
Conception of a Type-based Pub/Sub Mechanism with Hierarchical Channels for a

Dynamic Adaptive Component Model

Mohamad Ibrahim, Karina Rehfeldt, Andreas Rausch

Technische Universität Clausthal
38678 Clausthal-Zellerfeld, Germany

email: {mohamad.ibrahim, karina.rehfeldt, andreas.rausch}@tu-clausthal.de

Abstract—When attacking the problem of live information dis-
semination, then publish/subscribe technology plays a key role in
crafting an efficient solution. Especially in safety-critical domains
like automotive embedded systems a key factor for an efficient
publish/subscribe mechanisms is type-safety. We introduce a
solution for type-based and semantic publish/subscribe which
allows to create hierarchical channels tailored to the needs of
an embedded system with physical entities communicating. Our
concept builds up on our dynamic adaptive middleware called
Dynamic Adaptive System Infrastructure (DAiSI), which allows
component configuration at runtime. As a technical medium, we
use the industrial standard Extensible Lightweight Asynchronous
Protocol (Exlap). Regardless of the fact that our implementation
and example pertain to DAiSI and Exlap, our concept is intro-
duced in an integrated framework, which allows the reusability
of this model in other application domains.

Keywords–Component Model; Publish/Subscribe; Channels;
Dynamic Adaptive Systems; Embedded Industrial Systems.

I. INTRODUCTION

Many application domains require data dissemination, like
stock market data updates, online advertising, asynchronous
events in graphical user interface (GUI) and many others
[1]. Our focus lies on signals and live data dissemination in
embedded and industrial systems. This domain implies certain
requirements and restrictions the concept has to commit to.
These environments require strict distinctions between data
without the possibility of mistaking one for another (type
safety). Also, the performance is critical in industrial environ-
ments where compared to content-based, ontology or internet
wide pub/sub systems [2], [3] scalability and usability plays
a more crucial role due to resource limitations. Type-based
pub/sub also gives us several advantages that suit the embedded
industrial systems environment like encapsulation, application-
defined events, open content filters [4], and event semantics
which we exploit here to provide the physical diversity of the
same type or component.

This work is not intended to address the problem of
providing a uniform interface for heterogeneous information
sources, but to provide a light-weight system that satisfies
specific industrial needs and yet flexible enough for wide-range
of applications in the domain of Internet of Things. Examples
of such domains can be equipping a car, a house, a factory or
any entity of many components with a scheme that can ease
information discovery and access from inside and outside the
entity. Imagine for example a car, where you have a variety of
distance sensors observing the distances around the car. One

or more observe the front, some the back and so on. Our
goal was to find a concept that presents to the subscriber a
scheme that matches a physical entity and describes its com-
ponents functional relationships, so that the subscriber would
seamlessly subscribe to a group of components that share
a common function or purpose regardless of their number,
position or semantics. In other words, a subscriber should be
able to subscribe to all distance sensors at once. But also, the
subscriber should be able to subscribe to a specific sub-group
or individual, like all distance sensors in the front.

The intention here is to discuss a flavour of pub/sub that
is type-based, hierarchical and introduces a new dimension
that allows extensibility, so we can represent many physical
entities with the same type but different semantics. Figure 1
shows an example for a domain scheme. Engine represents the
type (IEngine) with the data speed. Hierarchical structured, we
have cylinders (ICyclinder) and a cooling system (ICooling).
Notice, the domain scheme only states the structure of the data
types for publishers, but does not state anything about instances
of these publishers. We may have front and rear engine in a
specific car domain. So if the domain scheme represents the
class in object-oriented programming, then the object counter-
part is the physical entity publishing. This arrangement creates
two trees, the first is the types hierarchical scheme of the entity
with its embedded components. The second represents the real
components which has two dimensions: functional dimension
which is depicted by the type, like IEnginge, and physical
dimension which is depicted by the physical semantic, like
front or rear engine.

In Section II we introduce some related works in the filed
of publish/subscribe. The discussion of our concept begins
with introducing the architectural model and system layers
in Section III. Section IV focus on the software architecture
of the proposed system with elements and APIs explained.
We conclude with a disucssion of the proposed solution in
Section V.

