
Goal-Compliance Framework for Self-Adaptive Workflows

Budoor Allehyani, Stephan Reiff-Marganiec

Department of Informatics
University of Leicester

Leicester, UK
Email: {baaa2,srm13}@le.ac.uk

Abstract—Workflow adaptation involves two major research top-
ics: flexibility and correctness. The former is related to the ability
to react to change and adapt workflow structure, while the
latter is related to managing this flexibility and ensuring syn-
tactical, semantical as well as behavioural consistencies. Current
approaches range from providing flexible workflows to flexible
and consistent workflows. They mostly focus on syntactical
consistency and generic properties (such as deadlock-freedom),
but rarely consider semantic aspects. However, not providing
semantic guarantees neglects the importance of preserving the
original goal. The primary focus of this research is to ensure goal
compliance during workflow reconfiguration. Thus, we analyse
the impact of workflow automatic adaptation on the goal in
question. As a result, we define goal-compliance constraints and
develop a goal-compliance framework, which automatically and
dynamically adapts workflow instances through Event-Condition-
Action policies. Furthermore, it validates the adaptation against
the goal-compliance rules and constraints through model check-
ing and ontology-based approach.

Keywords–BPMN; Reconfiguration; Goal-Compliance; Model
Checking; Ontology; Runtime Verification.

I. INTRODUCTION

The Business Process Model and Notation (BPMN) [1] is
an efficient language for modelling business processes. How-
ever, it is insufficient for analysis and verification purposes.
This is due to the fact that BPMN lacks in techniques and
tools that support process analysis. However, there exist some
successful approaches that map BPMN semantics to several
formal languages, such as Petri nets [2] and Communicating
Sequential Processes (CSP) [3], which are formal and tool sup-
ported. As the business domain is well-known for its dynam-
icity and complexity, processes should be self-adaptable and
self-manageable. Gorton [4] provides self-adaptive workflows
(WF) using (Event-Condition-Action(s)) policies to change
WF specifications at runtime and on an instance level. We
build upon his work aiming at self-management workflows,
whic correctly and safely react to change. We aim to make WF
systems as flexible as possible without sacrificing their func-
tionality. The main focus of this research is on guaranteeing
goal compliance in self-adaptive workflows. The goal model is
considered as the main reference for the WF functionality in
its entire lifetime from design to development. Therefore, any
changes or updates applied to a WF must satisfy the original
goal. The novel contributions we present in this paper are:
(1) the goal-compliance framework for runtime reconfiguration
and verification and (2) the mechanisms to preserving business
goal. This research is basically motivated by the following
research questions: 1) How can we write specifications that

are precise enough to exclude bad implementations (undesired
behavior) while at the same time being flexible enough to cope
with the kind of changes we wish to allow? 2) How can we
detect consistency with a high level specification?

The remainder of this paper is structured as follows: a
brief background about the main concepts used throughout this
paper is in Section II. Section III provides an overview about
the goal-compliance framework, Section IV gives more details
about the development of the verification mechanisms used
for goal-compliance check. We include an initial evaluation
for our framework in Section V. Section VI discusses some
related approaches and we conclude the paper in section VII.

II. BACKGROUND

We briefly introduce the main concepts used in this paper:
BPMN, goal specification, domain knowledge. The BPMN
process model can be defined through a BPMN diagram,
which illustrates what activities are to be executed and in what
order. Thus, business process functionality is captured by the
BPMN process model. An activity is defined by the BPMN
specification as a generic term for work a company performs
within its business process. It can be atomic or composite and
it is of three types: task, subprocess and call activity.
A goal can be defined as ”high-level objectives of the business,
organization or system; they capture the reasons why a system
is needed and guide decisions at various levels within the
enterprise” [5].

In Requirements Engineering, there are different techniques
and methods used to ”formally” model and declare goals.
One of the methods is requirement specification, which relates
business goals to functional system components. Keep All
Objectives Satisfied (KAOS) [6] is a goal modelling method
aimed at requirement elicitating and validating. It encompasses
five major concepts: goals, assumptions, agents, objects, and
operations. In this research, we only consider the goal concept
of KAOS and relate it to the BPMN. In KAOS, a goal model
consists of the strategic goal and its refinement objectives. The
refinement relation is of two types: 1) AND refinement where
all related objectives must be achieved and 2) OR refinement
where at least one of the related objectives is achieved.

