
Streaming Legacy Desktop Software from the Cloud

Youhui Zhang, Gelin Su, Weimin Zheng
Department of Computer Science and Technology

Tsinghua University
Beijing, China

{zyh02, sgl08, zwm-dcs}@tsinghua.edu.cn

Abstract—Desktop Cloud can enhance business agility and
reduce the total-cost-of -ownership, it introduces long network
latencies and the power of local PCs cannot be utilized fully.
This paper presents a light-weight mode for desktop cloud,
which stores legacy desktop software in the cloud storage while
streaming and running them on the user’s PC locally. In
details, based on the light-weight virtualization, software can
be converted into portable counterparts and stored in the
cloud. Moreover, a run-time system is implemented, including
a user-space file-system for cloud, to stream and run the
remote software on local machines. Local cache and data pre-
fetch mechanisms are also adjusted to suit the file-access-
pattern of software. This prototype has been implemented and
tests show it is practical for much daily-used software.

Keywords- Cloud computing; user-space file system; OS-level
virtualization

I. INTRODUCTION

Existing software delivery model is usually based on a
large number of distributed PCs executing operating system
and desktop software independently. As mentioned by
Gartner Group [1], for enterprises, deploying and managing
personal operating systems and software in this mode are
very expensive, which is the most important determinant of
PC total cost of ownership (TCO). Personal users also face
the similar problem.

Desktop Virtualization [2][3], combined with cloud
computing allows users to run desktops on virtual machines
(VM) hosted at the data center and access them as a service
through some remote desktop protocol (RDP) [4][5], which
is also called as “Desktop Cloud” [6]. Then, users can
enhance business agility and reduce business risks, while
lowering TCO.

But, for this solution, the client PC is used as a thin-client
device, which executes the graphical interface of desktop to
convey input and output between the user and the data center
where software is really running. Therefore, there are two
drawbacks: the user's feeling would not be good when it is
employed across the Internet because of the long network
latency [7]; secondly, processing power of the client PC
cannot be utilized fully. To solve these problems, some
Desktop clouds using Web applications are provided [8] [9].
Now, modern web applications are driving toward the power
of fully functional desktop software such as email clients,
productivity apps, etc. The user can access the personalized
operating environment anywhere. But, the enormous legacy
desktop software cannot be used in this model.

To fully utilize local PCs and legacy desktop software, a
light-weight Desktop cloud solution is proposed here, which
stores legacy Windows desktop software (rather than VM) in
the cloud storage, and streams and runs them on the user’s
PC on-demand.

Because software is executed locally, the power of client
PCs can be used efficiently; on the other side, as existing
cloud storage services can be used as the backend without
any modification, some key features of cloud computing,
such as dynamic scaling of infrastructure, flexible usage
based pricing, rapid service provisioning, can be still
maintained.

To reach this target, three challenges should be
conquered:

1) Legacy desktop software should be converted into
portable software transparently.

OS-level virtualization is employed here to solve this
problem. Every virtualization environment shares the same
execution environment as the host machine. Therefore, such
an environment can have very small resource requirements
and thus its overhead is light-weight.

In our approach, existing desktop software is made
portable: each software instance runs in an OS-level
virtualization environment. This environment intercepts
some resource-accessing APIs from the instance, and
redirects them to the actual storage position(s) rather than the
host. Then, in the user’s view, he / she can launch software
conveniently, although it does not exist on local disks.

2) Users should access the portable software in the
cloud just like common desktop software; therefore a
transparent and friendly delivery mechanism is needed.

A Windows user-space file system for cloud storage is
designed. It acts as a proxy for file system accesses: file
operation requests from portable software (e.g., CreateFile,
ReadFile, WriteFile, etc.) to the Windows I/O subsystem
(runs in kernel mode) will be forwarded to the corresponding
user-space callback functions which visit real data in the
cloud and send results back.

We implement such a file system based on Dokan [10], a
development framework for Windows user-space file system
(like fuse [11] for Linux), and the Amazon S3 interface.