II. RELATED WORK

The main aim of this work is to introduce a pub/sub system
for specific problem yet it can be applied in any other situation,
that is why introducing it in an architecture or software stack
is important.

Klus et al. [5] - which is the main related and direct
previous work - introduce a component model and middle-
ware for dynamic adaptive system that can adapt to different
situations by supporting dynamic changing of pre-configured

53Copyright (c) IARIA, 2018. ISBN: 978-1-61208-610-1

ADAPTIVE 2018 : The Tenth International Conference on Adaptive and Self-Adaptive Systems and Applications

Figure 1. The ICar domain scheme

configurations. However, the proposed model, called DAiSI, is
not able to support neither publish/subscribe communication
paradigm nor asynchronous data exchanges. That deficiency
led to our work that proposes a concept for pub/sub.

Eugster et al. [6] which sets the standards for pub/sub sys-
tem solutions and gives the fundamentals and several aspects of
designing such a system. Liu and Bale give an overview about
general pub/sub system ins [7]. Another comprehensive survey
of pub/sub systems is given by Filho and Redmiles in [8]. They
define several dimensions of pub/sub system and add to them
the versatility dimension which means for the concept to be
able to adapt to different application requirements. However,
what Baldoni et al. [9] are suggesting, is a general concrete
system and introducing it in a specific architecture with giving
alternatives to different types of applications. We are going
to embody our system in this architectural model and make
several justified design decisions.

The second category of papers we looked into, are concrete
pub/sub systems that have been introduced to solve communi-
cation problems in several domains. The first is the semantic
Toronto pub/sub system [10], [11], that discusses security on
a domain-based infrastructure. Morales et al. [12] introduce
a solution for scientific workflow management systems to
monitor working processes using a pub/sub system. Bickson
et al. [13] introduce a system that utilizes the IP unicast and
multicast capabilities to save network resources. Demers et
al. [14] take the content-based systems expressiveness to an
advanced level depending on finite state automata to express
subscription patterns. The given examples show the variety of
pub/sub application domains and their different key concepts.

The third category are the type-based pub/sub systems
[4], [15], [16], which all reach a consensus that the most
prominent features of type-based pub/sub systems are: type-
safety, encapsulation, application-defined events, open content
filters and event semantics. Since our industrial use-case asks
for those features, we decided to make use of type-based
pub/sub in our concept.

III. SYSTEM OVERVIEW

There have been a lot of architectural models that specify
how to build pub/sub systems. One of the most famous is what

Baldoni et al. [9] suggested. Their architecture is structured
in the layers Network Protocol, Overlay Infrastructure, Event
Routing and Matching. Those layers represent the logical
functionality of the components of the pub/sub system. In the
following, we will show how our concept is settled in these
layers.

A. Network Protocol
The network protocols can vary depending on the envi-

ronment of the deployment and the application. This layer
connects the actual hardware infrastructure of the system [9].
Our realization uses TCP/IP conjugated with Exlap (Extensible
Lightweight Asynchronous Protocol) [17]. The upper layers of
the system should address all the shortcomings of this layer
like security, reliability and unregulated delays. Those subjects
are not in the scope of this paper.

Exlap on TCP/IP constitutes the lower layer in the im-
plementation. It is a protocol that follows the client-server
paradigm and provides basic interface for pub/sub communi-
cations between the client and the server identified by address,
port and application-level ID that uniquely identifies any Exlap
service. In addition, Exlap provides a discovery service that
scans the network for public services. With Exlap, we have an
interface for our system components to communicate over the
physical layer.

B. Overlay Infrastructure
This layer addresses the organization of the components or

nodes, the role of each node and the overall functionality on
which the routing of the events rely on [9]. Here comes the
role of DAiSI infrastructure, which we use to apply the broker
pattern, thus components can act as subscriber, publisher or
broker.

