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Abstract— Knapsack problem is an integer programming that 
is generally called "Multidimentional Knapsack". Knapsack 
problem is known as a NP-hard problem. This paper is an 
introduction to a new idea for solving one-dimentional 
knapsack that with defining the "Weight Value Index", 
"Sorting" and "Smart local search" forms a new algorithm. 
This algorithm is mathematically formulated and has run on 5 
sample problems of one-dimentional knapsack, that in most of 
them the result is close to the optimum. The results show that 
this method by comparison with the others recently published 
in this field, despite of its simplicity, has enough required 
functionality in order to get the result on the tested items. 

Keywords-Artificial intelligence; NP-hard; Knapsack 
problem; Combinational optimization. 

I.  INTRODUCTION  
Knapsack problem is an integer programming that is in 

general called "Multidimentional Knapsack". Knapsack 
problem is known as a NP-hard problem [1]. One-
dimentional knapsack problem with "constant weight 
group" is a special form of multidimensional knapsack. For 
one-dimensional knapsack in comparison with 
multidimensional knapsack, more precise evolutionary 
algorithms have been studied. Most of the researches is 
regarding to one-dimentional knapsack problem. For further 
information about knapsack problem and different precise 
algorithms, please refer to [2]-[4]. 

The reason for naming this problem to "knapsack" is 
because of its similarity to making decision for a mountain 
climber to pack his knapsack. The person should decide the 
optimum combination in choosing his accessories for 
knapsack in a way that according to the knapsack capacity, 
he should select items with more value (profit). This kind of 
problems is of combinational optimization problems family. 

For several past years, precise methods such as Branch 
and Bound have used for solving knapsack problem [22]. In 
recent years, and with the development of smart 
optimization and evolutionary algorithms, solving more 
difficult problems is now possible, such that in addition to 
reducing the time for achieving results close to the 

optimum, it has increased the accuracy in solving knapsack 
problem. Therefore evolutionary algorithms and more 
definitely decoder-based evolutionary algorithms are widely 
used in solving knapsack problem [5], [6]. Their advantage 
over the more traditional direct representation of the 
problem is their ability to always generate and therefore 
carry out evolution over feasible candidate solutions, and 
thus focus the search on a smaller more constrained search 
space.   

Many researchers have struggled in developing 
evolutionary methods for knapsack problems. From them, 
we can name some modern evolution methods like tabu 
search [7], [8], genetic algorithm [9], [10] and simulated 
annealing [11], [12] that in most cases show good results. In 
recent years, genetic algorithms show that it is the best 
method for solving large knapsack problems and in general 
0-1 integer programming problems [13], [14]. 

The knapsack repeatedly is used in different processing 
models like processor allocation in distributed systems [15], 
manufacturing in-sourcing [16], asset-backed securitization 
[17], combinatorial auctions [18], computer systems design 
[19], resource-allocation [20], set packing [21], cargo 
loading [22], project selection [23], cutting stock [24] and 
capital budgeting (where project has profit and consume 
units of resource. The goal is to determine a subset of the 
projects such that the total profit is maximized and all 
resource constraints are satisfied) [25]. 

Another type of knapsack is Quadratic Knapsack 
Problem (QKP) [26]. In the Quadratic Knapsack Problem, 
an object’s value density is the sum of all the values 
associated with it divided by its weight. It can be used in 
finance [27], VLSI design [28] and location problems [29]. 

In the second part of this paper, we will describe the 
knapsack problem; in third part, the proposed algorithm will 
be introduced. In the forth part, algorithm simulation and 
comparison of results have been presented and we will 
conclude in the final part. 

 
II. PROBLEM DESCRIPTION 

Suppose that some items are available and each item has 
a weight of 'wi' and a value of 'vi'. In knapsack problem, 
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weight restriction is defined in a way that the total weight of 
selected items should be less than knapsack capacity. The 
goal in this problem is finding a subset of items in a way 
that they have the most total value and also satisfy the 
knapsack capacity constraint. 

For mathematically defining the mentioned concepts, we 
have: 
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In formula (1), 'n', 'vi' and 'wi' are number of items, value 
of item 'i' and weight of item 'i', respectively. In the above 
formula, 'b' is the knapsack capacity and xi is the algorithm 
input array. If the element is chosen, the xi is 1 and otherwise 
is 0. 

