionPolarization

PollingDynamicMonitorDecoratorQt

+route(target)

OptionsSelectorQt

Adaptive

-questions : List<OptionsSelector>
-quiz_started : Boolean

+on_start()
+on_submit()

AdaptiveQuizMainWindow

DynamicMonitorDecoratorMonitorEventManager

<<bind>>

<<bind>>

<<use>>

Classes provided by AdaptivePy

Figure 7. Simplified UML diagram of case study application implementation
using AdaptivePy

details and simply uses the AdaptiveOptionsSelector instances
as a normal OptionsSelector. OptionsSelectorQt is a subclass to
AdaptiveOptionsSelector which is used as a graphical proxy
to candidate widgets. It also defines properties used in Qt’s
graphical editor Qt Designer, in this case the question label.

Every AdaptiveOptionsSelector instance is made a sub-
scriber to the QuizOptionPolarization parameter at initializa-
tion. They are updated when a change in the monitored value
is detected, i.e., when a monitor detects a value is different
from the previous one. This is because identical subsequent
parameter values are expected by default to lead to the same
state, so they are filtered out. In the case of AdaptiveOp-
tionsSelector, because it is a proxy router, choose_route
is called to determine which substitution candidate to route
to. Prior to using an adaptation strategy to select the most
appropriate candidate, inappropriate ones can be filtered out
using filter_by_adaptation_space. This function,
provided by AdaptivePy, takes a list of candidates along with
a snapshot of the current monitoring state and only returns
those with adaptation space supporting the current context.
Then, a strategy like choose_most_restricted is used
to choose among valid components. If no component is valid,
an exception is raised. With a candidate chosen, all that
remains is configuring the proxy router by calling the route
method with the chosen candidate. This method must also take
care of state transfer between the previous and new proxied
components. This feature is already defined in the common
interface OptionsSelector as state_transfer.

Fig. 8 shows Qt Designer as the main window is created
with the AdaptivePy-based implementation. When compared
to Fig. 6, we notice that the designer has a full view of how
the application will look. Moreover, the currently displayed
adaptation can be controlled through the setup of the monitors.
For example, it is possible to replace the random value by
one acquired from a configuration file and trigger adaptation
manually. Also, each question is simply a OptionsSelectorQt
component rather than a placeholder component and the ques-
tion is entered directly from the graphical editor using the label
property (bottom-right). A major advantage is that adaptive

13Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

Figure 8. Qt Designer using adaptive components developed with AdaptivePy

components can be reused in other interfaces because they
are provided as standalone components. The need for easy
edition of adaptation spaces is also addressed by modifying
or overriding the adaptation_space method of adaptive
components.

The adaptation logic is essentially located in the adaptive
proxy router class: AdaptiveOptionsSelector. Because adapta-
tion is separated from the rest of the business logic, the main
window class can use the adaptive components without the
knowledge of adaptation. The only logic remaining is with
regard to buttons handling (Start and Submit buttons). It is
clear in this implementation that the knowledge of adaptation
space which was hidden in the ad hoc implementation is
used to efficiently choose a substitution candidate. Self-healing
action such as replacing a failing component can be easily
realized by monitoring the components and including this logic
as a strategy. This is not easily realizable in the ad hoc imple-
mentation. In the prototype, a radio box could safely replace
a checkbox since it parametrically covers its full adaptation
space, overlapping on {low} polarization. Also, from this case
study, we can see that arbitrarily large hierarchies of adaptive
and non-adaptive components can be built without tangling
code or affecting other components when adding new adaptive
behavior.

VI. CONCLUSION AND FUTURE WORK

Design patterns presented in this paper can be used as
a basic structure to accomplish various levels of adapta-
tion in GUI. Adaptive components can be used with other
modules such as recommendation engines to provide more
or less automation and proactive adaptation. Monitors can
also be extended and even implemented as adaptive compo-
nents themselves, relying on other more primitive monitors.
Proxy routers allow to simplify hierarchical development of
arbitrarily large sequences of component substitutions. The
patterns form together an effective approach for the integration
of various adaptation mechanisms and, in the case of GUI,
can be used to provide a more usual workflow than the ad
hoc implementation. AdaptivePy, as a reference library, is an
example of the viability of the patterns when used in a concrete
implementation. Even though a simple application was used

to observe gains, the solution is applicable to more complex
scenarios where multiple parameters, monitoring groups and
large hierarchies of adaptive components. The patterns are
general enough that they can be used for adding adaptive
behavior based on user, environment and platform variations.

Future work will focus on exploring parameters types with
more complex value domains and try to formalize a structure
to express them. Also, the lack of adaptation quality metrics
for verification and validation methods limits the evaluation of
gains. To alleviate this limitation, new metrics using concepts
of the design patterns presented in this paper will be explored.
The goal is to better quantify the quality level of prototypes
with regard to adaptation.

REFERENCES

[1] F. Chang and V. Karamcheti, “A framework for au-
tomatic adaptation of tunable distributed applications,”
Cluster Computing, vol. 4, no. 1, pp. 49–62, 2001, ISSN:
1573-7543.

[2] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and
J.-B. Stefani, “The fractal component model and its
support in java,” Software: Practice and Experience, vol.
36, no. 11-12, pp. 1257–1284, 2006.

[3] Y. Maurel, A. Diaconescu, and P. Lalanda, “Ceylon:
A service-oriented framework for building autonomic
managers,” in 2010 Seventh IEEE International Confer-
ence and Workshops on Engineering of Autonomic and
Autonomous Systems, Mar. 2010, pp. 3–11.