First, we take a quick overview on DAiSI before showing
how DAiSI fits into the big picture. DAiSI is a dynamic
adaptive system infrastructure that lets you create components
which can offer certain kinds of services and uses other
services in an environment where they dynamically activate
the configuration that is of the highest priority or that best
matches the existing required services.

For example, a cooling system in a car can be a component
that needs to consistently read the temperature from the engine
component, and it can provide the status of the cooling system
to the car monitor to show it to the driver. This component
can hold two configurations in order to dynamically adapt to
what is provided. The first configuration can be to provide the
status of the cooling system to the monitor, and the second
can be to stream the temperature in real time from the engine,
applying the logic and provide the status as a service to
other components including the monitor, Figure 2 shows the
component.

When there is an engine service available, Conf 2 will
be activated, otherwise Conf 1 is activated. Conf 1 needs no
service in order to be resolved and then provide the ICooling
service, but the Conf 2 needs IEngine service in order to be
resolved and then provide its ICooling service.

We employ this DAiSI component representation to provide
the required roles in the pub/sub system. Where the broker
is the service provided by the system that the publishers and
subscribers will connect to. And the required services will take

54Copyright (c) IARIA, 2018. ISBN: 978-1-61208-610-1

ADAPTIVE 2018 : The Tenth International Conference on Adaptive and Self-Adaptive Systems and Applications

Figure 2. DAiSI Component

the role of the publishers and subscribers of a certain event
type. We see in Figure 3 how the above Figure changed in the
new context.

Now Conf 2 will be activated not by the existence of
IEngine service but when there is a broker service and this
broker has IEngine being published to it. It is the same as
before, but the old relationship is being mediated by the broker.

Figure 3. Pub/Sub components

C. Event Routing
In this layer lays the concept of domains. We divide the

system space into domains, where every domain has a tree-
structured types represent the events available in this domain
(see Figure 1. This scheme represents the functional dimension
we talked about earlier, and the head of the domain represent
the type of the domain which can be conjugated with an ID
to depict the physical dimension of the domain and uniquely
distinguish the domains of the same type in the system space.

Now assigning an ID to the head of the domain - repre-
sented by broker(s) - makes the domain unique in the space
with similar domains of the same type.

We will distinguish between two kinds of communications
or event routing; inter-domain communication which is done
on DAiSI overlay basis and it comprises the traffic between
the broker and all the inner publishers and subscribers. The
second is the intra-domain communication which is done on a
star topology because Exlap can provide end-to-end commu-
nication between the brokers themselves. For a visualisation,
see Figure 4.

So, the routing is done inside the domain by one-hub
connection between the broker(s) and the clients (subscribers
and publishers). The publishing is exclusive to the inter-
domain components for security and encapsulation reasons,
but subscribing can be internal in the same domain or external

using the domain broker which in turn will subscribe to the
broker in other domains to get the needed external data.

Figure 4. inter- and intra-domain communication

D. Matching
The matching mechanism depends entirely on the types

defined in the tree, which describe the contents available in
the domain, secure the type safety and provide encapsulation
and hierarchical subscription. The type-based and hierarchical
pub/sub is not new, as we discussed, but there is no system
to our knowledge that addresses the problem of the multi-
dimensional representation of the types inside the system. This
model we are proposing gives a wide range of options to the
designer and implementer.

Figure 5. Physical scheme of the car

Specifying the physical dimension is optional and has sev-
eral degrees, while declaring the type is mandatory. Suppose
that we have the previous scheme for the car and the physical
scheme in Figure 5, where we have two engines. Each engine
has two cylinders and a cooling system. Here, we start with
the publishing options; we can assign the cylinder an ID (give
it a number) or not, then having two cylinders of the same ID
or cylinders without IDs will publish the same content. Now
assigning the parent is also optional, in case where no parent
is assigned the component will be replicated in all engine
components. On the other hand, specifying the parent will
give the component unique place in the physical tree. Now
subscribing is no less flexible, with the option of using the wild
card; e.g., when subscribing to any engine without specifying
IDs, it will return all components in the entity and all their
children in case of using the wild card. But subscribing to it
with ID, will return the corresponding component data only
and, in case of using wild card, with its children. Now, if we
are interested in just every cylinder, no matter from which
engine, then that is also a possibility.