As formula (1) shows, the goal is to maximize the goal 
function with the given conditions. In the next section, the 
proposed algorithm for solving the knapsack problem will be 
introduced.  

III. PROPOSED ALGORITHM 
 The presented method for solving the knapsack problem 

is based on statistical operations on data and 
combining it with artificial intelligence methods. In this 
method we have a set of weight and value data groups that 
are related in pairs and each of data shows the weight and 
the value of an item. The goal of this method in first stage is 
introducing each item with a new coefficient that would be a 
combination of its value and weight. With the help of this 
new index, the chance of selecting an item will be defined. 
The proposed algorithm with enough experience and 
iteration in changing the method of selecting based on the 
weight-value index and in a converged evolutionary process 
will provide results close to optimum. The stage of process 
on data for achieving a real close result to optimum will be 
as follows: 

 According to the point that the goal of knapsack 
problem is to take the sum of values to the maximum 
and satisfy the weight constrain of knapsack, for 
converting 2 item dependents to one dependent, we will 
use the general form of (Value p1 / Weight p2) that the p1 
and p2 are the power of values and weights, 
respectively. The best value of them will be different 
depending on the number of items and their dispersion 
that with scanning the power of values and weights in 
the above combinational index and calculating the sum 
of selected item values until satisfaction of the weight 
constrain, we can have the best selection for the powers 
of mentioned formula in the beginning of the algorithm. 
This value would be the "weight-value index" of items. 

 Next step of solving the problem is sorting items based 
on their weight-value index and generating initial result 
that would be close to optimum. In this selection, the 
items with higher weight-value prioritized for selection 
and selection of items will continue until the knapsack 
capacity is full. 

 Because of the used method in first stage for generating 
weight-value index is not precise. The probability of 

error in the second stage would be existent as well. It is 
important to know that the probability of the error in 
selecting items based on proposed priority that is 
weight-value index would increase as we get closer to 
final stages. The probability of such errors is in the 
moment that the knapsack is getting filled with lower 
weight-value index of items. Therefore in this stage that 
is the main part of algorithm, we will replace the items 
with similar weight-value index in the final stages of 
selecting items. In this stage we will gradually increase 
the boundary of searching. In this part of algorithm we 
will study different results to achieve the best one. 

 In this intelligence searching algorithm, in addition to 
previous stages, we achieved the better results by the helping 
of some sort of modifications and corrections. For instance 
we can find the minimum of the selected items by dividing 
the knapsack capacity to the item with the highest weight. 
We can get to the scope of weight-value index results or in 
fact, items that their probability of being among the optimum 
answer is very high. 

The main foundation of this method has been introduced 
above in 3 steps and the algorithm pseudocode would be as 
follows. 

IV. ALGORITHM FORMULA 
s1- Determining optimum powers for achieving 

optimum weight-value index by scanning from 0 to 2 with 
the step of 0.1 and selecting the best powers for the 
proportion of value to weight of items by selecting items 
until the knapsack is completely full. This selection is based 
on a way that the weight-value index priority, selected items 
value should be higher than the other powers that has been 
scanned for the proportion of value to weight. 

s2- Random search around the selected power from s1 
with the Radius boundary of α = 0.5.  

s3- Sorting and selecting items based on weight-value of 
s2 until the completion of knapsack capacity sequence 
length accepting items l1 and rejected items the l2 

s4- Fixing items from vector value of s3 that is higher 
than Mean and standard deviation values of weight vector 
elements as selected items and random replacement of the 
rest selected items from s3 and rejected items as well around 
the last selection of s3 with the radius of 0.1 items and l1 
and l2. 

s5- Studying selection rule of selecting minimum items 
equal to dividing the maximum capacity of knapsack to the 
highest weight of items value and increasing the length of 
sequence of accepted items (l1) until satisfying the 
minimum selection rule. 

s6- comparing the answers and the results of the current 
selections with the best achieved result and replacing it with 
the previous if that is a better answer. 

s7- =α 0.5 +  α   
s8- reduce the radius boundary of optimum power index 

with a coefficient of 0.9. 
s9- repeating s1 to s9 while α=1 and radius boundary has 

reached to boundary interval. 
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V. RESULTS AND COMPARISON 
In this part, the result of running algorithm on set of data 

that was given in [32]-[33] is analyzed. Five sample 
problems are proposed in [30]-[32] for testing the algorithm. 
In [30], e2, e3 and e5 samples have been solved with the 
different methods.  

