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Abstract—Petri nets are used to formally model the behavior
of systems. However, when these systems dynamically change,
e.g., due to context dependence, modeling gets complex and
cumbersome since Petri nets are low-level and can not express
dynamic changing parts. Expressing dynamically changing parts
of the system directly within Petri nets increases the clarity
and allows for modeling complex, context dependent, systems.
While various approaches can be found in the literature, their
integration into the Petri net ecosystem is often not considered.
This restricts the available tools and analysis techniques to those,
which can handle that custom net type. We present adaptive
Petri nets, an extension to Petri nets, which directly expresses
variability within the net. Our approach integrates well with other
Petri net extensions, such as colored tokens, inhibitor arcs or
hierarchy. Most importantly, it is possible to convert an adaptive
Petri net to a semantically equivalent Petri net with inhibitor
arcs. This work presents the formalism of adaptive Petri nets,
how they can be flattened to Petri nets with inhibitor arcs and
their graphical representation. The feasability and usability is
demonstrated on two examples that are modeled, flattened and
analyzed.

Keywords–Petri nets; Reconfigurable Petri nets; Inhibitor Arcs;
Analysis

I. INTRODUCTION

Petri nets are a mathematical modeling technique used in
many areas. Their strengths are especially in modeling concur-
rent, asynchronous, distributed, parallel, or nondeterministic
systems [1]. Based on a mathematical model, they can be
analyzed for various properties, such as deadlocks, reachability,
or boundedness [2]. While the graphical notation of Petri nets
reduces the learning curve and improves communication in
teams. In general, Petri nets tend to get large, making it difficult
to work on them. Various syntactic additions exist to improve
readability and their expressiveness, while still allowing to
flatten the net into a semantically equivalent Petri net without
these additions. Examples are hierarchical structuring [3],
composition [4], or colored tokens [5].

Our approach, adaptive Petri nets, is a Petri net extension
allowing a net designer to model structures, which change at
runtime. These nets are reconfigured by configuration places
that enable or disable parts of the net. Consequently, the net
designer can express his/her intentions directly. Additionally, it
might open the door for analysis techniques, which utilize the
added semantic information.

The paper is structured as follows. In Section II, the related
work is reviewed. Next, in Section III-A the formal models of

Petri nets and Petri nets with inhibitor arcs are introduced. Two
examples from the literature motivate the need for adaptive Petri
nets in Section IV. Section V explains the concept of adaptive
Petri nets together with a formal semantic and graphical syntax.
An algorithm for flattening will show how adaptive nets can
be reduced to Petri nets with inhibitor arcs. After that, the
two examples from Section IV are reimplemented with our
notation. Here, we show that the Petri net analyzers LoLa [2]
and Tina [6] can analyze the flattened version of adaptive nets.

II. RELATED WORK

Reconfigurable Petri nets can be seen as composition at
runtime. In [4], this is called dynamic composition and is
characterized as “rare”, because it “radically changes the
Petri net semantics and complicates the available analysis
techniques”. Regardless, several approaches to implement
dynamic composition exist.

Object Petri nets [7] are Petri nets with special tokens.
A token can be a Petri net itself and therefore nets can
be moved inside a main net. This type of net can be used
for modeling multiple agents, which move through a net
representing locations. The agents change their internal state
and have different interactions based on the location inside the
net. This approach extends the graphical notation of Petri nets.
Analysis of object Petri nets is possible with the model checker
Maude [8] and by conversion to Prolog. It was not shown that
object Petri nets can be flattened to standard Petri nets though.

Reconfiguration with graph-based approaches is a topic of
Padberg’s group. They developed the tool ReConNet [9], [10]
to model and simulate reconfigurable Petri nets. A reconfigu-
ration is described as pattern matching and replacement that
are evaluated at runtime. This notation is generic and powerful,
but can not be represented in the standard notation of Petri
nets. It was also not a goal to flatten them into standard Petri
nets. Verification is possible with Maude.

Another graph-based reconfiguration mechanism is net
rewriting systems (NRS) [11]. The reconfiguration happens
in terms of pattern matching and replacements with dynamic
composition. The expressive power was shown to be Turing-
equivalent by implementation of a Turing machine. Additionally,
an algorithm for flattening to standard Petri nets was provided
for a subset of net rewriting systems called reconfigurable
nets. This subset constrains NRS, to only those transformations,
which leave the amount of places and transitions unchanged, i.e.,
only the flow relation can be changed. Flattening increases the
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size of transitions significantly, i.e., by the amount of transitions
multiplied by the number of reconfigurations. With improved
net rewriting systems [12], the NRS were applied in logic
controllers. The improved version of NRS constrains the rewrite
rules to not invalidate important structural properties, such as
liveness, reversibility, and boundedness.

Self-modifying nets [13] were already introduced in 1978
to permit reconfiguration at runtime. Arcs between places and
transitions are annotated with a weight specifying the amount
of tokens required inside the place until the transition becomes
enabled. To achive reconfiguration, these weights are made
dynamic by linking them to a place. The number of the weight is
then determined by the amount of tokens inside this referenced
place. This mechanism allows the enabling and disabling of arcs
and therefore can change the control flow at runtime. However,
the authors state that reachability is not decidable [13].