55Copyright (c) IARIA, 2018. ISBN: 978-1-61208-610-1

ADAPTIVE 2018 : The Tenth International Conference on Adaptive and Self-Adaptive Systems and Applications

Figure 6. Core elements of the pub/sub system

We notice that once we specify the type there is no wrong
answer when it comes to picking the physical dimension,
including the use of wild card which implies the functional
unity of the embedded components. The architectural details
of this system will be discussed in the next section.

IV. SYSTEM DETAILS

In this section, we present the details of our concept’s
implementation and the core elements and concepts. For an
overview of the core elements and architecture of our system,
see Figure 6.

A. Architecture
Since this model is another layer added to DAiSI frame-

work, it extends its framework classes. Review [5] for a
complete overview of the used DAiSI frameworks elements.
The AbstractProvidedService represents the abstract class of
any provided service a component needs to offer, so is the
AbstractRequiredServiceReferenceSet which indicates the ser-
vices needed by the component. This pub/sub system also offer
the broker service on the basis and using the infrastructure of
DAiSI. The new element PubSubServer works with other nor-
mal services and provides the matching and brokering service
only for Subscribers and Publishers elements, in other words
it works with classic DAiSI. Also the system provides the
elements Subscribers and Publishers as extended functionality
from AbstractRequiredServiceReferenceSet in the same way as
the broker.

1) PubSubServer: PubSubServer is a core element class
of the framework, which provides the main functionality of
pub/sub to the whole system. One instance of PubSubServer

at least is required in every domain. PubSubServer depends
on the types scheme to function and coin the required types
and serve its clients. This service will provide two interfaces;
external one for other brokers from other domains, and in-
ternal one to handle the internal subscription and publishing
requests and real data streaming updates that are pushed to the
subscribers.

This class extends the AbstractProvidedService and gives
the developer the option to feed to this element the types’
hierarchical scheme and define parameters like the maximum
number of connected clients. The APIs provided by this
element is the internal inPublish() and inUnPublish(). the
parameters are timeout, which is the time before disconnecting,
address is the address of the publisher and the idlist is what
defines the physical dimension of the type which we want to
publish to. For example, if one wants to publish to the second
cylinder of the front engine then one starts with the lowest
in the types’ tree and makes his way up like that (second
front). Subscribing is done automatically when the component
in its environment activates a configuration which contains a
subscriber. How to initialize the subscribers and publishers will
be discussed in the next sections.

2) Publisher: The publisher in DAiSI is a normal Abstract-
ProvidedService but with added functionality which are of two
folds. The first is to provide a method that can be called to
send new data to the broker once it is available. The second
is to specify from the types’ scheme a type to publish to
with specifying the needed idlist. We can specify the idlist
or leave it null which can be done on two levels. First, the
idlist can be null on the target type itself which means that
this hardware is the only one and has no physical semantics

56Copyright (c) IARIA, 2018. ISBN: 978-1-61208-610-1

ADAPTIVE 2018 : The Tenth International Conference on Adaptive and Self-Adaptive Systems and Applications

needed for further distinction. The second level is to leave the
parents idlist unspecified which means that this component
is replicated and embedded at every component that has its
parent type no matter what id or physical semantics it holds.
Here comes the type-safety to play its role, because it is not
necessary to program the embedded systems with vague topic
names or types which could lead to untraceable bugs.

3) Subscriber: The Subscriber extends the AbstractProvid-
edService also with added functionality which are: first to
provide a method that will be called upon new data arrival,
and the second is to specify from the types’ scheme a type to
subscribe to with specifying the needed idlist, or leave it null
for general subscriptions as described before.

4) IPubSubDomain: IPubSubDomain represents the types
coined in the implementation. This embody the structure of the
types and their corresponding data object which will hold the
idlist that represents the physical semantics. Many subscribers
can refer to the same component with the same type and
physical semantics. Also, publishers can publish to the same
component, but this means they will form the same data stream
without physical or other kind of distinctions. In this way, we
can cover a great variety of use-cases in pub/sub systems.