3) Performance optimization
Some optimizations are adopted: all metadata is pre-

fetched by client ends, which will be updated as necessary
during the running time; local cache for frequently-used data
is enabled to decrease the number of remote accesses, as well

130

ADVCOMP 2010 : The Fourth International Conference on Advanced Engineering Computing and Applications in Sciences

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-101-4

as a data pre-fetch mechanism which can adapt to different
access patterns of diverse software.

We implement such a prototype for Windows OSes and
extensive tests show that, these optimizations are efficient
for much daily-used software.

This solution has its own limitation: portable software
can only be used on compatible local OSes, while the
traditional desktop clouds support any local OS only if a
browser or some proper RDP client is available. However,
we believe our proposal is practical because now Windows
OSes still dominate the desktop PC market.

In this paper, we first present the model of portable
software and the design of its runtime system. The user-
space file system and optimizations are given in Section 3, as
well as the access control mechanisms. The prototype is
introduced in Section 4, as well as the performance tests.
Finally, we present related works and the conclusion.

II. PORTABLE SOFTWARE

Usually, Windows software can be regarded as
containing three parts: Part 1 includes all resources provided
by the OS; Part 2 contains what are created/modified/deleted
by the installation process; and Part 3 is the data
created/modified/deleted during the run time. For Windows
OS, the resources here mainly refer to files/folders and the
related system registry keys/values.

During the runtime, the software instance accesses
resources of all parts on the fly: some resources are read-only
while some may be modified/added/deleted. So, no part is
fixed: those modified at run time will be moved into Part 3.

To make the existing software portable, all parts should
be captured and made portable except for Part 1 while Part 2
and 3 should be accessed on demand.

A. Installation Snapshot

The modifications made by the software’s installation
process must be captured to enable Part 2 portable. Some
system monitoring tool, like InstallWatch [12], is used.

In this implementation, a target application is installed on
one clean Windows system, while InstallWatch is running to
log those files created or modified in this process, as well as
registry additions and modifications. Then, all
files/folders/registry-keys created or updated are collected to
be stored in a dedicated position. Till now, Part 2 is obtained.

B. Runtime System

Detours [13], a library developed by Microsoft Research
Institute, is used to intercept those Windows APIs accessing
files and registry entries during the runtime. Then, all
accesses to files and registry entries are intercepted and
redirected to the dedicated storage position as needed. In
another word, API Interception is employed to complete a
lightweight virtualization environment to make all parts
accessible by the software’s executable file transparently.

The strategies are:
1) Any non-modification operation is executed on site;
2) Any modification is moved to Part 3 so that the

local host can be kept unchanged;

3) Any query will return the combination of results
from all parts. If there is any duplication, Part 3 owns the
highest priority while Part 1 is the lowest.

For details, please refer to our previous work [15][16].

III. STREAMING SOFTWARE FROM THE CLOUD

Now the windows software can run without installation
as the runtime system provides all resources transparently.

Then, the next question is how to design a delivery
solution that should own the following features or functions:

Transparent to users and software; access control; high
efficiency on network access; dependent on the OS to the
minimum extent

We design a user-space file system for cloud storage to
reach the target. Firstly, with file system interfaces, the
access method is compatible with the operation style of
Windows desktops. And from the viewpoint of users, the
remote software looks just like stored in a local drive

Secondly, two aspects of access control are implemented.
The first is based on API interception to prevent portable
software from accessing some local private information. The
second works the other way round, which uses the process-
hierarchy information to protect files of portable software
from illegal copy.

Some optimizations are also adopted: all metadata is pre-
fetched by client ends, and will be updated when necessary;
local cache for frequently-used data is enabled to decrease
the number of remote accesses, as well as an adaptive data
pre-fetch mechanism. The user-space implementation can
achieve most above functions in the user level, which is
helpful to port our system to other OSes.

Finally, it is necessary to note that, the backend cloud
inherently owns some features like dynamic scaling, high
availability and rapid service provisioning. Therefore, this
paper is focused on the client-end design, which
communicates with the backend via some standard protocol.

A. The file system framework

This framework contains four parts: the first is the
software instance accessing the user-space file system. Its
related file operations are sent the Windows IO subsystem,
which will be intercepted by our kernel proxy driver that
redirects them to the user-level interception program that
registers some callback functions to process corresponding
operations respectively.

For more details, please refer to our previous work
[15][16].