Guan et al. [14] proposed a dynamic Petri net, which
creates new structures when firing transitions. The net is divided
in a control and a presentation net. The control net changes the
structure of the presentation net by annotations on its nodes.
Verification and reducibility were explicitly excluded by the
authors.

A practical example was shown in Bukowiec et al. [15],
who modeled a dynamic Petri net, which could exchange
parts of the net based on configuration signals. Defining
reconfigurable parts was done with a formalism of hierarchical
Petri nets. The dynamic parts of the nets were modeled with
subnets to generate code for a partially reconfigurable Field
Programmabe Gate Array (FPGA). Since this work was of more
practical nature, the reconfiguration and transformation was
not formalized. Although, it was shown by Padberg et al. [9]
that this kind of net can be transformed into a representation,
which can be verified using Maude.

Dynamic Feature Petri nets (DFPN) [16] support runtime
reconfiguration by annotating the Petri net elements with
propositional formulas. These elements are then enabled or
disabled based on the evaluation of these formulas at runtime.
The formulas contain boolean variables, which can be set
dynamically from transitions of the net or statically during
initialization. Their model extends the graphical notation with
textual annotations. It was shown that they can be flattened
to standard Petri nets [17]. Compared to adaptive Petri nets,
this type of net is problem specific and has the limitation of
indirection by boolean formulas. A boolean formula can not
express numbers easily, only by encoding them in multiple
boolean variables. In DFPN the net is modified by firing
transitions, while in adaptive Petri nets the net is modified
by the amount of tokens inside a place.

With Context-adaptive Petri nets [18], ontologies were
combined with Petri nets to model context dependent behavior
in Petri nets. These nets are included in an existing Petri net
editor. By this, context-adaptive Petri nets support modeling,
simulation and analysis. It was not detailed how the analysis
is implemented, therefore scalability is unclear. Additionally,
the flattening of these nets is not supported.

Hybrid Adaptive Petri Nets [19] are a Petri net extension
coming from the field of biology. These nets extend non-
standard Petri nets with a special firing semantic. A transition
can fire discrete, which will consume and produce a single
token and then wait a specified delay for the next firing. In

continuous mode a transition will not have a delay. This Petri net
is adaptive by switching between those two modes. Compared
to our work this is out of scope since non-standard Petri nets
are used and adaptivity is restricted to transitions only.

We found that most of the existing work lacks a good
integration in the Petri net ecosystem. The reconfiguration is
either written as graph rewrite rules or external descriptions,
which fit Petri nets more from a theoretical point of view but
not for modelling. Flattening these nets to a lower level Petri
net is often not the goal of the approaches, hence existing Petri
net tools can not be used, e.g., for efficient model checking or
code generation.

III. PRELIMINARIES

In this section, definitions and notations are introduced,
which are used throughout the paper.

A. Petri Net Definitions
This section recalls the definition of Petri nets and estab-

lishes the notation.
Definition 1: A Petri net [1] is a directed, bipartite graph

and can be defined as a tuple Σ = (P, T, F,W,M0). The two
sets of nodes are P for places and T for transitions, where
P ∩ T = ∅ and P ∪ T 6= ∅. F is a set of arcs, describing the
flow relation with F ⊆ (P × T ) ∪ (T × P ). W : F → N is a
weight function. M0 : P → N is the start marking.

Referencing a tuple element is done in dot notation: for a
Petri net Σ, we reference the places P by Σ.P .

Definition 2: For an element x ∈ P ∪ T ,
•x = {y|(y, x) ∈ F} and x• = {y|(x, y) ∈ F}.

For example, t• with t ∈ T refers to the set of places,
which are connected with an arc originating from t. We call
those preset and postset, respectively.

Definition 3: A marking is defined as a function
M : P → N.

Definition 4: A transition t ∈ T is enabled if all places
p ∈ •t have a marking of at least W (p, t) tokens, where W (p, t)
is the weight for the arc between p and t.

Definition 5: Iff a transition t is enabled, it can fire and
the marking of each p ∈ t• is incremented by W (t, p) and the
marking of each p ∈ •t is decremented by W (p, t).

Definition 6: If there exists a k ∈ N for a p ∈ P such
that, starting from an initial marking, every reachable marking
M(p) ≤ k, we speak of p as k-bounded. This place never
contains more than k tokens. If k equals 1, this place is called
safe.

B. Inhibitor Arcs
Inhibitor arcs extend the flow relation in Petri nets by an arc,

which will disable a transition when the connected place has a
specified amount of tokens in it. A Petri net with inhibitor arcs
is more expressive than a normal Petri net. For example, a Petri
net with inhibitor arcs can implement a Turing machine [20],
while this is not possible with standard Petri nets. This affects
the available tools for model checking, for example, the halting
problem can not be solved in general for Turing-complete
languages.

Definition 7: The set of inhibitor arcs I ⊆ (P × T )
is added to Def. 1. An Inhibitor Petri net is a tuple
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Σ = (P, T, F, I,W,M0). P ∩ T = ∅ and P ∪ T 6= ∅.
F ⊆ (P × T ) ∪ (T × P ), I ⊆ (P × T ). W : (F ∪ I) → N,
M0 : P → N.

Definition 8: The weight W is extended to also include
the inhibitor arcs W : (F ∪ I)→ N.

To simplify notation we define the inhibiting set of a
transition t as ◦t = {p ∈ P |(p, t) ∈ I}.