B. Behavior

Figure 7. Broker-publisher interaction

The behavior of the system is based exactly on DAiSI
components’ behavior, where the publisher finds the broker,
requests to use its service and when granted the publishing
starts. For a visualisation of the data flow, refer to Figure 7.
If the component is a subscriber, it will find the broker in the
same way, asks for data, and, if granted, it will stream the
data using the underlying communication protocol (Exlap in
our implementation), see Figure 8. Both sequence diagrams
shown are taken from the inter-domain communications.

C. Key Concepts
A key concept in this system is that it offers both pub/sub

and the observer pattern communication architecture. Those

Figure 8. Broker-subscriber interaction

distinctions can vary depending on the domain, but they
include things like a one-to-many communication since the
observed source has a high level of specificity, so it represents
one entity and one only. Like subscribing to the first cylinder
of the front engine, this is observing specific information
presented by one authorized source. And because of this
specificity there is no anonymity between the observer and
the observee. On the contrary, we can deduce that when
there is anonymity or generality is needed then the streamed
data will be formed from several sources or maybe one and
the communication will be many-to-many or pub/sub pattern.
Figure 9 depicts the type channels and when they can be from
single or multiple sources.

Another important concept is the degree of freedom given
when using this framework altogether, in which we have the
option to leave all the physical dimensions empty and not give
the components any physical semantics (idlist). This is the case
where we end up with identical types’ scheme and real-world
components’ scheme.

Also, an important feature is that the broker should not
need to know in advance the components participating, it only
needs the types’ scheme, so the components can join, leave
or change the physical semantics or type at runtime without
affecting the functionality of the whole system.

V. CONCLUSION

Our work is presented in a specific software architecture
that allows for easy replacement of the layers or employing
them else-where.

This model is intended for domain-based embedded sys-
tems infrastructure that needs to communicate live data
asynchronously. We can mention cars, planes, smart houses,
surveillance systems and information gathering systems and
any autonomous system of which dynamicity depends on its
internal data communication including the dynamic adaptive
system infrastructure we originally aim to solve the asyn-
chronous communication for.

57Copyright (c) IARIA, 2018. ISBN: 978-1-61208-610-1

ADAPTIVE 2018 : The Tenth International Conference on Adaptive and Self-Adaptive Systems and Applications

Figure 9. Type Channels

Those domains we talked about like a car for example,
can have components of different computational capabilities,
so it is critical to move some of the burden away from those
components and equip them with an elegant and light-weight
solution for their connectivity. Here emerged the idea of type-
based pub/sub using a broker, not to mention that the broker
provides the decoupling and removes the direct dependencies
between the communicating parties in both space time and
synchronization [6].

The disadvantage that can be taken on this model is
the lack of clear policy that enhances the communication
through content filtering mechanisms which can lessen the
expressiveness of the model communications and increase the
useful data exchanged, which can be a major enhancement in
future works. Another great addition would be to extend the
physical semantics from including only one feature to maybe
group of features the component can be summoned according
to.

It is evident in today’s standards that the field of Internet
of Things (IoT) will have a great share in the researching and
industrial community. IoT where machine talks to a machine
and exchanges information which helps in taking decisions
that sometimes can be critical and need to be quick. Our work
focuses on providing the right, scalable, easy to implement and
flexible scheme for which these talks can depend on. And that
is the key that will open the door for autonomous and smarter
systems that exchange categorized data on both the functional
and semantical dimensions.

REFERENCES

[1] S. Tarkoma, Publish/Subscribe Systems: Design and Principles,
D. Hutchison, S. Fdida, and J. Sventek, Eds. John Wiley & Sons,
Ltd, 2012.

[2] L. Zervakis, C. Tryfonopoulos, A. Papadakis-pesaresi, M. Koubarakis,
and S. Skiadopoulos, “Full-text Support for Publish / Subscribe
Ontology Systems,” Proceedings of the 9th Extended Semantic Web
Conference (ESWC), Crete, Greece, (postertrack), 2012, pp. 1–2.
[Online]. Available: http://arxiv.org/abs/1307.2015

[3] J. Wang, B. Jin, and J. Li, “An Ontology-Based Publish / Subscribe
System *,” Ifip International Federation For Information Processing,
no. 2002, 2004, pp. 232–253.