1) File MetaData
When a user launches the file system first time, the

interception program contacts the remote server for login.
Then it gets all metadata of his/her customized portable
software and the version number based on the user ID. The
metadata contains the following information:

Full paths of all files and folders; the attribute, size,
creation-time, last-access-time and last-write-time of all files.

The received metadata is saved on the client permanently.
When there is any file modification in the cloud, the updated
metadata will be sent back during the subsequent procedure
to keep data consistency.

131

ADVCOMP 2010 : The Fourth International Conference on Advanced Engineering Computing and Applications in Sciences

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-101-4

Therefore, any metadata access can be completed locally,
which speeds up the corresponding operations (like browsing
directory, etc.) remarkably.

2) File Data
When a file is opened for read, it will be redirected to the

remote position to fetch the real data (the local cache and
pre-fetch are both employed, which will be described later).

If there is any write, a copy-on-write method is used,
which means the whole remote file will be fetched to the
client at first, and then any subsequent operation can happen
locally.

As the file system is being unmounted, any new and
modified files/folders will be transferred to a remote position
(reserved for every user) hosted in cloud. So at the next time,
the user can reach his/her latest metadata and data of all files.

3) Remote access
Our file system communicates with the backend through

the S3 [14] interface, which is used by Amazon’s notable
cloud storage service. In S3, data is organized as objects in a
bucket identified by unique IDs, which can be accessed
through the standard HTTP protocol. Therefore, any file of
portable software is regarded as an object in S3 and is
identified by its full path name. Its URL looks like
http://server_address/portablesoftware /full...path/filename.

For any new or modified file of a user, its naming style is
different. For example, if John creates a new file (\program
files\app1\file.name), the URL looks like
http://server_address/portablesoftware/john/program
files/app1/file.name.

In addition, for each user, the metadata info of his/her
portable software, combined with the above-mentioned lists,
is stored in a special position: http://server_address/
portablesoftware/username/metadata_list_version_num.

In summary, all users share portable software stored at
the common place; each has the private space for any new or
modified files to avoid write conflicts, as well as all metadata.
Then, any whole file can be downloaded with the HTTP
GET method while any part of a file can be accessed with
the same method using the Range Header Field.

B. Access control

1) Protect the local info
As mentioned in Section 2, file accesses from portable

software are intercepted, therefore the user can configure a
white list to restrict the allowed range to protect his/her
private info.

Another method is that any process of portable software
is spawned with less permission rights; for example, its
Access control List (ACL) is set as the Guest privilege. So
the private data of the current user can be protected.

2) Protect the portable software
Users can access software files just like they are using the

local file system, so how to prevent the illegal copy is a key
consideration.

An access control based on the process-hierarchy is
designed to protect essential files. The root of the hierarchy
is the interception program that can access all files while any
process outside of the hierarchy is forbidden.

For more details, please refer to our previous work
[15][16].

C. IO optimizations

The user-space file system is grounded on the backend
cloud. If all reads were completed remotely, our solution
would be very slow. To alleviate this, two methods are
adopted.

1) Local cache
We analyzed the file-access-pattern of the running

process for some frequently-used software; it is found that,
most frequently-used files belong to those accessed during
the startup process, which only occupied a limited ratio of
the whole capacity. For example, the following frequently-
used software is converted into portable versions:

Abiword 1 , PhotoShop, Lotus Notes, VLC (a powerful
media player), 7Zip, UltraEdit, ClamWin (an anti-virus
program), FileZilla, Gimp (an open source picture editor),
Acrobat Reader, WarZone2100 (a real-time strategy game),
On-screenkeyboard.

Tests show that, the average ratio of the amount of data
accessed during the start-up process to the whole capacity for
the given software is about 21%.

Based on this observation, some frequently-accessed data
is cached locally and its replace strategy is also based on the
usage frequency.

At the first time, the cache is empty and then the run
speed is fairly slow. During the run time, the cache is
fulfilled according to the usage frequencies of data. Then for
the following runs, the performance is improved because
reads will be partly hit in the local cache.

2) Data pre-fetch
Besides the local cache, pre-fetch is another potential

method to reduce the number of data access across the
Internet. And its efficiency depends on the concrete access
mode: for sequential accesses, it will be highly efficient.