Domain knowledge is derived according to the goal in
question. Ontologies are a common technique for knowledge
representation. An ontology is defined as ”a formal explicit
description of concepts in a domain of discourse (classes
(sometimes called concepts)), properties of each concept
describing various features and attributes of the concept (slots
(sometimes called roles or properties)), and restrictions on

16Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

slots (facets (sometimes called role restrictions))” [7].

Reconfiguration policies, which are introduced in [4], are
used to adapt running BPMN instances and their syntax is
defined as follows:

polrule ::= appliesto location [when triggers] [if conditions]
do actions
triggers ::= trigger | triggers or triggers
conditions ::= condition | not conditions | conditions or con-
ditions | conditions and conditions
actions ::= action | actions actionop actions actionop ::= and |
or | andthen | orelse

III. GOAL-COMPLIANCE FRAMEWORK

The presented Goal-compliance framework supports on-
the-fly WF adaptation while preserving the WF semantics.
Generally speaking, the notable aspects of the framework are:

• Online Workflow Reconfiguration at Instance Level:
The framework provides flexibility for WF systems
by inserting, deleting and replacing workflow tasks.
This flexibility is provided by three important factors
for runtime adaptation: change per instance, online
adaptation (i.e., change on running instances), au-
tomatic adaptation using ECA policies and change
management.

• Goal-Compliance Validation Capabilities: A Goal-
Compliance check is the key feature of this frame-
work. Before applying any workflow change, the
framework has the ability to check the corresponding
constraints and decide whether to accept the change
or not. Each change variability has its corresponding
constraints based on the analysis of its affect on goal
satisfaction. Therefore, a goal-task dependency check
is related to deleting a task from the running process,
while the task-domain conformance check is related
to inserting a task to the running process.

• Facilitating Other Semantic Checking: Using the on-
tology within the framework could also facilitate other
types of semantic checks by enhancing/reusing the
ontology to add more constraints or define different
rules. Furthermore, it could be used for querying the
ontology while performing such a semantic verifica-
tion.

A. Architecture
The runtime framework assumes an adapted process exe-

cution engine. For simplicity, we assume here that we have an
engine that can execute BPMN processes directly (this allows
us to focus on the main aspects rather than worrying about
converting these into some executable formats). The engine is
able to pause a process instance and also to make changes to
instances. Fig. 1 presents the block diagram of the proposed
framework.

As the process instance executes it will raise triggers e.g.,
at the start of a task which are passed to the policy server (a
policy enforcement point), which either returns a no change
allowing the instance to be processed as it is or a specific
change action, e.g., the need to insert a task, which will lead
to updating the process structure of the instance. The action
that the policy server demands depend on the policies in the

repositories and of course the instance data in the process. The
policy server retrieves policies from the policy store, checks for
the applicability and then considers the actions to be applied.
Once it has determined what actions should be applied, the
process instance is updated accordingly and would continue
executing in its new shape. Through the work presented here an
extra phase is added, namely that of checking that the change
is appropriate in the sense that it maintains the goal semantics
of the original process.

As can be seen from Fig. 1, the proposed framework
accepts the original WF specification, the modification details
and the domain compliance constraints as inputs. The WF
specification is in BPMN file and is in xml format and it
is automatically transformed to CSP. The modification details
can be in a configuration file that determines the changes to
the WF specification through ECA policies.The framework
consists of three components namely, Specification Reader,
Reconfigurator and Validator. The brief description of each
one is provided below.

Figure 1. Goal-Compliance Framework Architecture

• Specification Reader: This component is responsible
to read the existing WF specification and transform it
into an in memory state for fast processing and easy
manipulation of the modification. This can be achieved
by utilizing some XML interfacing APIs (Application
Programming Interface).