[4] P. Eugster, “Type-based publish/subscribe,” ACM Trans-
actions on Programming Languages and Systems,
vol. 29, no. 1, 2007, pp. 6–es. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1180475.1180481

[5] H. Klus and A. Rausch, “DAiSI A Component Model and Decen-
tralized Configuration Mechanism for Dynamic Adaptive Systems,”
International Journal On Advances in Intelligent Systems, vol. 7, no. 3
and 4, 2014, pp. 27–36.

[6] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec,
“The many faces of publish/subscribe,” ACM Computing Surveys,
vol. 35, no. 2, 2003, pp. 114–131. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=857076.857078

[7] Y. Liu and B. Plale, “Survey of publish subscribe event systems,”
Indiana University Department of Computer Science, no. TR574, 2003,
pp. 1–19.

[8] R. S. S. Filho and D. F. Redmiles, “A Survey of Versatility for Publish
/ Subscribe Infrastructures,” Architecture, no. May, 2005, pp. 1–77.

[9] R. Baldoni, L. Querzoni, and A. Virgillito, “Distributed Event Routing
in Publish / Subscribe Communication Systems : a Survey,” Technical
Report, 2005, pp. 1–27.

[10] M. Petrovic, I. Burcea, and H.-A. Jacobsen, “S-ToPSS: Semantic

58Copyright (c) IARIA, 2018. ISBN: 978-1-61208-610-1

ADAPTIVE 2018 : The Tenth International Conference on Adaptive and Self-Adaptive Systems and Applications

Toronto Publish/Subscribe System,” Proceedings of the 29th
international conference on Very large data basesVolume 29,
2003, p. 4. [Online]. Available: http://arxiv.org/abs/cs/0311041

[11] L. I. Pesonen, D. M. Eyers, and J. Bacon, “Access control in decen-
tralised publish/subscribe systems,” Journal of Networks, vol. 2, no. 2,
2007, pp. 57–67.

[12] A. Morales, T. Robles, R. Alcarria, and E. Cedeño, “On the support
of scientific workflows over Pub/Sub brokers,” Sensors, vol. 13, no. 8,
2013, pp. 10 954–10 980.

[13] D. Bickson, E. N. Hoch, N. Naaman, and Y. Tock, “A Hybrid Multicast-
Unicast Infrastructure for Efficient Publish-Subscribe in Enterprise
Networks,” 2009. [Online]. Available: http://arxiv.org/abs/0901.2687

[14] A. Demers, J. Gehrke, M. Hong, and M. Riedewald, “Towards Expres-
sive Publish / Subcribe Systems,” Advances in Database Technology
- EDBT 2006, 10th International Conference on Extending Database
Technology, Munich, Germany, March 26-31, 2006, Proceedings, vol.
3896, 2006, pp. 1–18.

[15] J. Dayal, D. Bratcher, G. Eisenhauer, K. Schwan, M. Wolf, X. Zhang,
H. Abbasi, S. Klasky, and N. Podhorszki, “Flexpath: Type-based pub-
lish/subscribe system for large-scale science analytics,” Proceedings -
14th IEEE/ACM International Symposium on Cluster, Cloud, and Grid
Computing, CCGrid 2014, 2014, pp. 246–255.

[16] P. Eugster, R. Guerraoui, and J. Sventek, “Type-Based Publish /
Subscribe .”

[17] “EXLAP - Extensible Lightweight Asynchronous Pro-
tocol Specification,” Tech. Rep. [Online]. Avail-
able: https://de.scribd.com/document/158754515/EXLAP-Specification-
V1-3-Creative-Commons-BY-SA-3-0-Volkswagen-pdf

59Copyright (c) IARIA, 2018. ISBN: 978-1-61208-610-1

ADAPTIVE 2018 : The Tenth International Conference on Adaptive and Self-Adaptive Systems and Applications