[4] M. Peissner, A. Schuller, and D. Spath, “A design
patterns approach to adaptive user interfaces for users
with special needs,” in Proceedings of the 14th Inter-
national Conference on Human-computer Interaction:
Design and Development Approaches - Volume Part
I, ser. HCII’11, Orlando, FL: Springer-Verlag, 2011,
pp. 268–277.

[5] A. Corsaro, D. C. Schmidt, R. Klefstad, and C. O’Ryan,
“Virtual component - a design pattern for memory-
constrained embedded applications,” in In Proceedings
of the Ninth Conference on Pattern Language of Pro-
grams (PLoP, 2002.

[6] G. Rossi, S. Gordillo, and F. Lyardet, “Design patterns
for context-aware adaptation,” in 2005 Symposium on
Applications and the Internet Workshops (SAINT 2005
Workshops), Jan. 2005, pp. 170–173.

[7] A. J. Ramirez, “Design patterns for developing dynami-
cally adaptive systems,” Master’s thesis, Michigan State
University, 2008.

[8] T. Holvoet, D. Weyns, and P. Valckenaers, “Patterns of
delegate mas,” in 2009 Third IEEE International Con-
ference on Self-Adaptive and Self-Organizing Systems,
Sep. 2009, pp. 1–9.

[9] M. G. Hinchey and R. Sterritt, “Self-managing soft-
ware,” Computer, vol. 39, no. 2, pp. 107–109, 2006.

[10] M. Salehie and L. Tahvildari, “Self-adaptive software:
Landscape and research challenges,” ACM Transactions
on Autonomous and Adaptive Systems (TAAS), vol. 4,
no. 2, p. 14, 2009.

[11] M. L. Berkane, L. Seinturier, and M. Boufaida, “Us-
ing variability modelling and design patterns for self-
adaptive system engineering: Application to smart-
home,” Int. J. Web Eng. Technol., vol. 10, no. 1, pp. 65–
93, May 2015, ISSN: 1476-1289.

14Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

[12] IBM, “An architectural blueprint for autonomic com-
puting,” IBM Corporation, Tech. Rep., 2005.

[13] S. Malek, N. Beckman, M. Mikic-Rakic, and N. Med-
vidovic, “A framework for ensuring and improving
dependability in highly distributed systems,” in Archi-
tecting Dependable Systems III, R. de Lemos, C. Gacek,
and A. Romanovsky, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2005, pp. 173–193.

[14] V. Mannava and T. Ramesh, “Multimodal pattern-
oriented software architecture for self-optimization and
self-configuration in autonomic computing system using
multi objective evolutionary algorithms,” in Proceedings
of the International Conference on Advances in Com-
puting, Communications and Informatics, ser. ICACCI
’12, Chennai, India: ACM, 2012, pp. 1236–1243.

[15] A. J. Ramirez and B. H. Cheng, “Design patterns for de-
veloping dynamically adaptive systems,” in Proceedings
of the 2010 ICSE Workshop on Software Engineering
for Adaptive and Self-Managing Systems, ACM, 2010,
pp. 49–58.

[16] W.-K. Chen, M. A. Hiltunen, and R. D. Schlichting,
“Constructing adaptive software in distributed systems,”
in Distributed Computing Systems, 2001. 21st Interna-
tional Conference on., Apr. 2001, pp. 635–643.

[17] D. A. Menasce, J. P. Sousa, S. Malek, and H. Gomaa,
“Qos architectural patterns for self-architecting soft-
ware systems,” in Proceedings of the 7th International
Conference on Autonomic Computing, ser. ICAC ’10,
Washington, DC, USA: ACM, 2010, pp. 195–204.

[18] H. Liu and M. Parashar, “Accord: A programming
framework for autonomic applications,” IEEE Trans-
actions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews), vol. 36, no. 3, pp. 341–352,
May 2006, ISSN: 1094-6977.

[19] J. Zhang and B. H. C. Cheng, “Model-based develop-
ment of dynamically adaptive software,” in Proceedings
of the 28th International Conference on Software Engi-
neering, ser. ICSE ’06, Shanghai, China: ACM, 2006,
pp. 371–380.

[20] H. Gomaa, K. Hashimoto, M. Kim, S. Malek, and D. A.
Menascé, “Software adaptation patterns for service-
oriented architectures,” in Proceedings of the 2010 ACM
Symposium on Applied Computing, ser. SAC ’10, Sierre,
Switzerland: ACM, 2010, pp. 462–469.

[21] P. Kang, M. Heffner, J. Mukherjee, N. Ramakrishnan, S.
Varadarajan, C. Ribbens, and D. K. Tafti, “The adaptive
code kitchen: Flexible tools for dynamic application
composition,” in 2007 IEEE International Parallel and
Distributed Processing Symposium, Mar. 2007, pp. 1–8.

[22] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,
Design Patterns: Elements of Reusable Object-oriented
Software. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 1995.

[23] H. Gomaa and M. Hussein, “Software reconfiguration
patterns for dynamic evolution of software architec-
tures,” in Software Architecture, 2004. WICSA 2004.
Proceedings. Fourth Working IEEE/IFIP Conference on,
Jun. 2004, pp. 79–88.

[24] M. Bezold and W. Minker, Adaptive multimodal interac-
tive systems. Springer Science & Business Media, 2011.

15Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

