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Abstract— In facility layout design, the problem of 
locating facilities with material flow between them was 
formulated as a Quadratic Assignment Problem (QAP), 
so that the total cost to move the required material 
between the facilities is minimized, where the cost is 
defined by a quadratic function. In this paper, a new 
definition in cooling scheduling is proposed for 
simulated annealing algorithm to solve the QAPs. Also a 
simple greedy-type algorithm is proposed to improve 
this method. The algorithm is implemented and tested 
on 40 benchmarks. In comparison with many other 
recently developed methods, considerable results are 
obtained by this approach.  

Keywords- QAP; Simulated annealing; Cooling 
Schedule; Greedy search. 

I. INTRODUCTION 
Quadratic Assignment Problem or QAP is one of 

the most known and complicated problems in 
combinational optimization problems which was 
proposed by Koopmans and Beckmann in 1957 [1]. In 
1976, Sahni and Gonzales [2] showed that QAP 
belongs to the class of NP-hard problems. QAP has 
been considered by many researchers for a long time 
and is capable to model many daily real problems. 
Among the applications of QAP, typewriter keyboard 
design [3], electronic components placement problems 
[4], campus planning [5], hospital layout [6], 
numerical analysis [7] and memory layout 
optimization in signal processors [8] can be 
mentioned.  

In QAP, several facilities (for example n factories) 
are assigned to several locations (for example n cities) 
in such a way that the distance between any of the 
locations and also the flow between any of the 
facilities, are constant and predetermined. This 
assignment should be in a way that the goal function 
which is affected by the distance between the locations 
and the circulation number of the goods between the 
facilities, is minimized. In general, when the goal is to 
allocate n facilities to n locations, the number of 
possible situations is ݊!. That is why this problem is in 

the NP-complete problem category. It seems that the 
most achievable deterministic method to solve QAP is 
the branch-and-bound algorithm [5, 9, 10]. Recent 
researches illustrate that the accurate solving of QAP 
takes place with an ݊ up to 36 [11] which in that case 
takes a long time [12]. So the researchers usually try 
to use metaheuristic methods to solve QAP. Some of 
these methods are Neural Networks algorithm [13], 
Simulated Annealing [14, 15], Threshold Accepting 
[16], Genetic Algorithms [17, 18], Tabu Search [19-
21], Ant Colony Optimization [22, 23], Scatter Search 
[24]. 

In this paper, a new version of SA algorithm for 
QAP solving is presented with redefinition of Time 
Scheduling program parameters. In Section 2, QAP is 
fully explained. In Section 3, the base algorithm of 
simulated annealing is presented. The proposed 
simulation algorithm for QAP solving is discussed in 
the next section. In Section 5, the results of simulation 
is presented and compared with other metaheuristic 
methods.  

II. QAP DESCRIPTION 
In the mathematical definition of QAP, there exist 

݊ locations with specific coordinates. So an n×n 
matrix representing the distance between each pair of 
the locations will be generated [ ]( )

nnijdD
×

= . The 
other n×n matrix generated includes the flow of each 
pair of facilities [ ]( )

nnijfF
×

= . Considering the distance 
between locations and the flow between the facilities, 
the goal is to find the minimum cost for assigning the 
facilities. Mathematically, if S(n) is assumed as a set 
of all possible permutations for a set of {0,1, …, n}, 
the goal is to find a permutation such as )(nSp ∈  
which is able to minimize a cost function defined as 
Equation 1.  

 ܼሺሻ   ൌ   ݀ ݂ሺሻሺሻ



ୀଵ



ୀଵ

                                        ሺ1ሻ 
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In fact, the p permutation shows the sequence of 
facilities placement in locations. More description is 
showed with an example in Figure 1.  

 
Figure 1.  A QAP sample for assignment of 4 facilities to 4 

locations 

In this figure, it is decided to place 4 electronic 
elements in 4 specific locations. Matrix D shows the 
distance between each pair of the locations and Matrix 
F shows the number of required connections between 
two parts. As shown in Figure 1, considering the 
length of consumed wires, the optimum answer for 
this problem is p=(3,1,4,2). In other words, the 
optimum result is obtained when the element #3 is 
placed in location #1, element #1 in location #2, 
element #4 in location #3 and element #2 in location 
#4.  