Definition 9: A transition t is enabledi, iff all places con-
nected by an inhibitor arc are below the weight M(p) < W (p, t)
for all p ∈ ◦t and the transition is enabled as defined in Def. 4.

C. Graphical Notation
Places are drawn as circles: , their marking is drawn

as black dots . Transitions are drawn as black rectangles
(horizontal or vertical) . The flow relation is drawn with
directed arcs between places and transitions . Inhibitor
arcs are only drawn from places to transitions and get a circle
head: .

IV. MOTIVATING EXAMPLES

This section will show examples from the literature to both
motivate the need for reconfiguration inside Petri nets and use
them to demonstrate adaptive Petri nets in Section VI. The
first example shows an informal reconfiguration model of a
controller [15] and the second example is a coffee machine
implemented with Dynamic Feature Nets [16].

A. Dynamic Control Structures
Control structures for circuits are typically modeled with

finite state machines. However, if parallelism or asynchronism
is needed, Petri nets are employed [21], [22]. The modeled
Petri net gets converted into a hardware description language
to load it onto an FPGA. To support modern FPGA with
partial dynamic reconfiguration, in which parts of the FPGA
can be reconfigured at runtime, the Petri net should support
reconfiguration at runtime, too. This is not directly possible
with standard Petri nets but requires a reconfigurable addition.

In [15], a proposal was made to model the reconfiguration by
two subnets (pages), which are exchanged based on an incoming
signal. Their use case is a cement mixing machine, which can
be configured with and without a water heating element. The
type of Petri net they use is called control interpreted Petri net.
These nets are specifically made for use in electronic circuits,
so that they can send and receive signals, modeled in terms of
variables. Each transition is annotated with a variable, which
inhibits the firing until its value becomes true. A place can
be annotated by a name, representing a variable, which will
be set to true when the place contains a token. The net is
compiled into a hardware description language that can be
used to synthesize the circuit on the FPGA. An example for
control interpreted Petri nets is shown in Figure 1b: the place
P9 enables the output signal YV2, if it contains a token, the
transition t9 fires only, if the input signal XF2 is active and a
token is inside P9.

We depict the example from the paper of Bukowiec et
al. [15] here to show how their reconfigurable Petri nets are
implemented. In their work, a cement mixing machine was
modeled with a Petri net. Each transition will trigger valves
or motors to support the cement mixing. The exact working
is irrelevant here, except that the cement can be mixed with

p3

p1 t2 p6 t5

p7

mp1 t6 p11 t8

p9 t9 p8

CFG_A

p12 t10 p9 t9 p8

CFG_B

(a) Simplified net of Bukowiec (without annotations,
added CFG_* arcs)

variable which will be used for output. The variables are synthesized into VHDL
code and have to be assigned by a programmer.

The pages of Figure 2 are chosen via the configuration variables CFG_A and
CFG_B. As already mentioned in our introduction this specification does not
model the reconfiguration semantic inside the Petri net. The variables CFG_A
and CFG_B are extracted from the content of the paper.440 A. Bukowiec and M. Doligalski
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Fig. 2. An example of Petri net with two contexts of macroplace

P1

P2 P3

P4

P5

P6

P7 MP1

P10

P11

t1

t2

t3

t4

t5

t6

t7

t8

XN1

XF1

XN2

XF1

XF4

XF3

YT1

YV1

YT2

YV1

YV3

YM

XENDMP1
YACKMP1

YSTARTMP1

(a) Petri net

P9

P8
(PE)

te

XF2

YV2

PW
t9

XACK

ts XSTART

YEND

(b) 1st context

P9

P8
(PE)

t9 XF2

YV2

P12

t10

YH

XF5

te

PW

XACK

ts XSTART

YEND

(c) 2nd context

Fig. 3. An example of Petri net with two contexts with synchronization

Fig. 2: Reconfigurable Petri net of [1]

4.2 Dynamic Features

Product line engineering is an important topic in software development. A soft-
ware product line (SPL) is a collection of software system with a shared set of
assets. Typically there exists a core-component in this software which gets en-
riched by various features. These features can be either applied at compile time
(static) or at runtime (dynamic). Modeling an SPL with a petri net requires to
represent core and features, so that they can be enabled or disabled based on
the configuration.

In [14] (dynamic) Feature Oriented Petri nets (FOP) were proposed for mod-
eling an SPL. The activation of a feature is encoded as a boolean variable. If

(b) Control
Interpreted
Petri net

Figure 1. Dynamic control structures from [15]

either heated or cold water. These two features are mutually
exclusive and should replace the corresponding logic on the
FPGA by partial dynamic reconfiguration. A simplified version
of the Petri net for the cement mixing machine can be seen in
Figure 1a. As simplification the annotations and non-branching
structures were removed. This was only done for readability.
The pages of Figure 1a are chosen by configuration signals
CFG_A and CFG_B. CFG_A enables the default behavior of
the water element, while CFG_B is the behavior of the water
heater. The configuration signals can be found in Figure 1a,
while in the original paper, they were part of the informal
description. The CFG-signals are either sent by an algorithm
of the controler or comes from the manual input of a human
supervisor.

The resulting net was synthesized to an FPGA specification
with a reserved reconfigurable area, in which the pages
corresponding to CFG_A and CFG_B are synthesized.

