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Abstract—Communication delays are random in nature. A 
distributed real-time control system linked through a 
communication network is bound to be affected by the 
randomness of communication delay patterns. Statistical 
modelling techniques, like Auto-regressive Integrated 
Moving Average (ARIMA), may be used to model the 
network traffic. This paper provides a comprehensive 
coverage of network traffic modelling through the stochastic 
approach ARIMA with a case study of National Instruments 
(NI) DataSocket Transport Protocol (DSTP) based on high 
bandwidth Ethernet. In real-time control systems the 
controller optimization requires accurate temporal 
specification of sensitive controller tasks. Logical 
computation languages such as Time Definition Language 
(TDL) have successfully eliminated the temporal 
inaccuracies in designing control software. The paper 
provides an analytical and programmatic view on the impact 
and compensation of unpredictable network delays through 
discrete-time control algorithms, that are designed in Time 
Definition Language (TDL). The results validate that the  
discrete implementations are able to compensate for 
the delay, thus guaranteeing the stability of the control 
loop in the presence of unpredictable delays.   
 
Keywords-Real-Time Control Systems; Time Definition 
Language (TDL); Auto-Regressive Integrated Moving Average 
(ARIMA; Network Delay, Smith Predictor; Buffered Time-
stamped Dahlin Algorithm 
 

I. INTRODUCTION 

 A complex industrial control system is designed in a 
hierarchy as: 

1) Supervisory and Control Software at the top 
layer. 

2) Control equipment and PLC’s linked together to 
form a middle layer. 

3) Control devices like sensors and actuators at the 
bottom layer. 

The system is finally connected via a communication 
network. Thus a network control system requires at least   
one link to be carried by a real-time network [11][12]. 
The most preferred network protocols for control systems 
are Ethernet-based MODBUS, PROFIBUS, or Controller 
Area Network (CAN). The time delays are not always 
local to the controller tasks. They can occur as 
transmission delays from a sensors to a controller and 
from controller to an actuator [9][10] because control 
equipment is connected via network.  

 The aim of this paper is to model network induced 
delays and analyse their impact on control operations 
through a posterior analysis. The paper provides 
comprehensive coverage of the statistical modelling 
technique ARIMA, used to model network traffic with a 
case study exploring National Instruments’ (NI) 
DataSocket Transport Protocol (DSTP)   based on 
Ethernet. The last section analyses the impact of delays on 
control loop operation and compares several delay 
compensation algorithms for control system design. A 
second order interacting system for liquid level within 
two tanks is considered. The control data is managed 
through National Instruments’ DataSocket Server 
Manager. The delay modelling is consequently done for 
Gigabit Ethernet traffic based on DataSocket Transport 
Protocol (DSTP). 

The paper is organized in four sections. The 
following two sections explain the role of delays and their 
modelling for Industrial Control Systems. Section four 
presents an overview of the statistical delay modelling 
technique ARIMA for network traffic. The case study for 
Ethernet traffic is analysed . The last section provides a 
brief overview of the Smith Predictor and Dahlin 
technique, and their implementation in Time Definition 
Language (TDL) for delay compensation of control loop 
operation. The aim is to analyse a typical control problem 
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for real-time requirements, precise modelling and 
compensation of network delays to optimize the 
performance of the system. 

II. INDUSTRIAL CONTROL SYSTEM ARCHITECTURE 

Communication delays are random in nature, hence are 
difficult to model. Moreover they are affected by the type 
of network protocols in use. In an industrial control 
system, the role of the network becomes more crucial if 
the plant operates in real-time mode. The network layer 
forms the central data highway with which display and 
control equipment are exchanged. A challenging problem 
in control of an industrial plant is minimization of delay 
within a control loop. The time delay in executing the 
control algorithm originates from: 

1) Control operation; 
2) Sampling time chosen if a discrete-time 

controller is used; 
3) Transmission delays due to network 

characteristics like network protocol in use, the 
network topology, or the type of physical 
network hardware used. 