III. BASE SIMULATED ANNEALING ALGORITHM 
The idea of simulated annealing algorithm was 

first proposed as the modified Monte Carlo method by 
Metropolis in 1953 who was working in the 
publishing industry [25]. He resembled paper to the 
material which is obtained after cooling of a molten 
material. SA for combinational optimization 
applications such as Traveling Salesman Problem was 
first developed by Kirkpatrick in 1983 inspired by 
Metropolis algorithm [26]. This algorithm is an 
adoption of cooling process in which metal is heated 
to its melting point and then slowly cools. This 
reduction in temperature is in such a way that the 
system will approximately be in thermodynamic 
equilibrium. During the gradual temperature 
reduction, the system becomes more ordered and 
approaches to the steady state with minimum energy. 
The main plan in the determination of temperature and 
the initial energy state of thermodynamic system is 
that if the energy changes are negative, the new 
structure (energy and temperature) will be accepted 
but if the changes are positive, the acceptance is 
dependent on Boltzmann distribution function: 

ܲሼܽܿܿ݁ݐሽ

ൌ ቊ
1               , ∆݂  0

݁
ି∆

்ൗ      , ∆݂  0
                                             ሺ2ሻ 

In which Δf is the change value of cost function, T 
is temperature parameter in simulated annealing 
process, P is the acceptance probability of the next 
point and C is a control parameter known as 
Boltzmann’s constant with positive value [27]. The 
whole process will be repeated while the energy is 
minimized and the system reaches to the steady state. 

This algorithm is suitable for mixed discrete problems 
and complicated nonlinearity problems. In the SA 
algorithm, cooling schedule parameters control the 
process in search algorithm. Cooling schedule consists 
of three factors:  

1) Initial temperature (T0). 
2) Convergence criterion or Freezing temperature 

(Tf). 
3) Cooling function. 
In this algorithm, when the initial and freezing 

temperatures are defined properly and the rate of 
temperature reduction is less than the slope of  
Tk=T0/(1+ log(k)), then the SA algorithm will be 
converged to the absolute minimum when the number 
of tries (k) tends to infinity. But, According to the 
slope of this curve, temperature reduction makes the 
solving time very longer, therefore, faster temperature 
reduction functions are usually used such as Tk+1 = α * 
Tk in which 0.8<α<1 or Tk=Tk-1/(1+log(k)). Using these 
functions, the number of temperature steps from 
melting point to freezing point has a considerable 
reduction and hence the probability of passing through 
an effective temperature range for optimal search also 
decreases. So by the definition of numerous iterations 
in the inner search loop including new generation, 
assessment and decision making in each temperature, 
it is tried to give enough search time in optimum 
temperature range for the algorithm. In this algorithm 
the number of iterations in a specific temperature is 
called Markov chain length. SA pseudo-code 
algorithm is as following: 

1) Randomly initialize the solution V = VStart . 
2) Set the initial temperature T = T0. 
3) Until stop criterion is reached, do: 

Generate a new solution V' from the 
neighborhood of V. 
Let E and E' be the values of the cost function 
at S and S', respectively. 
If (E' < E), accept new solution V = V'. 
Else if (exp(-(E'-E)/T)) >  a  random number 
Є [0,1], accept new solution V = V'. 

4) If freezing condition (convergence criterion) is 
valid, stop. 

5) Reduce the temperature by cooling function. 
6) Go to 3). 
The way of producing new generation, based on 

the current generation, makes SA algorithm distinct in 
continuous or discrete problems. In continuous 
problems, some definitions such as neighborhood 
radius are used for producing a new generation in 
neighborhood of the current generation. In the SA 
process, the neighborhood radius is reduced according 
to the temperature in order to increase the convergence 
speed. This new generation in discrete problems is 
performed by some operators which implicitly 
generate the next generation in neighborhood of the 
current generation. These operators are also called 
Move Set. In QAP, each possible answer for the 
problem is corresponding to a permutation of 1 to n. 
several effective operators in discrete problems such 
as QAP are as follows: 
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1. Switching Or Swap Operator: 
Randomly selects two locations from permutation 
and replaces with each other. 
2. Translation Operator: 
Randomly selects a portion of permutation and 
replaces in another random location in permutation.  
3. k-Opt Operator: 
In k-Opt move, the tour is broken into k parts, then 
the k parts reconnect in the other possible way. 
Inversion is the case of k-Opt in which k = 2.  
In fact, these operators are used as local search 

approaches, in the global search approaches, such as, 
Tabu search, Simulated Annealing or Genetic 
algorithm.  