B. Dynamic Features
Product line engineering is an important topic in software

development. A software product line (SPL) is a collection of
software systems with a shared set of assets. Typically, there
exists a core component in a product line, which gets enriched
by various features. These features can be either applied at
compile time (static) or at runtime (dynamic). Modeling an
SPL with a Petri net requires representing the core and its
features, so that they can be enabled or disabled based on the
configuration.

In [23], (dynamic) Feature Oriented Petri nets (FOP) were
proposed to model an SPL with Petri nets. The activation of a
feature is encoded as a boolean variable. The nodes and arcs
in the Petri net are annotated by logical formulas containing
the feature variables. If the formula evaluates to false, the
node or arc is temporarily removed from the net until the
formula evaluates to true again. For static features the variable
assignment comes from the outside and does not change while
the Petri net gets executed. Therefore, all formulas with static
features can be evaluated at first. To model dynamic features, a
transition can be annotated by assignments to feature variables.
For that, the annotation is split into a formula and an assignment
part, illustrated in Listing 1. This transition fires only if the
feature Milk is deactivated and Coffee activated. When the
transition fires, it enables the feature Milk. This transition is
then temporarily removed from the net, as its formula no longer
evaluates to true.
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Listing 1 Example Formula Annotation

1: ¬Milk∧Coffee
Milk On

The running example for [23] is a configurable coffee
machine, showcased in Figure 2. This net models a coffee
machine, which can get a milk module added at runtime. Adding
the milk module is done as a dynamic feature inside the net
and triggered by the connect and disconnect transitions.

V. CONCEPT OF ADAPTIVE PETRI NETS

With adaptive Petri nets, we propose a concept, which
supports a Petri net developer to enable and disable a subset
of nodes based on the amount of tokens in a set of places.
Ultimately, our goal is to support the development of Petri
nets with dynamic changing behavior while still supporting the
flattening to inhibitor Petri nets to allow the use of standard
Petri net tools.

An adaptive Petri net extends the Petri net definition by a
set of configuration points C = {c1, c2, . . .}. A configuration
point will enable or disable parts of a Petri net Σ.

Definition 10: An adaptive Petri net is a tuple
Σ = (P, T, F,W,M0, C), based on Petri nets of Def. 1, with
C = {c1, c2, . . .} as the set of configuration points.

Definition 11: A configuration point is a tuple
c = (p, w,N) referencing the nodes of a containing
Petri net Σ.
• p ∈ Σ.P , a place that we will call configuration place.
• w : Z \ {0}, a weight
• N ⊆ (Σ.P ∪ Σ.T ), the nodes that are configured
Definition 12: The set of external nodes (E ⊆ N ) are

nodes of N which are connected to nodes outside of N. E =
{x|x ∈ N ∧ (∃y ∈ ((P ∪ T ) \N)({(x, y), (y, x)} ∩ F 6= ∅)}

Definition 13: The set of internal nodes for a configuration
point is calculated by I = N \ E.

An example for an adaptive Petri net can be seen in Figure 3.
The configuration points are c1 = (pc1 , 1, {p1, t1, p2, t3}) and

c2 = (pc2 , 1, {p1, t2, p3, t4}). The set of externel nodes for
c1 is c1.E = {p1, t3}, while the set of internal nodes is
c1.I = {t1, p2}.

Definition 14: A configuration point c ∈ C is enabled,
iff (c.w > 0 ∧M(c.p) ≥ c.w) ∨ (c.w < 0 ∧M(c.p) < |c.w|).
With M being the marking function of Def. 3. As a shorthand
we will refer to the set of enabled configuration points as
Ce ⊆ C.

An enabled adaptive Petri net will not change the behavior
of the net, while a disabled adaptive Petri net stops the flow
of tokens from E to N . This changes the firing definition
of Def. 5 and the enabling definition of Def. 4. This is defined
in Defs. 17 and 18.

We want to navigate from a place or transition to all
configuration points, which are containing this node. For this
we define the following functions.

Definition 15: • The set of configuration points a node
belongs to is defined by the function BN : (P ∪ T ) →
P(C) with BN (n) = {c|c ∈ C ∧ n ∈ c.N}.

• The set of configuration points, in which a node is external,
is defined by the function: BE : (P ∪ T ) → P(C) with
BE(n) = {c|c ∈ C ∧ n ∈ c.E}.

• The set of configuration points, in which a node is internal,
is defined by the function: BI : (P ∪ T ) → P(C) with
BI(n) = {c|c ∈ C ∧ n ∈ c.I}.

Definition 16: The configured postset and
configured preset of a transition t is defined
as t • c = t • \{p|c ∈ (BE(t) \ Ce) ∧ p ∈ c.N} and
•ct = •t \ {p|c ∈ (BE(t) \ Ce) ∧ p ∈ c.E}, respectively.

Definition 17: Iff a transition t with BE(t) 6= ∅ is enabled,
it can firea and the marking of each p ∈ t • c is incremented
by W (t, p) and the marking of each p ∈ •ct is decremented
by W (p, t). The fire semantics of all other transitions fol-
lows Def. 5.

Definition 18: A transition t ∈ T is enableda, iff it is
enabled according to Def. 4 and the following condition holds
true {p|p ∈ •t ∧ p ∈ c.E; ∀c ∈ (BI(t) \ Ce)} = ∅.