Real-time programming methodologies like RT-Java 
or Timing Definition Language (TDL) have evolved in 
the last decade to address the increasing complexity of 
control systems and scalability of equipment in the 
industrial automation domain. As explained by C.M. 
Kirsch, and R. Sengupta in their work in [1], the 
programming abstractions for real-time systems can be 
classified according to the processor execution time cycle 
for a given control task. The developments achieved by 
the computing community through RT-Languages like 
TDL conform to compensation of one-unit delay in 
control algorithm execution. TDL achieves timing 
predictability through the time-triggered architecture [2]. 
It executes the real-time code by separating the platform 
dependant issues like schedulability from platform 
independent issues like generating code from a given 
SIMULINK model of the system. TDL integrates well 
with simulation and modelling environments such as 
SIMULINK [3]. TDL guarantees control stability once 
the computational delays within the control loop operation 
are known. Transmission delays, on the other hand also 
play a vital role in control system’s stability. The 
transmission delays are tough to model and estimate 
because of the stochastic nature of network traffic. Many 
statistical models are available these days to model the 
behaviour of network traffic and hence estimate the 

average network delay. The focus in this paper is on 
ARIMA. 

III. MATHEMATICAL MODELLING FOR TIME-
DELAYED CONTROL SYSTEM 

 The Laplace transform models delays in transfer 
function using the exponential term e-αs, where α is the 
associated  time delay that can either represent an input 
delay or output delay [1]. Thus mathematically the 
transfer function can be defined as: 
 

g(s) = �
����������	 u(s) e-αs                   (1) 

 
where g*(s) is the non-delayed transfer function for the 
system. Here α signifies the delay that must be taken into 
account while designing continuous or discrete 
controllers. The stability of an overall system depends on 
all elements that make up the control system architecture, 
including the communication network. So long as real-
time operating system and software development methods 
are employed, the computational delays can be assumed 
to be fixed.  A well-designed discrete model of the system 
makes critical assumptions about the controller gain and 
sampling time. The critical assumptions for a closed loop 
system are given with characteristic equation specified as 
[4]: 
 
1 + gp(z)*gc(z) = 0                   (2) 
 
where gp(z) is the z-transformation of a continuous plant 
transfer function and gc(z) is the discrete controller 
transfer function. For a discrete-time closed loop system 
to be stable, all the roots of equation 1, must lie within the 
unit circle [4].  

 One important factor that is still not taken into 
consideration is the effect of random delays that come 
from the communication medium in the control loop 
operation. The stability margins specified above lay stress 
on retuning the controller parameters for a discrete-time 
system to take into consideration the impact of the A/D 
and D/A converters introduced within the control loop. In 
order to analyse the impact of delays that originate from a 
communication medium, the first step is to 
mathematically model the control system for a 
communication delay.  
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Figure 1. Delay effect for a particular time instant 

 
The delayed response is characterized in two cases for 

a discretized system for any time instant k and for ∆t 
sampling period. The first case is when the delay 
magnitude is smaller than the sampling period. The 
control loop operation is delayed, but tolerable by the 
system. As is evident from Fig. 1, the total delay is 
specified as  
 
αk= αpc+αca                                (3) 

 

where αpc is the network delay from Plant to Controller; 
αca is the network delay from the Controller to an 
Actuator. The maximum delay tolerable by the system, 
guaranteeing stability, is specified as [5], 
 
�

��(xp(k+1)∆t)=φpxp[k∆t]+φpαkup[k∆t]+γp[αk]up[(k-1)∆t]   

                                                                          (4) 

where φp =  � ��������
�  ds     and γp = � �����

����� �� 

 
The maximum tolerable delay can be estimated from 

the relative magnitudes of φp and γp[5].  
The second case arises when the delay magnitude 

becomes larger than the sampling period. The main 
consequence for such a case is loss of information or 

jitter. It is very important to compensate for the delay by 
controller optimization to stabilize the control loop 
behaviour. One novel way to handle the communication 
delay is to estimate the delay magnitude by appropriate 
stochastic models like ARIMA and then generate 
forecasts that can be used for controller modelling and 
delay compensation. The delay magnitude can be 
compensated by retuning the discrete models with 
appropriate predictive control techniques such as the 
Smith Predictor.  