• Re-configurator: The re-configurator is responsible to
process the actual modification operations e.g., inser-
tion of the new task into existing WF specification.
This component is responsible to interact with the
Ontology and WordNet tools to carry out the requested
modification on the existing WF specification.

• Validator: The validator is responsible to ensure that
the modification is according to the given specification
and it does not violate any domain compliance rules
or constraints. The domain compliance rules are the
constraints that help to ensure the preservation of the
original goals of the WF. This can be achieved by
exploiting the Failure-Divergences Refinement (FDR)
and other necessary validation tools.

17Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

B. Implementation
The proposed framework is implemented with Java and

works in the following sequential order:

1) Read the existing WF specification
2) Read the reconfiguration details
3) Validate the reconfiguration against goal-domain

compliance constraints
4) Adapt the WF, if the validation from (3) was success-

ful
5) Produce adapted WF specification for the running

instance

The reconfiguration component of the framework supports
three processes including insertion, deletion and replacement.
The details of each process are included in the following sub
sections.

1) Insert: The insert process refers to the facility where
the proposed framework allows the modification of existing
workflow by allowing the insertion of a new task into the given
WF specification. The new inserted tasks can be of any of the
following kind of tasks:

• Atomic sequential: This refers to the insertion of a new
task in sequential order immediately after a given task.
This operation requires the new task name as well as
the name of an existing task.

• Atomic parallel: This refers to the insertion of the new
task in parallel to an existing task. The operation will
insert the parallel gateway to connect the new task and
existing task in parallel. The new and existing task
names must be provided to perform the operation.

• Composite: The composite task is itself a collection of
multiple tasks. The framework allows the insertion of
a new composite task. In this operation, the framework
will receive multiple task names, which collectively
represents the composite task. The framework will
then insert those tasks as a composite task in reference
to an existing task.

The procedure developed for the insertion of the new
task to an existing workflow is the same irrespective of the
above mentioned types. The domain-conformance constraint is
implemented for insertion verification with ontology support.
The short explanation is provided below.

a) In the first step, the framework reads the existing WF
specification and then obtains the new task name from the
configuration file that contains the modification details. This
name is then searched from the available ontology. This search
query targets that the task name must match an individual name
in the ontology satisfying the constraint that the individual
must belong to the same domain as the domain of the WF
specification. If the search succeeds, then the Re-configurator
will allow the insertion of the new task. Otherwise, it will
carry out Step-b. b) In case the given task name is not
available in the ontology, then the framework will attempt
to explore the possibility to confirm the suitability of the
task name through WordNet. The framework assumes that the
task name must consist of two words separated by a special
character (e.g.,). The first word represents action, while the
second word represents object (e.g., Register Student). The
framework interacts with WordNet repository to obtain the
synonyms of both words (i.e., action and object). The object

part and their synonyms help to identify the corresponding
domain of the workflow, whereas the action part hints at
the type of the action. For example, ”Register” indicates that
the task should be of type ”Registration” and the ”Students”
indicates the BPMN domain ”UniversityAdmission”.
c) Once the synonyms are retrieved, then they are searched in
the ontology. The framework will allow the insertion of new
task, if any of the synonyms of both parts are found in the
ontology. Otherwise, the framework will not allow the insertion
of new task.

2) Delete: The delete process of the proposed framework
refers to the facility of modifying a given WF specification
through allowing the deletion of an existing task. Similarly,
to the insert process, the framework allows the deletion of
Sequential atomic, Parallel atomic and composite tasks. The
goal-task constraint is implemented here with FDR support.
The brief description of the main steps is provided below.

a) The framework reads the WF specification file and the
configuration file that contains information on the task that
is to be deleted. The framework first ensures that the task to
be deleted exists in the specification. b) The framework then
ensures that the deletion operation does not violate any of the
domain compliance rules or any other constraints. If not, then
the requested task is deleted from in-memory representation
of the WF specification. A modified WF specification must
be produced at the end of the process. c) If the deletion of
the task violates any of the domain compliance rules or other
constraints, then the framework will not allow the deletion of
the task.