We study the access behavior on any single file. For a
given file, two arguments are defined: a is the ratio of the
number of sequential reads to the total read-number, and b is
the ratio between read amounts. The greater the value of a or
b is, the better the effect of pre-fetch is. A file is sequential if
and only if the values of a and b are both more than a
threshold. Another conclusion from the analysis is that, for
given software, its file-access-pattern is fixed regardless of
its storage position. Then, we only adopt pre-fetch for these
sequential files. In the current implementation, the threshold
is set as 66% and the pre-fetch distance is 32KB.

IV. PROTOTYPE AND TESTS

We have implemented the prototype using VC 2005.

A. Performance Tests

1) Test Methods
Two types of performance metrics are measured.
 Start-up time

1 The Microsoft Office applications can also be made portable by us, but it

cannot run on the virtual file system because of some bugs of DOKAN.
As stated at http://dokan-dev.net/.

132

ADVCOMP 2010 : The Fourth International Conference on Advanced Engineering Computing and Applications in Sciences

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-101-4

The application start-up time is the key metric of the
prototypes’ usability: the time it takes for applications to
begin to respond to user-initiated operations is a measure of
what it feels like to use the system for everyday work.

In our test, CreateProcess is invoked to launch the given
software, and then another API WaitForInputIdle is used to
judge whether the new process has finished its initialization
and is ready to response user’s input or not. As
WaitForInputIdle returns, the elapsed time is logged as the
start-up overhead.

 Run time
A special program is used to record the user’s inputs of

the keyboard and mouse and replay them after start-up.
Based on this tool, we design scripts to control software to
complete a series of operations, which looks like triggered by
a real user. For example, for the word processing software,
one document is created and compiled for several seconds
and saved before termination. Moreover, between any two
continuous operations, some random waiting time (less than
one second) is inserted to simulate the human’s behavior.

The elapsed time is logged as the run time.
2) Test Environments

The client platform is a Windows Vista PC, equipped
with 2 GBytes DDR2 SDRAM and one Intel Core Duo CPU
(1.86GHz). The hard disk is one 160 GBytes SATA drive.

It uses one 100M Ethernet adapter to access the Internet.

The client machine should cross the Internet for data. So

where to place the server is decisive for the performance.
Two cases are considered.

In Case 1, it is assumed that some edge server can be
found to provide the download service, therefore the web
server is located in the CERNET (Chinese Education &
Research Network, is the second largest network backbone
in China.) as well as the client PC. This is a common case
now: Content Delivery Network has been widely used for
software downloading. As disclaimed by Akamai, the world
leading CDN provider, most visit requirements can be
fulfilled by some edge server(s) just a single-hop away.

The network throughput between the client and this
server is about 1.89MBps and the average response time is
about 6ms, which are tested by Qcheck, a free and
professional network benchmark program.

In Case 2, the server is located outside the CERNET. The
throughput is 998KBps and the response time is 32ms.

Two Windows 2003 servers, equipped with one Intel
Core 2 Duo E4500 CPU (2200MHz), 2 GBytes DDR2
SDRAM, and one 240GBytes SATA II disk, are used for
these two cases respectively.

3) Test cases
Case 1: The original start-up time / run time

(portable software is saved in one local disk).
Case 2: The start-up time / run time based on the

user-space file system (portable software is saved in one
local disk, which is also mirrored as a virtual drive; then the
software is launched through this drive.)

Case 3: The start-up time / run time based on the
user-space file system for the remote server located inside
the CERNET; no cache, no pre-fetch;

Case 4: The server is located inside the CERNET;
the cache hit ratio is 20%, no pre-fetch;

Case 5: The server is located inside the CERNET;
the cache hit ratio is 33%, no pre-fetch;

Case 6: The server is located inside the CERNET;
the cache hit ratio is 50%, no pre-fetch;

Case 7: The server is located inside the CERNET;
the cache hit ratio is 66%, no pre-fetch;

Case 8: The server is located inside the CERNET;
the cache hit ratio is 80%, no pre-fetch;

Case 9: The server is located inside the CERNET;
no cache, the pre-fetch size is 32KB;

Case 10~Case 16: The server is located out of the
CERNET and other conditions are the same as those of Case
3~Case 9.