WAIT READY

REFILLABLE

n

FULL

BREW

Coffee
noop

SERVE COFFEE

Coffee
noop

REFILL COFFEE

Coffee
noop

READY

REFILLABLE

m

FULL

ADD MILK

Coffee^Milk
noop

SERVE COFFEE W/MILK

Coffee^Milk
noop

REFILL MILK

Coffee^Milk
noop

ON OFF

DISCONNECT

Milk
Milk off

CONNECT

¬Milk
Milk on

Figure 4: DFPN (initial state) of a dynamically reconfigurable product line. Whenever transition DISCONNECT fires, feature
Milk is switched off, disabling all transitions that are conditioned on Milk. It is enabled again by firing CONNECT.

at runtime), but also dynamic evolution of the product line
itself (typically referred to as “meta-variability”). Pushing
the binding time of features to runtime is often motivated by
a changeable operational context, to which a product has to
adapt in order to provide context-relevant services or meet
quality requirements.

We extend Feature Petri Nets to capture the dynamic
reconfiguration of products, resulting in a more general Petri
net model. In our approach we associate to each transition
an update expression that describes how the feature selection
evolves after the transition. The resulting model is called
Dynamic Feature Petri Nets (DFPN). DFPN extend Feature
Petri nets by adding a variable feature selection to the state
of the Petri net, and associating application conditions and
update expressions over the feature set to the transitions.
This extension enable more concise descriptions of systems
based on feature models, without adding expressive power
with respect to Petri nets. We now define update expressions
before formalising DFPN.

Definition 17 (Update). An update is defined by the following
grammar:

u ::= noop | a on | a off | u; u

where a 2 F and F is a set of features. We write UF to
denote the set of all updates over F .

Given a feature selection FS 2 F , an update expression

modifies FS according to the following rules:

FS noop���! FS

FS a on���! FS [ {a}

FS a off����! FS \ {a}

FS u0�! FS0 FS0 u1�! FS00

FS
u0;u1���! FS00

Definition 18 (Dynamic Feature Petri Net). A DFPN is a
tuple N = (S, T, R, M0, F, f, u), where (S, T, R, M0, F, f)
is an FPN and u is a function T ! UF , associating each
transition with an update from UF .

We write ut to denote the update expression u(t) associ-
ated with a transition t.

Definition 19 (DFPN transition occurrence). Given a DFPN
N = (S, T, R, M0, F, f, u) and an initial feature selection
FS0 ✓ F , a transition t 2 T occurs, leading from a state
(Mi, FSi) to a state (Mi+1, FSi+1), denoted (Mi, FSi)

t�!
(Mi+1, FSi+1), iff the following four conditions are met:

Mi � •t (enabling)
Mi+1 = (Mi � •t) + t• (computing)
FSi |= 't (satisfaction)

FSi
ut�! FSi+1 (update)

Figure 2. Dynamic Feature Petri net from [16]
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Algorithm 1 Flattening of an Adaptive Petri net

1: procedure FLATTEN((P, T, F,W,M,C, I))
2: for ∀c ∈ C do
3: for ∀p ∈ c.E ∩ P do
4: for ∀t ∈ p • ∩c.I do
5: ConnectByArc((>, c, t, F, I,W ))
6: end for
7: end for
8: for ∀t ∈ c.E ∩ T do
9: if (t • ∩c.N 6= ∅) ∨ (•t ∩ c.E 6= ∅) then

10: t2 ← Duplicate(t, P, T, F,W,C, I)
11: F ← F \ ((t2 × c.N) ∪ (c.E × t2))
12: ConnectByArc((>, c, t, F, I,W ))
13: ConnectByArc((⊥, c, t2, F, I,W ))
14: end if
15: end for
16: C ← C \ {c}
17: end for
18: end procedure

Algorithm 2 Helper method to enable or disable a transition
by a configuration place

1: procedure CONNECTBYARC((e, c, t, F, I,W ))
2: if (c.w > 0 ∧ e = >) ∨ (c.w < 0 ∧ e = ⊥) then
3: F ← F ∪ {(c.p, t), (t, c.p)}
4: W (c.p, t)← |c.w|
5: W (t, c.p)← |c.w|
6: else
7: I ← I ∪ {(c.p, t)}
8: W (c.p, t)← |c.w|
9: end if

10: end procedure

In Def. 18, we prohibit that new tokens enter from E to N .
For the case, when the external node is a place (p ∈ E) and
targets an internal transition (t ∈ I), by inhibiting the transition.
For all other cases, Def. 17 changes the places from which
tokens are removed and where tokens are added after firing. A
transition, which belongs to a disabled configuration point, can
not remove tokens from any place in E of this configuration
point (p ∈ c.E) and can not create any tokens in any place of
N of this configuration point (p ∈ c.N ).

A. Flattening Algorithm
Special attention was given to the ability to remove the

configuration point structure and replace it with Petri net
structures of lower level Petri nets to be compatible with existing
Petri net tools. This feature reduction is also called flattening
and was already shown for different concepts. Colored Petri nets
were introduced by Jensen [5] and are reducible to standard
Petri nets by net duplication. Huber [3] published a paper
enhancing colored Petri nets with hierarchy and showed how
they can be transformed to standard Petri nets with flattening.
Portinale [24] describes an or-transition, which, contrary to the
standard transition, contains or-logic instead of and-logic. This
transition can be reduced to Petri nets with inhibitor arcs.