3) Replace: The replace process of the proposed frame-
work allows the replacement of an existing task with a new
one. Within the ontology, all semantically equivalent tasks are
defined using the ontology semantical relation ”SameIndivid-
ualAs” to indicate they hold the same semantic. Therefore,
replacing one with another does not affect the process seman-
tic. The brief description is provided below.

a) The framework reads the WF specification file and the
configuration file that contains information of the existing
task and the new tasks that will be needed to replace. The
framework first ensures that the existing task that has to be
replaced exists in the specification. b) The framework then
searches the ontology to identify whether both of the tasks are
the same individuals or not (i.e., they must be semantically
equal). If both tasks are the same individual in the ontology,
then the framework will allow the replacement.

However, there could be different ways to define semantical
relations among task individuals, which might be used to define
other constraints for the replace policy.

IV. GOAL-COMPLIANCE ASSURANCES FOR RUNTIME
VERIFICATION

We individually analyse the impact of the reconfiguration
policies on goal satisfaction based on the action indicated
within the policy; insert, delete or replace. Therefore, two types
of constraints are defined: goal-task dependency and domain-
task conformance. The former is defined as a result of deleting
BPMN tasks while the latter for inserting or replacing tasks.
Model checking is used to validate the goal-task dependency
constraint and this is due to its applicability for this type of
validation, where a property capturing a certain behaviour must

18Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

satisfy a model specification. However, inserting new tasks to
the BPMN differs from removing existing ones. Therefore, it
implies different type of constraints using an ontology-based
approach as it encompasses everything about the domain and
facilitates this type of verification. If the new task is consistent
with the domain, it should satisfy the goal.

Figure 2. Conformance relationship among workflow, its domain and goal

There exists a satisfaction/conformance relationship be-
tween the running process (workflow), the goal in question
and its domain, depicted in Fig. 2. Goal specification is located
in the top layer since it is considered the main reference for
workflow designing as well as development. The middle layer
is domain knowledge, which represents concepts of a specified
domain and their relationship/semantical relations. The WF
specification is localised at the bottom layer. The original as
well as the adapted WF specification must satisfy the domain
and the goal in question. If the WF satisfies the domain rules,
this will lead to goal satisfaction. In the following subsections,
we are going to discuss the goal-compliance constraints and
their implementation in details.

1) Goal-Task dependency: We define goal-compliance
properties based on original goal specification in order to
keep it consistent during workflow reconfiguration. As goal
and process models are dependent, we establish a link of
satisfaction based on the dependency between goals in goal
model and tasks in process model called goal-task dependency
link. Note that the establishment of this task was inspired
from [8] but we consider goal satisfaction at a high level of
abstraction. KAOS is used to model the goal formally allowing
for specification in LTL (Linear Temporal Logic) with variant
patterns [8]: (1) Achieve goals, (2) Cease goals, (3) Maintain
goals, (4) Avoid goals. The first and third patterns help to
verify the availability of certain desired behaviour.

The establishment of the goal-task dependency link allows
us to indicate property specifications, which in turn guarantee
goal achievement. Hence, the constraint formulae are written
as WF |= P, where P is property specification. CSP is candidate
as a process and property specification language. The process
model we have is expressed as BPMN diagram and this BPMN
is transformed to CSP using Wong's tool [3]. Goal specification
is expressed in LTL patterns and they are converted to CSP
specifications using Wong's property specification patterns [9].
The above constraint formulae then can be automatically
checked using the FDR tool [10] through refinement assertions.

The following represents the steps we follow in order to
implement the verification of goal-task dependency constraint:

1) Define the goal for a given domain
2) Identify goal-related tasks based on goal-task depen-

dency link
3) Define property specifications using the result from

(1). Property specifications should state the availabil-
ity of all goal-related tasks and must be consistent
with goal specification

4) Convert property specifications from (3) into CSP
specifications

5) Check the refinement relation (satisfaction function
”P [=R WF”), which indicates that the process spec-
ification satisfies the property under Refusal refine-
ment (R).