Some software cannot be controlled by our automation
method; therefore the software number in the run-time tests
is less.

We present the detailed results from Figure 1 to Figure 5.
To present clearly, all results have been normalized,
compared with the values of Case 1.

4) Test results
For the start-up time (Figure 1 ~ 3), the user-space file

system itself introduces less than 96% extra overheads
(comparing Case 2 with Case 1), as the file system causes
more context-switch operations.

The exception is WarZone2010 (in Figure 1), whose
extra overheads are much more because its access-pattern is
special: it reads one sequential file many times while each
time only two bytes are fetched. Similarly, when our file
system is based on the remote servers, its start-up time
becomes much longer: about 7720% extra overheads in Case
3 and 26590% in Case 10 (compared with Case 1). But pre-
fetch is very efficient for this game, the speed-up ratios are
11 in Case 9 and 17 in Case 16, compared with Case 3 and
10 respectively.

For the other software (in Figure 2 and 3), our system
introduces about 890 % extra start-up time on average in
Case 3 and 1452% in Case 10 (compared with Case 1).
When the cache-hit ratio is 80%, the corresponding results
are 88% and 264%. So, the network performance largely
determines program behaviors; and local cache is a highly-
efficient method to improve the performance, except for
some tiny software because their disk-IO overhead is so
small that the IO sub-system affects its whole performance
little. For pre-fetch, the speed-up ratios are 1.25 in Case 9
and 1.44 in Case 16 respectively.

As mentioned in Section 3.3, the most frequently-used
files only occupied a limited ratio of the whole capacity. In
our tests, one local cache of 140MB can reach the hit-ratio of
80%. Then, for much frequently-used software, after several
runs, their performance on our system is really acceptable.

For run-time tests (in Figure 4 and 5), the results are
better: because the waiting time overlaps the background
transfer operations and much data required has been fetched
during start-up, about 11% extra overheads in Case 8 and
18% in Case 15 are introduced. Because our scripts only
complete some simple and common operations, this result is
for reference only.

133

ADVCOMP 2010 : The Fourth International Conference on Advanced Engineering Computing and Applications in Sciences

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-101-4

V. RELATED WORK

A. Cloud Computing

Cloud Computing refers to both the applications
delivered as services over the Internet and the hardware and
systems software in the datacenters that provide those
services. As [16] said, there are three types of Cloud
Computing, which are classified based on the level of
abstraction presented to the programmer.

Amazon EC2 [17][18] is at one end. It presents a virtual
computing environment, allowing customers to launch
instances with a variety of operating systems, manage
network’s access permissions, and run image, which is
compatible with legacy desktop software completely.

Google AppEngine [19] is at the other extreme. It is an
application-domain specific platform, which just hosts
traditional web applications. As we know, this mode is
incompatible with the desktop software, which asks
developers to write new applications.

Accordingly, there are mainly two types of Desktop
cloud. The first is based on the thin-client computing mode,
which hosts VMs running desktop systems on the data center
and users access them through some RDP. IBM Smart
Business Desktop Cloud [20], VMWARE’s ThinApp [21]
and Citrix’s XenAPP belong to this catalog.

The second refers to the Web-Application based [8] [9].
It provides a desktop-like GUI on the browser, which
contains many web applications.

Another important service provided by the cloud
computing is cloud storage, like Amazon’s S3, Microsoft’s
Live Skydrive [22] and so on. Cloud Storage delivers
virtualized storage on demand, over a network based on a
request for a given quality of service (QoS).

B. Software Streaming

Virtualization has been deployed for software streaming.
A solution is Progressive Deployment System (PDS) [23],
which is a virtual execution environment and infrastructure
designed for deploying software on demand. Another
practical solution is Microsoft’s SoftGrid [24]. SoftGrid can
convert applications into virtual services that are managed
and hosted centrally but run on demand locally.

Our previous work [15] also provides a solution for
software streaming based on lightweight virtualization and
p2p transportation technologies. Compared with [15], this
work is based on the cloud storage and a new user-space file

system is introduced. Another previous work [16] of ours is
about how to fast deploy desktop software in a VM-based
cloud environment (like EC2).