IV. PROPOSED ALGORITHM 

A. Proper Determination of Initial Temperature 
Kirkpatrick [26] defined the initial temperature as 

essentially all proposed circuit flips are accepted but in 
quantitative definition of this qualitative significance 
has sufficed to presentation of a constant value (10) 
for his problem, so only with the justification that the 
initial temperature of an algorithm is sufficient to start, 
the probability of high initial temperature and hence 
non optimum operation of the algorithm is neglected. 
Percy [28] has assumed the initial temperature from 
100000 to 4000000 according to the dimensions of the 
problem. Andrew [29] has changed the initial 
temperature from 0.001 to 100 and discussed the 
effect of this important parameter in temperature 
reduction.  

In this paper, the initial temperature is defined in 
such a way that the proportion of, the accepted cases 
to the whole studied cases (γ), in Markov chain has the 
value of 0.2-0.5 according to different problems. 

B. New Definition for Markov Chain Lenght 
Since the Markov chain length is in fact giving 

enough time for search to the algorithm, it may be 
reconsidered according to the working temperature in 
order to optimum use of effective temperature. 
Constant definition of the number of iterations for 
search loop in a constant temperature condition 
(Markov chain length) is the definition of the same 
need of algorithm try in different temperatures for 
search. Kirkpatrick [26] has mentioned effective 
temperature range in search process of the algorithm 
which declares the effectiveness of search in this 
range. So the constant definition of inner search chain 
is not optimum. In this paper, the number of iterations 
for a specific temperature is proportional to the 
number of acceptances in an inner loop instead of the 
number of tries for generation and evaluation. The 
number of acceptances required for search in the inner 
loop of the algorithm decreases according to the 
temperature reduction.  

C. Proper Definition of the Freezing Temperature 
Definition of the freezing temperature or 

convergence condition is very important in increasing 
the speed and accuracy in the search process. If the 
stop condition of the algorithm is not defined 

effectively, the algorithm will be stopped sooner 
which as a result reduces the accuracy or the 
convergence of the algorithm will be announced by 
delay which results in the speed reduction.  

In different papers the way of determining the 
convergence conditions for algorithm is explained in 
different methods and various criteria are discussed. 
For example Kirkpatrick [26] defined that: 

“If the desired number of acceptances is not 
achieved at three successive temperatures, the system 
is considered "freeze " and annealing stops.” 

Percy [28] has considered the approach to the 
optimum response or to the specific number of tries 
(500 iterations) as the stop condition of the algorithm.  

In this paper, the stop condition is defined when in 
two sequential searches in Markov chain, there is no 
change in the best obtained result. 

D. Improving the Results by a Simple Greedy 
Algorithm 
In this paper, a kind of a greedy algorithm is used 

for local search at the end of the simulated annealing 
algorithm. This algorithm gives the final response of 
the algorithm. So considering [30], we can say that 
when Matrices of D and F are symmetric, if 
permutation of p' is created by replacement of the sth 
and tth elements in permutation of p, the cost function 
is calculated by Equation 4.  
,ሺ߂ ,ݏ ሻݐ ൌ ܼሺᇱሻ െ ܼሺሻ ൌ െ2  ൫ ݂ሺ௦ሻሺሻ െ ݂ሺ௧ሻሺሻ൯ሺ݀௦ െ ݀௧ሻ



ୀଵ
ஷ௦,௧

            ሺ3ሻ 

Based on this equation, a matrix is defined as 
ሻሺ߂ ൌ ሾ߂௦௧ሿൈ in which Δst shows the difference in 
cost function because of displacement of the sth and tth 
elements in permutation of p. In this simple algorithm, 
the elements which produce the negative element in 
the matrix are moved until there will be no negative 
number in the matrix. For the determination of the 
negative elements' displacement priority, the lowest 
negative element is selected greedily.  

V. SIMULATION AND COMPARISON 
The proposed algorithm is executed for a sample 

problem presented in QAPLIB site [11] and obtained 
results are compared with other algorithms. 
Considering [19], the standard problems discussed in 
QAPLIB can be classified in 4 categories. 

I. Unstructured, randomly generated instances: 
They are the problems in which distance and flow 

matrices are generated randomly with uniform 
distribution. These problems are usually more 
complicated than other QAPs. For example taixxa is in 
this category. (Each x is an integer)  

II. Instances with grid-based distance matrix: 
They are the problems in which distance matrix is 

created inspiring some points in Manhattan Island and 
flow matrix is randomly created. For example Nugxx 
and Skoxx are in this category. 