There are three types of goal-task relationships:

1) One task is contributing to achieve a single objective
2) Groups of tasks are contributing to achieve a single

objective and this could be:
a) OR-grouped tasks
b) AND-grouped tasks

Those variants are classified according to the refinement
relation among their corresponding objectives in KAOS goal
specification. CSP refinement notion together with the hid-
ing operator make it possible to model check self-adaptive
workflows in a sufficient way. In particular, it facilitates to
check the availability of certain events (tasks). So, in property
specification we identify the functional behaviour that is re-
lated to a goal specification. Then, this property specification
is tested through refinement assertion with hiding particular
events. Based on the type of the property, the hiding is
provided. For properties that are of type (1), we need to hide all
process alphabets from WF specification in the right hand side
excluding the event that the property holds in the left hand side.
This allows the model checker to check for a certain behaviour.
In case of properties of type (2), when property specification
states at least one of the events is available, then the removed
tasks by policy should be hidden from WF specification.

For example, suppose a BPMN process consists of se-
quenced tasks A, B and C. A OR B are contributing to achieve
an objective O 1. C is contributing to achieve O 2. The CSP
property specification that captures the availability of A OR B
is defined as follows:

P= let Spec0= A → Spec2 Spec1= B → Spec2 Spec2= C
→ SKIP within Spec0 u Spec1

Now, suppose a policy wants to delete task A from process
specification. The framework is going to verify this by check-
ing the refinement relation between P and WF as follows:

assert P vR WF \ (A) where \ indicates ”hide” and it
means hide A from WF specification because it is the targeted
task by the policy. In this case, the refinement relation holds
because B is still running in the process. If A and B are going
to be removed, the assertion will fail.

2) Domain-Task Conformance: All desirable actions or
functionalities that any organization wishes to achieve are
determined basically through goal specification. Those func-
tionalities in predefined order are captured by WF systems.
The insert function is used to add extra functionality to the
workflow. It can insert a new workflow item (activity or
operator) at any position. As a result, it might have a significant
impact on achieving the original goal if left uncontrolled. We

19Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

Figure 3. Ontology Structure

focus on the semantical impact in which the functionality
being added deviates from the goal or is inconsistent with the
knowledge in a given domain. Semantical impact is conceived
as undesirable actions that might causes unexpected outcome,
which in turn might affect business outcome. Hence, the
satisfaction between a workflow and its domain will lead to
goal satisfaction. As a result, we develop an ontology for
verifying the consistency of adapted BPMNs.

The ontology is consistent with the goal in question. We
assume it encompasses everything about the BPMN domain
in terms of BPMN tasks, their classification and relationships.
The classification allows to group tasks based on their semantic
in order to be able to verify consistency. For example, for
verification purposes, we classify BPMN tasks according to
the work they are designed for, (e.g., the tasks ”Notify Can-
cellation” and ”Notify Timeout” are classified as Notification
tasks). However, they could be classified according to different
criteria for other types of checking.

Although BPMNs are domain specific, i.e., domains differ
in their goals and the purpose they are designed for, we
develop a generalized semantic constraint. For example, Flight-
Booking is a different domain than Pizza-Delivery as the
concepts used within the processes as well as their outcomes
are different. The domain is captured in an ontology following
the structure Domain-Type-Task. It is defined in the Web
Ontology Language (OWL) using Protégé [11].

The ontology combines three classes: Domain class in-
cludes different domains, Type class includes type classifica-
tions of domain tasks and Task class encompasses all BPMN
tasks related to specific domains. Individuals of the three
classes are linked using OWL object properties. Basically, we
have two object properties: hasType linking tasks with types
and hasDomain linking types with domains, see Fig. 3. In this
work, BPMN tasks are considered to be the domain concepts as
they are the main artifacts in process execution since they are
designed to perform work within the process. We use domain
knowledge to reason about goal satisfaction. This is due to
the fact that goal specification holds the desirable actions but
is abstracted from any detail about the process it is designed
for. For this reason, we use the domain knowledge to prove
consistency with the goal as it holds more details about the
executed process and adheres to the goal.