Theorem 1: An adaptive Petri net can be flattened to
a semantically equivalent Petri net with inhibitor arcs
Σ = (P, T, F,W,M0, I).

Algorithm 3 Helper method to duplicate a transition

1: procedure DUPLICATE((t, P, T, F,W,C, I))
2: T ← T ∪ {t2} with t2 6∈ (P ∪ T )
3: F ← F ∪ {(t2, p)|p ∈ P ∧ (t, p) ∈ F}
4: F ← F ∪ {(p, t2)|p ∈ P ∧ (p, t) ∈ F}
5: I ← I ∪ {(p, t2)|p ∈ P ∧ (p, t) ∈ I}
6: W ←W ∪ {(t2, p)|p ∈ P ∧ (t, p) ∈W}
7: W ←W ∪ {(p, t2)|p ∈ P ∧ (p, t) ∈W}
8: for ∀c ∈ C do
9: if t ∈ c.N then

10: c.N ← c.N ∪ {t2}
11: end if
12: end for
13: end procedure

The flattening of Theorem 1 is described in Algorithm 1.
We have to show that flattening will respect Defs. 17 and 18.

Lemma 1: ConnectByArc of Algorithm 2 with e = > will
disable t when the configuration point c is disabled.

Proof: We show the correctness of Lemma 1 for the if-
branch with c.w > 0 in lines 3-5 of Algorithm 2 and the
else-branch with c.w < 0 in lines 7-8. The if-branch will
disable t when M(c.p) < c.w, which is the same condition
when c is disabled according to Def. 14 (M(c.p) ≥ c.w). The
else-branch will disable t when M(c.p) ≥ |c.w|, which is
the same condition when c is disabled according to Def. 14
(M(c.p) < |c.w|) �.

Lemma 2: ConnectByArc of Algorithm 2 with e = ⊥ will
disable t when the configuration point c is enabled.

Proof: The correctness of Lemma 2 is analogous
to Lemma 1. It has to be shown for the if-branch with c.w < 0
in lines 3-5 of Algorithm 2 and the else-branch with c.w > 0
in lines 7-8. The if-branch will disable t when M(c.p) ≥ |c.w|,
which is the same condition when c is disabled according
to Def. 14 (M(c.p) < |c.w|). The else-branch will disable t
when M(c.p) < c.w, which is the same condition when c is
disabled according to Def. 14 (M(c.p) ≥ c.w) �.

Lemma 3: A disabled configuration point will disable the
firing of all internal transitions, which are in the postset of an
external place. According to Def. 18.

Proof: The set of places and transitions, which are referred
by Def. 18, are selected in lines 3-4 of Algorithm 1 (∀p ∈ c.E∩
P and ∀t ∈ p • ∩c.I). On Line 5, ConnectByArc will disable
the transition when c is disabled as shown with Lemma 1�.

Lemma 4: The algorithm will transform all transitions,
which have a configured postset or preset as defined in Def. 16
and utilized in Def. 18, i.e., t• 6= t • c ∨ •t 6= •ct.

Proof: Def. 17 only changes external transitions, which is
implemented in Line 8 of Algorithm 1. Only those transitions
have to be changed, which have t • c 6= t• or •ct 6= •t. This is
implemented in Line 9 with a logical or. The left part of the or
is t • ∩c.N 6= ∅, which is equivalent to the definition of t • c.
The right part of the or is •t ∩ c.E 6= ∅, which is equivalent
to the definition of •ct�.

Lemma 5: A flattened transition will only produce tokens
in t • c. According to Def. 17.

Lemma 6: A flattened transition will only consume tokens
from •ct. According to Def. 17.
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Proof: As shown in Lemma 4, the set of transitions is
selected correctly. We will now proof that the tokens are
produced and consumed according to Def. 17.

The code in Line 10 of Algorithm 1 duplicates the transition
according to Algorithm 3. This will take the original transition
t and create a new transition t2 with the same properties,
connected arcs and inhibitor arcs together with their weights.
Additionally, t2 is added to all N in which t was contained.

The flow relation of t2 is updated in Line 11, to remove
all c.E from its preset and all c.N from its postset, as defined
in Def. 16. On Line 12 the transition t without the altered flow
relation will fire only when the configuration point is enabled
(see Lemma 1). Transition t2 with the altered flow relation will
only fire when the configuration point is disabled as defined
on Line 13 (see Lemma 2)�.

Proof: By proving Lemmas 3, 5 and 6, we could show
that the semantics of adaptive Petri nets (Defs. 17 and 18) is
preserved in a Petri net with inhibitor arcs �.

This shows that we can flatten arbitrary adaptive Petri
nets into Petri nets with inhibitor arcs. The flattened net will
duplicate transitions and add new arcs and inhibitor arcs to the
net.

Lemma 7: When all c ∈ C fulfill the condition
(c.w > 0) ∧ (c.E ∩ T = ∅), an adaptive Petri net can be flat-
tened without adding inhibitor arcs.

Proof: According to the condition c.E∩T = ∅, the changes
to the Petri net happen only on Line 5 of Algorithm 1. With the
condition c.w > 0 only lines 4-5 of Algorithm 2 are executed,
adding an incoming and outgoing arc to a transition�.