IV. STATISTICAL MODELLING OF NETWORK DELAY 
FOR CONTROL NETWORKS 

Communication network traffic is stochastic in nature, 
since it arises from multiple independent sources, and is 
therefore often modelled using statistical approaches. The 
statistical approaches, specifically time-series models help 
to generate forecasts that can be used effectively. ARIMA 
(Autoregressive Integrated Moving Average) [6] is a time 
series model to capture the behaviour of the network 
traffic. An ARIMA (p, d, q) is a process where p is the 
autoregressive order, q is the moving average order and d 
is the differencing order [6]. Since network traffic always 
predicts non-stationary behaviour, the most effective 
modelling technique must consider both autoregressive 
and moving average terms. The importance of an ARMA 
processes lies in the fact that a stationary time series may 
often be adequately modelled by an ARMA model 
involving fewer parameters than a pure AR or MA 
processes alone [6]. The general ARIMA (p, d, q) process 
is of the form [6] 
 
Wt = α1Wt-1+….+αpWt-p+Zt+…..+βqWt-q                      (5)    
 or such that Φ(B)Wt = θ(B)Zt  
 
where B is the backward shift operator specified as BXt = 
Xt-1,  Wt is (1-B)dXt, φ and θ are polynomials of order p 
and q respectively, and Xt  represents the original non-
stationary time series with mean zero and variance σ2. 

The non-stationary series is often dealt with using the 
Box-Jenkins [6] approach. It assumes the parameter d is 
used for differencing the series to induce stationary 
behaviour. This approach deals with the periodic 
component of the time series. Box-Jenkins generalized the 
ARIMA(p,d,q) model to deal with seasonality, and 
defined the general multiplicative seasonal ARIMA 
model as [6][7] 
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Φp(B)ФP(Bs)Wt = θqѲQ(Bs)Zt                                      (6) 
 
where ФP and ѲQ are autoregressive and moving average 
polynomials of the order P and Q , Bs is specified as BsXt 
= Xt-s and s is the seasonal span..  The model in equation 
(6) is a multiplicative seasonal ARIMA model of the 
order (p,d,q)*(P,D,Q)s [6][7]. 

When fitting a seasonal model, the preliminary 
observation regarding the non-stationary series is to 
identify the difference (d) and seasonal difference (D) 
order. Then the values of p, q, P, and Q are determined 
from the autocorrelation and partial autocorrelation 
functions of the differenced series. The differencing 
parameters yield the Wt series which can be modelled 
using equation (6), to finally produce a fit of a SARIMA 
(Seasonal ARIMA) model.  The fitted model is finally 
checked for its preciseness i.e. how adequately it 
represents the original time series data. This step is called 
the residual analysis. The residuals are often obtained as a 
difference of actual and fitted values. 

 For a good model, the residuals are random and have 
small variance. The most common test used for residual 
analysis is the Portmanteau lack-of-fit test [6] that uses 
the chi-square statistic. The test statistic is given as [1] 
 
Q = � �  !"�

��
�#	                                                         (7) 

 
    where N is the number of terms in the differenced 
series, and K lies in the range 15 to 30. 

Q is the chi square statistic with (K-p-q) degrees of 
freedom. One useful application of this model is for 
making predictions based on the past data values. The 
time series that shows trend and seasonality in its 
behaviour is often forecasted using the model equation 
[6].    

Consequently the ARIMA algorithm for traffic 
prediction can be summarized by the following steps: 

1) Model Specification which involves 
identification of trend and seasonality within the 
original series (Random Walk Model), finally 
identifying the differencing order for the trend 
and seasonal components. 

2) Model Building, which involves identifying the 
Autoregressive (p,P), and Moving Average (q,Q) 
orders for general and seasonal patterns from the 
autocorrelation and partial autocorrelation 
patterns of Original Series. 

3) Model Validation, which involves a validation 
check for residuals obtained after fitting the 
model with appropriate orders for AR and MA 
terms. 