V. RELATED WORK

The correctness of self- adaptive workflow systems has
been an active research area in recent years. Correctness is
a broad concept and it varies according to adaptation level.
Adaptation could be at process, infrastructure, domain or
resource level [12]. Generally speaking, process correctness
can be divided into three major criteria; syntactic, semantic and
behaviour. Each of these can further be divided into several
criteria, for example syntactic correctness covers properties
like reachability and inheritance. Current approaches focus
on syntactic and behaviour correctness. However, semantic
assurances, such as data flow correctness, task compatibility,
rule compliance are also important aspects to ensure safe
adaptation. In the literature, three semantic constraints are
defined for workflow validation.

(1) Task-task dependency [13], which is developed to
ensure compatibility among tasks in terms of order correctness
among running tasks.

(2) Mutual exclusion and Coexistence constraints [14],
which express the incompatibility between two tasks to avoid
running them together and vice versa.

They are implemented over semantic conformance-oriented
ontology for verifying workflow correctness at design time.
[15] developed dependency models in order to manage process
model variants not instance variants. Satisfying goal is another
semantic criteria that must be addressed for self-adaptive
systems. Koliadis and Ghose [8] developed GoalBPMN for
studying and analysing the effect of changing goal specifica-
tion in respect with its BPMN. BDI agent technology was used
to develop agile goal-oriented business processes [16]. This ap-
proach handeled both modeling as well as adapting processes
but they assume changing at goal level and restructure the
process model accordingly.

In this work, we provide assuarances on goal-compliance
(adapted process model is compliance to its original require-
ments) considering instance variants for running workflows at
a high-level of abstraction.

VI. CONCLUSION AND OUTLOOK

A. Conclusion
In this paper, we presented a goal-compliance framework,

the motivating approach behind it and its implementation.
Basically, our approach focuses on providing assurances that
the goal of self-adaptive workflows is still satisfied. As a
result, we introduced two major compliance constraints: goal-
task dependency and domain-task conformance constraints.
The goal satisfaction is considered at a very high-level of
abstraction neglecting the implementation details following the
fact that workflows are designed to capture business goal. This
allows to prevent errors and inconsistency at the abstract level,
which in turn will reduce the effort, error and cost at data level.

B. Outlook
The Goal-Compliance framework performs runtime veri-

fication in a feasible as well as straightforward fashion. We
run ana evaluation process based on the following criteria:
1) framework performance, 2) framework adequacy and 3)
ontology accuracy. The performance is to measure time taken
to read a BPMN, change its structure as required by policies
and verify its compliance to the constraints. The main objective

20Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

to measure the time is because the framework supposed to do
its work at runtime and ensuring that its performance is reliable
in practice. This point is planned as a future work and JProfiler
[17] was chosen for this purpose.

However, we measure the ime taken by FDR to perform
the verification related to the delete policy. FDR showed
that the average time to calculate a simple assertion (e.g.,
the availability of the task ”Confirm Booking” to achieve
the objective ”FlightBooked” in the Travel domain) is 0.81s.
Note that some objectives are achieved by the contribution of
more than one task and the property is defined based on the
refinement relations between their corresponding objectives in
goal specification. For example, the tasks ”Quote Flight” OR
”Quote Hotel” OR ”Quote Car” are contributing to achieve
the objective ”TravelPlanGenerated”. For these types of prop-
erties, the average time taken is 0.2s.

The framework adequacy is concerned with the workflow
patterns [18] as they are widely accepted and capture most of
the WF behaviours. Case by case analysis shows that 33 out
of 43 of those patterns are supported within our framework.
The unsupported patterns are those that are not implemented
by BPMN.

The proposed ontology can be generalised to represent
any BPMN domain. It is based on an assumption that it
encompasses all tasks (designed and un-designed) that belong
to a specific domain. However, predicting all tasks related to
instance variants is impossible at modelling time. As a result,
WordNet was integrated within the framework for synonyms
search. We analysed the proposed ontology taking its accuracy
into consideration. The accuracy is classified as a correctness
metric and it includes precision, recall and coverage as the
main measures [19]. We conducted a number of experiments
on different BPMN(s) from different domains. In general, the
number of verified tasks, which matched with Task individuals
in the ontology, was 33 out of 39. Six tasks were not found in
the ontology directly, but 4 were matched through synonyms
finding with WordNet, making a total of 37 matches. However,
two tasks failed to meet the domain-conformance constraints
and as a result were rejected.