III. Real-life instances: 
These problems are derived from real applications 

of QAP. For instance, hospital layout is discussed in 
Kra30x category and typewriter keyboard design is 
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discussed in Bur26x category. Their flow matrix has 
usually more zero in comparison with other categories 
and the input distribution of their flow matrix is not 
uniform.  

IV. Real-life like instances: 
Since the size of real-life instances are not so big, 

E. Taillard discussed Taixxb problems [19], which are 
like real-life instances with the same distribution to 
compensate this lack.  

Considering the difference in QAP problems, in 
order to gain a better result, some parameters must be 
changed. The proposed algorithm starts with the 
initial temperature proportional to 20% of 
acceptances to the whole situations, (γ = 0.2) for 
categories (I) and (II), proportional to 50% of 
acceptances to the whole situations, (γ = 0.5) for 
category (III) and proportional to 40% of acceptances 
to the whole situations, (γ = 0.4) for category (IV). 

This ratio has been obtained by the trial and error 
method in various problems. In the case that at the 
beginning of the algorithm, searching for the initial 
temperature performs with proportionate steps 
starting from the initial value of zero and this 
temperature increases until the ratio of the number of 
accepted cases to the total studied cases ሺγሻ in a 
single markov chain length, reaches the determined 
ratio, we will reach a temperature equivalent to the 
melting point.  

Finding the above ratio will be very important in 
the definition of the optimized initial temperature, in 
order to have a high speed in addition to maintaining 
the accuracy of the search process.  

It has to be said that the performed operation in 
the existing loop in defining the initial temperature, is 
exactly the same operation used in the search engine. 

This means that it starts with a random variable 
and after applying the switching operator, the 
acceptance terms of the algorithm will be checked. In 
the case of acceptance, the previous generation will 
be replaced by a new one and the operation will be 
continued until the markov chain ends and at the end, 
it is the ratio of accepted, to the total states that 
represents the desired ratio. If this ratio is sufficient, 
the loop will stop, but otherwise, a new ratio will be 
calculated for the increased temperature by the 
stepped increase of the temperature and repetition of 
the above stages. This temperature increase will be 
continued until the ratio of the accepted states to the 
total states in a single markov chain, reaches the ratio 
defined at the beginning of the algorithm. 

The iterations in the first inner loop will finish 
when a specific number of acceptances occur related 
to A0=2000n/(1-γ). In each temperature reduction the 
number of acceptances reduces with the equation 
݇ܣ ൌ 0.8√5݇  Therefore, more tries are performed .0ܣ
in effective temperatures in the search process. The 
repetition rate reduction has been resulted by trial and 
error. 

In the inner loop for producing the new generation, 
the Switching operator is used. It seems that this 
operator can find the best possible result. 

Simulation and optimization of process is 
performed in Matlab7.7 by a Core2Due computer with 

a 2.66 GHZ CPU and 4GB of RAM. The effectiveness 
of the simulated annealing algorithm combined with 
the new cooling schedule mentioned in Section IV, 
has been studied by solving some of the complicated 
QAPs reported in the literature available in the 
QAPLIB. The criterion considered for evaluating the 
performance is The Average Percent Deviation (APD) 
of the solution quality from the Best-Known Solution 
(BKS) from the literature. APD is determined as 
follows: 

APD = 100*(C – BKS) / BKS,  
where, C and BKS are, calculated cost by the 

proposed algorithm and the best-known solution, 
respectively. 

Table I provides a comparison between all the 
variants of QAP categories. The APD and the average 
time to completion obtained by the new approaches 
are compared with the other results given in recent 
novel researches. The first method chosen for 
comparison is the iterated fast local search algorithm 
by using order crossover with random sliding 
mutation named as IFLS / OXSM  [31].The second one 
is a new iterated fast local search (NIFLS) algorithm 
by recombination of crossover with sliding mutation 
(RCSM) scheme that is referred as NIFLS / RCSM 
proposed in  [32]. Finally, the results are compared 
with [12], for its new diversification TS variants for 
the QAP named as DivTS. 

VI. CONCLUSION AND RESULTS 
As the compared results in Table I shows, the new 

proposed definitions of cooling schedule in SA 
algorithm indicate the performance improvement in 
comparison with other algorithms. As it is obvious, 
the result of proposed method in APD criterion and 
average time of completion are 0.40 and 78% 
respectively, which are both better than the results in 
 [31]. Also 0.50 and 87% improvement in APD and 
running time in comparison with  [32] are obtained. 
Eventually by comparing the results with [12], it’s 
shown that the average time to completion has been 
improved 63% but APD criterion has been weakened 
about 0.28.  
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