4) Forecasting, this involves generating the 
forecasts if the model is validated and the 
residuals are random and have small variance. 

Experiments were performed to capture real-traffic 
traces to enable prediction of Ethernet traffic carried using 
the DataSocket Transport Protocol (DSTP) as application 
layer protocol. DSTP is the TCP based protocol that 
manages the National Instruments’ (NI) DataSocket 
Server Manager. The DataSocket Server Manager is a 
data repository for control data. The delays induced by the 
network were modelled and forecasted using SARIMA 
model with (p,d,q)*(P,D,Q) order. DSTP uses a publish-
subscribe pattern for data exchange. A system 
participating in a DSTP data exchange usually consists of 
three components – a publisher, the DataSocket Server 
and one or more subscribers [8]. A publisher acquires data 
from a data acquisition device and sends it to the server 
[8]. The server may be located on the same machine or, 
remotely on a local network. Subscribers can subscribe to 
receive the data from the server [8]. Complex applications 
may have decentralized setup for subscribers and 
publishers [8]. The interesting factor that determines the 
data transfer from publisher to subscriber is that publisher 
broadcasts the entire active control data to a subscriber 
thus creating lot of network overhead. This can lead to 
poor scalability of the network as more and more 
subscribers become involved.  

ARIMA modelling was undertaken for one and three 
subscribers. The response time behaviour induces a 
seasonal impact in the inter-arrival time gaps. The 
seasonal component is more obvious in the case of a 
single subscriber and dies out as more subscribers come 
into existence. Since the entire control data is broadcasted 
to the subscribers, the transmission involves fifteen data 
packets of equal size. The fifteen data packets are 
transferred within the time range of 10 milliseconds to 
150 milliseconds, thus causing seasonal impact on the 
autocorrelation patterns. The traffic patterns for a period 
of ten seconds are recorded and autocorrelation graphs for 
Random Walk models are shown in Fig. 2. As is evident 
from Fig. 2, the seasonality of the time gaps is obvious in 
case of one subscriber but is less clearly defined as the 
number of subscribers increases. The seasonal component 
is identified at the multiples of time-lag 16, as there are 
fifteen response data packets transferred to the subscriber 
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for every request. The time gap for the first response 
packet is high and decreases for subsequent response 
packets, thus causing the seasonal impact. 

The autocorrelation patterns and partial 
autocorrelation patterns specify the order required by the 
SARIMA model. The best fits for both traffic patterns 
were obtained using Minitab 15 for orders as specified in 
Table 1. The residual autocorrelations for both models are 
shown in Fig. 3. As evident from the Fig. 3, the residuals 
are random and close to zero. Consequently the fitted 
models were deemed adequate. Forecasts obtained 
through ARIMA are based on specific assumptions that 
are assumed to be fixed for a particular set of 
experimental data.  

 
TABLE 1. FITTED MODELS FOR DSTP TRAFFIC PATTERNS 

 
 
 

V. DELAY COMPENSATION ALGORITHMS: A-
POSTERIOR ANALYSIS 

The ARIMA technique helps in modelling and 
forecasting network delays. The forecasted delay pattern 
can be used by discrete control algorithms for delay 
compensation. The control algorithm for the second order 
water tanks problem was optimized to compensate for 
delays induced by the network. The control data was 
managed by National Instruments’ DataSocket Server 
Manager. The delay forecasts generated through ARIMA 
were utilised to predict communication delays within the 
control loop. An analytical view of control loop operation 
was generated in the presence of these forecasted delays 
using MATLAB/SIMULINK. The control algorithms 
were implemented using the Time Definition Language 
(TDL) to guarantee the computation time stability. 