Based on theses results, the precision of the D-T-T ontology
is 94.8% and the recall is 100%. The results show that this is
a very promising approach, as long as the structure of the task
name is ’well formed’ in a verb-noun form (action followed by
object: Send Mail or Place Order). The approach will extend
to more complex task names, but more parsing and intelligence
in the matching with the ontology is required.

REFERENCES

[1] “Object management group business process model and notation,” URL:
http://www.bpmn.org [accessed: 2016-10-25].

[2] P. C.A., Kommunikation mit Automaten. PhD thesis, Institut fur
instrumentelle Mathematik, 1962.

[3] P. Wong, Formalisations and Applications of Business Process Mod-
elling Notation. PhD thesis, University of Oxford, 2011.

[4] S. Gorton, Policy-driven Reconfiguration of Service-targeted Business
Processes. PhD thesis, University of Leicester, 2011.

[5] A. Antón, “Goal-based requirements analysis,” in Requirements Engi-
neering, 1996., Proceedings of the Second International Conference on.
IEEE, 1996, pp. 136–144.

[6] A. Lapouchnian, “Goal-oriented requirements engineering: An overview
of the current research,” University of Toronto, 2005, p. 32.

[7] N. Noy and D. McGuinness, “Ontology develop-
ment 101: A guide to creating your first ontology,”
URL: http://protege.stanford.edu/publications/ontology

development/ontology101-noy-mcguinness.html [accessed: 2016-
09-14].

[8] G. Koliadis and A. Ghose, “Relating business process models to goal-
oriented requirements models in kaos,” in Advances in Knowledge
Acquisition and Management. Springer, 2006, pp. 25–39.

[9] P. Wong and J. Gibbons, “Property specifications for workflow mod-
elling,” in Integrated Formal Methods. Springer, 2009, pp. 56–71.

[10] “Fdr3 released, oxford university computing laboratory,” URL:
http://www.cs.ox.ac.uk/projects/concurrency-tools/ [accessed: 2016-10-
12].

[11] “Protege,” URL: http://protege.stanford.edu [accessed: 2016-08-22].
[12] Y. Han, A. Sheth, and C. Bussler, “A taxonomy of adaptive workflow

management,” in Workshop of the 1998 ACM Conference on Computer
Supported Cooperative Work, 1998.

[13] L. T. Ly, S. Rinderle, and P. Dadam, “Semantic correctness in adaptive
process management systems,” in International Conference on Business
Process Management. Springer, 2006, pp. 193–208.

[14] T.-H.-H. N. Tuan Anh Pham and N. L. Thanh, “Ontology-based
workflow validation,” in Computing Communication Technologies -
Research, Innovation, and Vision for the Future (RIVF), 2015 IEEE
RIVF International Conference on, Jan 2015, pp. 41–46.

[15] C. Sell, M. Winkler, T. Springer, and A. Schill, “Two dependency
modeling approaches for business process adaptation,” in International
Conference on Knowledge Science, Engineering and Management.
Springer, 2009, pp. 418–429.

[16] B. Burmeister, M. Arnold, F. Copaciu, and G. Rimassa, “Bdi-agents
for agile goal-oriented business processes,” in Proceedings of the 7th
international joint conference on Autonomous agents and multiagent
systems: industrial track. International Foundation for Autonomous
Agents and Multiagent Systems, 2008, pp. 37–44.

[17] “ej technologies,” URL: https://www.ej-
technologies.com/products/jprofiler/overview.html [accessed: 2016-09-
20].

[18] “Workflow patterns,” URL: http://www.workflowpatterns.com [ac-
cessed: 2016-09-22].

[19] H. Hlomani and D. Stacey, “Approaches, methods, metrics, measures,
and subjectivity in ontology evaluation: A survey,” Semantic Web
Journal, 2014, pp. 1–5.

21Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