In [31], samples e1 to e4 and in [32], samples e1 and e2 
have been studied. The samples e1 to e5 have 10, 20, 50,100 
and 100 objects respectively. It is obvious that the samples 
with a greater number of objects are more complicated than 
samples with less number of objects and they are more 
difficult and more time consuming to solve.  

In Table 1, the best obtained results in the relevant 
papers have been compared with the results of our proposed 
algorithm. As it is clear in Table 1, the proposed algorithm 
that is called Wise Experiencing Knapsack Problem 
(WEKP) has resulted acceptable answers. 

The algorithm that has been introduced in this paper has 
improved the results of greedy and simple evolutionary 
algorithms by rate of 0.9 and 1.9 percent to the best answer. 
The algorithm of [31], which is a combination of greedy and 
genetic algorithms, has been improved the results of e1-e4 
problems by rate of 0.7 and 0.2. The algorithm mentioned in 
[32] is an enhanced form of ACO that the results shows 0.2 
percent improvement in e1 and e2 problems as well. 

The results after simulating the proposed algorithm by 
this paper show that the results have been improved by 0.16 
percent regarding to [30], 0.05 percent to [31] and 0.9 % 
regarding to [32].  

In Table 1, we can see that for the 3rd sample problem 
we have achieved a result that was never achieved in other 
papers up to now. 

In Table 2, the best, average and the worst answers for 
20 times run for every sample has been given. Also, the 
sequence of the best obtained results for every sample has 
been determined as a string containing 0 and 1, where 0 
means no selection and 1 stands for selecting the ith object. 

As it is illustrated in Table 2, even the average of the 
responses is very close to the optimum response and these 
responses acquire in an acceptable time period.  

The mean time for running every problem on a pentium4 
and a processor of 1.8GHz speed and 512MB of ram with 
the MATLAB 7.7 software is given answers. 

VI. CONCLUSION 
This paper is an introduction to a novel idea for solving 

one-dimensional knapsack problem by defining weight-value 
index and sorting; as a consequence, a new algorithm was 
proposed. This algorithm is mathematically formulated and 
has run on 5 samples regarding to one-dimensional knapsack 
that in most of them the answers are near to optimum.  

The results shows that this method in comparison with 
the recent works published in this field, despite of its 
simplicity is functional enough to achieve acceptable results 
in tested problems. 
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TABLE 1.  COMPARATIVE RESULTS BY OTHER HEURISTIC METHODS 

 

[30] [31] [32] WEKP 

Greedy 
algorithm 

Simple 
evolutionary 

algorithm 

evolutionary 
algorithm 

with schema 
replace 

Greedy 
algorithm 

(GA) 

Standard 
genetic 

algorithm 
(SGA) 

Greedy 
genetic 

algorithm 
(GGA) 

Basic 
ACO 

Improved 
ACO 

Proposed 
method 
(Best 

result) 

e1 - - - 295 295 295 292 295 295 

e2 1023 1042 1042 1024 1037 1042 1022 1024 1042 

e3 3095 3077 3103 3077 3103 3112 - - 3119 

e4 - - - 5372 5365 5375 - - 5372 

e5 26380 25848 26559 - - - - - 26553 
 
 
 

TABLE 2.  BEST RESULTS FOR FIVE SAMPLE PROBLEM 
 

 Example 1 Example 2 Example 3 Example 4 Example 5 

No. of 
Objects 

10 20 50 100 100 

Best 295 1042 3119 5372 26553 
Mean (20 

runs) 295 1040.5 3106 5367.4 26553 

worst 295 1037 3115.1 5360 26553 
Mean time 

(s) 7.1 22.8 13.08 23.07 45.33 

Best 
chromosome 111000111 101111110 

10111100000 

110101011110100110 
110111111111000010 

11011000000010 

111111111011111111111001110111011 
000101001110111110010110101000001 
0000100001100100101000011000000000 

1111111111111111111111111111111111 
1111111111110111111110100010110110 

11111110001110111000000000000000 
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