The two most common techniques for delay 
compensation in discrete control design are [4]: 

1) The Smith Predictor 
2) The Buffered Dahlin Algorithm 

 In a closed loop system, the conventional control 
design strategies allow delay compensation through 
reduction of controller gain [4]. Consequently the control 
systems will display sluggish response when compared to 
a non-delayed system. A better approach is to deal with 
the delay explicitly and introduce compensation 
techniques to the allow system to behave like a non-
delayed system [4]. The Smith Predictor is a delay 
compensation algorithm. It assumes that the system is 
non-delayed and compensates the delay value by 
introducing a minor loop modelling the non-delayed 
control loop operation.  The Smith Predictor introduces a 
minor loop that deals with the model process for delay 
compensation. Thus the error signal after compensation of 
delay α is  

 
ec = yc - y*(s)                                  (8) 
 
where y*(s) is process output for the non-delayed control 
loop operation. The Smith predictor algorithm allows the 
controller gains for undelayed process to be used without 
instability arising within the control loop. The closed loop 
transfer function for the delayed process using a Smith 
predictor is defined as  

    
Y =  $ %&%'

	�%&%'
)����yc                                         (9)  

 

Subscribers Model 
 
 
1 
Subscriber 

 
 
SARIMA(0,0,1)*(1,1,0)16 

 
Type           Coef    SE Coef 
SAR  16     -0.6317     0.0403 
MA   1       0.3603     0.0487 
Constant  0.0001944  0.0007260 
 
Differencing: 0 regular, 1 seasonal 
of order 16 
Number of observations:  Original 
series 443, after differencing 427 
 
 

 
 
 
 
3 
Subscribers 

 

 
SARIMA(5,0,0)*(0,1,1)56 

 

Type             Coef     SE Coef       
AR   1        0.0147      0.0327    
AR   2       -0.0394      0.0327   
AR   3       -0.0578      0.0327   
AR   4       -0.0379      0.0327   
AR   5       -0.0556      0.0328   
SMA  56       0.9484      0.0139   
Constant  0.00014991  0.00004716  
70.90  0.000 
Differencing: 0 regular, 1 seasonal 
of order 56 
Number of observations:  Original 
series 994, after differencing 938 
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The SIMULINK model for a delayed process using 
Smith Predictor designed in TDL is shown in Figure 4. 

 
(Kc=0.0833, (i=0.0433, ∆tcritical=0.009) 

 
Figure 4. Smith Predictor with TDL Controller Optimization 

 
Now the non-delayed process is delayed by the certain 

amount of time, α, which is assumed to be derived from 
the ARIMA generated forecasts. The delay value is 
assumed to have average, best and the worst case values 
of 60ms, 10ms, and 255ms respectively.  
 

 
a) Non-Delayed Continuous System 

 
b) Delay Magnitude is 255ms 

 
Figure 5. Control Loop Stability in the Presence of Delay 

 
As is evident from Fig. 5, the communication delays, 

if greater than the sampling period, can destabilize the 
system. The discretized system may be compensated for 
delay using a Smith Predictor. The Smith Predictor is able 
to compensate the delay and induce stability. But it has 

certain disadvantages. It assumes the magnitude of the 
delay is constant, which is not with network 
communication delays. Network delays are more random 
and non-stationary over time. 

The application of this algorithm must be restricted to 
accommodate the worst-case delay value which has a rare 
probability of occurrence. This conventional design 
strategy does not provide the controller type and 
parameters. Thus it can act as a major loophole for 
stability in the discrete-time domain. A realistic system 
with time delay is inherently unable to respond 
instantaneously to a control event. The high controller 
gains fail to provide a realistic image of the process. The 
remedy to this problem is to design the controller with 
parameters found using the direct synthesis control 
strategy with a reference trajectory that can provide 
desired control loop behaviour. Fig. 6 shows the delayed 
system behaviour using a Smith Predictor with Direct 
Synthesis Controller Parameters. The PI Controller used 
for the α delay in the system is realizable as 
 

)* + 
���	

� , 	
�-��	�./012    [4]   (10) 

 
The choice of (3 allows the system to have a more 

realistic view of the process behaviour in the presence of 
time delay.  