The expressive power of adaptive Petri nets is generally
higher than that of Petri nets, since we flatten it to a Petri
net with inhibitor arcs. A higher expressive power will make
some properties unsolvable by model checkers. There are
two methods to obtain a Petri net without inhibitor arcs
from an adaptive Petri net. Avoiding inhibitor arcs at all, by
fulfilling Lemma 7 or designing a net with only bounded
configuration places. It was shown in [25] that an inhibitor arc
can be replaced by an equivalent structure, if the inhibiting
places are bounded. From Algorithm 1, we can see the
only inhibiting places generated are the configuration places.
Therefore, a Petri net designer can chose those places carefully
or add additional structures to make sure these places are
bounded.

B. Graphical Notation
To integrate configuration structures well within Petri nets,

we can model a Petri net and then define all configuration
points. This approach requires the net designer to manually
update the configuration points each time a node was added or
removed. A better approach is to create a graphical language,
which integrates in the existing graphical language of Petri
nets.

The graphical language must express each element of the
tuple c = (p, e,N). With N ⊆ (P ∪ T ), we can draw a
contour around all connected nodes of a configuration point
forming an area. Since it is not required to have all nodes in
N connected with each other, this would create multiple areas
belonging to one configuration point. For that the areas for
each configuration point should get a unique color or a unique

p1

t1 t2

p2 p3

t3 t4

pc1 pc2

(a) Adaptive Petri net
configured by C = {c1, c2}

with configuration points
c1 = (pc1 , 1, {p1, t1, p2, t3}),
c2 = (pc2 , 1, {p1, t2, p3, t4}).

p1

t1 t2

p2 p3

t3 t4

pc1 pc2

(b) Adaptive Petri net flattened
with Algorithm 1. According
to Lemma 7, no inhibitor arcs

were added.

Figure 3. Flattening of a simple adaptive Petri net

annotation. To declare the configuration point p together with
the weight e, we will draw a bold arc or inhibitor arc from p to
all areas of N . This arc can be annotated with a weight, which
will become e. When an inhibitor arc is used, the weight must
be multiplied with −1 to receive e.

An example for a simple Petri net with two configuration
points can be seen in Figure 3. On the left is the adaptive Petri
net with two different colored areas representing the nodes
N of the configuration points c1 and c2. The net will execute
alternatingly the net of c1 and c2, since the configuration points
pc1 and pc2 are alternating their tokens. When flattening this
net, the external nodes are c1.E = {t1} and c2.E = {t2}.

VI. USE CASES REVISITED

In this section, adaptive Petri nets are put to work. We will
show the implementation of two examples from Section IV. It
is shown how these examples can be represented in adaptive
Petri net syntax. In the end, we will show how the flattening
affects the size and model checking results.

A. Dynamic Control Structures
The converted Petri net of Figure 1a can be seen in Figure 4.

The reimplementation in Figure 4 required some changes.
Removing the initial token from p9 and p12 is necessary,
because adaptive Petri nets would evaluate this token. Instead of
the tokens, a place and transition (px, tx) were added before p9
and p12. Another change was required for enabling transition
t6. It should be enabled when either p8 or p82 contain a
token. To achieve this, the transitions ty1, ty2 and the place py
were added. We argue, these changes could be automated if
a formalization for the hierarchy concept of dynamic control
structures was found, which can be flattened to a net with
exactly this structure.

With adaptive Petri nets, the reconfiguration can be ex-
pressed inside the net. For the configuration variables CFG_A
and CFG_B, two transitions were added, which are annotated
according to control interpreted Petri net syntax. They can
only fire when the signals CFG_A or CFG_B are active. Both
transitions are connected to a single place Conf, which config-
ures both configuration points - enabling one and disabling the
other.

After modeling the original net with adaptive Petri nets, it is
still possible to generate the hardware description language from
it, as the annotations of control interpreted Petri nets are not
prohibited in our model or modified in its semantics. Besides
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p3

p1 t2 p6 t5

p7

py

t6 p11 t8

pxtx

p9 t9 p8 ty1

p12 t10 p92 t92 p82 ty2 ConfCFG_A CFG_B

Figure 4. Dynamic control structures of [15] in adaptive Petri net notation.
Configured by C = {c1, c2} with

c1 = (Conf , 1, {p9 , p8 , t9}, tx , ty1 , py) and
c2 = (Conf ,−1, {p12 , t10 , p92 , t92 , p82 , tx , ty2 , py})

enable

On Off

disable

wait
serve

ready

brew coffee

coffee full coffee refillable

refill milk

serve w/ milk
ready milk

add milk

milk full milk refillable

refill milk

Figure 5. Dynamic Feature Petri net in adaptive Petri net notation Configured
by C = {(On, 1, {serve w/ milk , ready milk , add milk ,

milk full , refill milk ,milk refillable,wait , ready})}.

this, through the net flattening of the configuration points c1 and
c2, also older FPGA without dynamic reconfiguration can be
targeted. Contrary to the original version, where the information
regarding the reconfiguration signals was informally inside the
description, the runtime semantics of this net is contained in
the model. This example shows that adaptive Petri nets can
be combined with other formal models of Petri nets (in this
case control interpreted nets) as they are not imposing any
restrictions.

B. Dynamic Features
We will show here how dynamic feature Petri nets [16]

from Section IV can be modeled with adaptive Petri nets.
The example from Section IV can be converted straight

forward to adaptive Petri nets. For each boolean variable inside
a feature annotation we create one configuration point with
this boolean variable as configuration place. All nodes, which
are annotated with this boolean variable, are then put into the
set N of this configuration point. In our example, the boolean
variable Milk is mapped to the configuration place On. Then
all nodes, which contain Milk in their annotated formula, are
added to N , as well as the nodes bofore and after.

As can be seen in Figure 5, the resulting net has the
same size and structure as the original. The annotations were
exchanged for the graphical representation of the configuration
point. Something that can not be expressed in feature nets are
configurations based on integers. For example, the places coffee
full and milk full basically are context information to decide
whether a net is enabled or disabled. With adaptive nets, such a
counting state can be utilized as configuration place to disable
the net when the amount of token reaches zero.

TABLE I. SIZES OF NETS SHOWN IN SECTION VI

Net Places Transitions Arcs

Original (Figure 4) 13 12 29
Flattened 13 13 32
Flattened (Inhibitor) 14 13 34

Original (Figure 5) 9 8 24
Flattened 9 8 26
Flattened (Inhibitor) 9 8 26

This example had shown that adaptive Petri nets are a
feasible alternative for dynamic feature oriented Petri nets.
This is especially helpful for cases where adaptivity is required,
but no feature orientated development used. Adaptive nets have
an advantage over feature Petri nets, which arbitrary places
can configure the net, while in dynamic feature oriented Petri
nets only formulas over boolean values are possible. Therefore,
a layer of indirection is removed. In a recent paper [17], the
authors showed how a feature net can be converted to a Petri
net, including the formulas. Using this technique, feature nets
can also be converted into an equal adaptive net.

C. Flattening and Analysis

One of the goals for adaptive Petri nets is to use existing
Petri net tools for model checking. This goal can be reached
by flattening all configuration points to Petri nets with inhibitor
arcs. Since not all tools support inhibitor arcs, we will also
flatten all inhibitor arcs with the algorithm of [25]. The only
condition is that the place where the inhibitor arc originates
must be bound. This condition holds true for all of our
examples.

We flattened the Petri nets of our examples and used
LoLa [2] as well as Tina [6] to analyze for common Petri
net properties.The tool for flattening and analysis can be found
online [26].

The results comparing the size can be seen in Table I. They
should give an idea how the size of the nets will increase
using flattening. As the size increase depends largely on the net
structure, amount of configuration points and which nodes are
marked as external, there is no general rule for the size increase.
A configuration point consisting only of external places will
not increase as much as a configuration point with external
transitions. This is due to the fact that external transitions need
to be duplicated. A bigger cost is the flattening of inhibitor
arcs, which is especially big if the bound is larger than 1 as
can be seen in the last row. Flattening an adaptive net will
not always yield an inhibitor as can be seen in the row for
Figure 5.

In Table II, the results of the model checking tools LoLa and
Tina are shown. A short description on the checked properties:
reversible (from every state of the net, we can reach the initial
marking), deadlock free (starting from M0, the net can always
fire), k-bounded (all places contain at most k tokens) and
live (all transitions and places can be reached from the initial
marking). The column markings corresponds to all unique
combinations of markings this net can reach. It is an indicator
how long model checking will take, as for some properties
(e.g., reversibility), all markings must be calculated.
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TABLE II. MODEL CHECKING RESULTS OF NETS SHOWN IN SECTION VI.
1 = TINA, 2 = LOLA

Net reversible12 deadlock12 live1 k-bounded1 markings12

Figure 4 yes no yes k=1 44
Figure 5 yes no yes k=1 20

D. Other semantics
There are various alternative approaches to define a se-

mantics for adaptive nets. We settled with a semantics, which
requires only few changes to the original net, so that a more
complex semantics might build on top of this.

Our semantics orients itself on most imperative program-
ming languages. The exchange of a method (e.g., by pointer in
C or by invoke dynamic in Java) will happen in a similar fashion.
Only new calls to this method are influenced, while current
running threads inside this method will still finish. When the
program tries to call the method another time it will call its
replacement.

Another disabling semantics we considered is to completely
stop all token movement within the configured part. This can be
implemented as an extension of Def. 18. When flattening this
modified version, all transitions inside N have to be connected
to the configuration place. A use case for this might be freezing
an algorithm, e.g., in a single threaded environment, which
switches to another thread.

Further extending this semantics, one might reset all tokens
of N to an initial state. A similar approach was presented
in [27] to implement exceptions in Petri nets.

VII. CONCLUSION

This paper presented a new Petri net extension for modeling
dynamic parts inside a Petri net. Contrary to existing proposals
this extension puts the least restrictions on the Petri net
model. We do neither restrict to a composition model nor
the specification language. It was shown that adaptive Petri
nets can be specified formally and graphically. The biggest
advantage of adaptive Petri nets is the possibility of flattening
an adaptive net to a Petri net with inhibitor arcs. By this,
existing Petri net tools can be reused for this model, e.g., for
code generation or model checking. Because of the specific
structure of adaptive nets, inhibitor arcs can be removed in
most cases. This was shown on two examples, which were
analyzed by low level Petri net tools.

In our ongoing work, adaptive Petri nets are used to convert
the control flow of a role-oriented programming language
(SCROLL [28]) to Petri nets, as well as generating control
structures for hardware / software codesign. Future work will
integrate adaptive Petri nets with Petri net composition models
and improve tool support.
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