Discrete Model (Kc=0.25 (i=0.0822 (r=1) 

 
 

Figure 6. Smith Predictor with Direct Synthesis Control 

 
Another useful strategy for controlling time-delayed 

systems is the Dahlin Algorithm. It is a digital control 
design technique that assumes the controller realization 
including the ZOH (zero order hold) and explicit time 

delay is [4]: 
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gc(z) = 
	

%$!4 5 $	�./6-47/8/9

	�./6-�$	�./6-4!/8/9:           (11) 

 
where ;3 is the assumed reference trajectory for the 
desired control loop behaviour. G(z) is the delayed plant 
model with ∆t sampling period such that the time delay  
α =  m ∆t.  The Dahlin algorithm is a digital control 
algorithm having two tuning parameters: 

1) M, chosen such that the controller is realizable in 
the presence of delay 

2) ;3 determines the speed of the closed loop 
response. 

The forecasted delay pattern follows an ARIMA based 
model. The model equation can be used to predict the 
delay for control loop. The scheme uses buffered 
approach to save the preceding timestamps for the next 
prediction.  The Dahlin strategy is simulated with 
buffered timestamps for indicating the magnitude of 
delays using TDL/SIMULINK with sampling time ∆t 
ranging from 0.004 to 0.09 minutes. The plant model is 
assumed to have the delay specified as ranging from α. = 
100 to 255 milliseconds.  

 
Figure 7. TDL/Simulink Model for Delay Compensation 

 
Listing 1. Buffered Dahlin Algorithm 

Repeat 
// For any time instant k  
 (k-1 = Buffer(k), (k-2 = Buffer(k-1) // Get the timestamp for 
the //preceding delay 
(k = ARIMA fun((k-1, (k-2) // Next Prediction 
Read h(k)    // Current Process Variable 
e (k) = sp – h(k) 
//Random delay block    

// Introduce the Computational Delay 
//gc(e(k) optimized for delay (k with m units 
d = ∆t/ (k 
compute f(k) = gc(e(k), (k , d)     
//Manipulated Variable 
write f(k)  
compute h(k+1) = Gp(f(k))    
// New Error Signal 
Until (Set point) 
 

The TDL/SIMULINK model behaviour is shown in 
Fig. 7 and the response is analysed in Fig. 8. 
 

 
Kc = 53.933, I = 18.6125 for Delays less than 100ms 
Kc = 5.7421, I = 1.8869 for 100< Delays < 200ms 
Kc = 2.2734, I = 0.9243 for 200<Delays<300 

 
Figure 8. Dahlin Strategy for Variable Network Delay Compensation 

 
As evident from the discrete implementations of the 

Smith Predictor and Dahlin Algorithm from Fig. 7 and 
Fig. 8, stability is achieved but the response time is high 
in comparison to the continuous system response time. 
These algorithms are implemented in TDL to guarantee 
computation time stability, thus providing the precise 
analytical impact of stochastic network delays on control 
loop stability.  

VI.  CONCLUSION 

The response times and TDL computation times are 
summarized in Table 2. These comparative estimates of 
response times are for the second order system with time 
constant of 3 minutes. In the first case, the network delays 
are modelled using the stochastic approach, ARIMA. The 
forecasts are then utilized to view their impact on control 
loop operation. The discrete implementation of control 
algorithm uses TDL to guarantee the computation time 
stability. RT-Languages such as TDL can help in 
analysing and guaranteeing the computational stability. 
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Finally, the unpredictability of communication delays can 
be dealt with using appropriate discrete algorithm 
implementations.  As is evident from the Table 2, the 
discrete implementations are able to compensate for the 
delay, thus guaranteeing the stability of the control loop in 
the presence of unpredictable delays.  However, in 
practice, the response time maybe high. Secondly, in both 
strategies the delays are treated as a constant and varied 
through average, best and worst case values.  

 
TABLE 2. RESPONSE TIME ESTIMATES IN TDL/SIMULINK 
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           1 Subscriber            3 Subscribers 

Figure 2. Autocorrelation for Original Series 

 

 

     1 Subscriber           3 Subscribers 
               Figure 3. Residual Autocorrelations for Fitted Models 

 

Non-Delayed Continuous 
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