VI. CONCLUSION AND FUTURE WORK

This paper presented a solution to convert the existing
Windows desktop software to on-demand application stored
on the cloud storage, which could be regarded as a mode of
SaaS. As we know, this is the first prototype of such a
solution. Two main technologies were used: the first was
OS-level virtualization, which made legacy software portable;
and the second was a user-space file system that provided the
user a transparent interface to access them. In addition, some
access control mechanisms were implemented.

Owing to the local cache and pre-fetch mechanisms, tests
showed that, for much frequently-used software, their
performance was acceptable with a limited local cache.

ACKNOWLEDGMENT

This research is supported by Chinese National 973 Basic
Research Program under Grant 2007CB310900, Chinese
National 863 High Technology Programs under Grant
2008AA01A201.

REFERENCES
[1] Federica Troni and Michael A. Silver. Use Processes and Tools to

Reduce TCO for PCs, 2005- 2006 Update. Gartner Group.

[2] IBM Virtual Infrastructure Access Service Product. https://www-
935.ibm.com/services/au/gts/pdf/end03005usen.pdf. 07.07.2010.

[3] Windows Server 2003 Terminal Services.
http://www.microsoft.com/windowsserver2003/technologies/terminal
services/default.mspx. 07.07.2010.

[4] Tristan Richardson, Quentin Stafford-Fraser, Kenneth R. Wood, and
Andy Hopper. Virtual network computing, Internet Computing, IEEE,
Volume.2, No.1. January, 1998, pp.33-38.

[5] CITRIX, http://www.citrix.com/lang/English/home.asp. 07.07.2010.

[6] Kirk Beaty, Andrzej Kochut, and Hidayatullah Shaikh. Desktop to
cloud transformation planning. Proceedings of 2009 IEEE
International Symposium on Parallel & Distributed Processing. Rome,
Italy, May 23-29, 2009, pp.1-8.

[7] Albert Lai and Jason Nieh, On the Performance of Wide-Area Thin-
Client Computing. ACM Transactions on Computer Systems (TOCS),
Volume 24, Issue 2. May 2006, pp. 175-209.

[8] iCloud, http://icloud.com/. 07.07.2010.

[9] Lifehacker, the Full-Screen Firefox Cloud Desktop.
http://lifehacker.com/5256657/the-full +screen- firefox-cloud-desktop.
07.07.2010.

Figure 1. The start-up time of WarZone2010 (the left part is the case that the server is inside).

134

ADVCOMP 2010 : The Fourth International Conference on Advanced Engineering Computing and Applications in Sciences

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-101-4

[10] Dokan, user mode file system for windows.
http://code.google.com/p/dokan/. 07.07.2010.

[11] Filesystem in Userspace. http://fuse.sourceforge.net/. 07.07.2010.

[12] Installwatch. http://tejasconsulting.com/open-estware/feature/
installwatch.html. 07.07.2010.

[13] Galen Hunt and Doug Brubacher, Detours: Binary Interception of
Win32 Functions, Proceedings of the Third USENIX Windows NT
Symposium, July, 1999, pp.135-144.

[14] Amazon Simple Storage Service (Amazon S3).
http://aws.amazon.com/s3/. 07.07.2010.

[15] Youhui Zhang, Xiaoling Wang, and Liang Hong, Portable Desktop
Applications Based on P2P Transportation and Virtualization.
Proceedings of the 22nd Large Installation System Administration
Conference (LISA '08) San Diego, CA. USENIX Association,
November, 2008, pp. 133–144.

[16] Youhoi Zhang, Gelin Su, and Weimin Zheng: "On demand mode of
legacy desktop software and its automatic deployment for Cloud-
Computing Environment", Proceedings of the Sixth Workshop on
Grid Technologies and Applications (WOGTA 2009), 18-19 Dec
2009, Taitung, Taiwan, pp.25-31.

[17] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph,
Randy Katz, Andy Konwinski, et al. Above the Clouds: A Berkeley
View of Cloud Computing Export. Technical Report. 10 February
2009. http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-
2009-28.html. 07.07.2010.

[18] Amazon Elastic Compute Cloud. Developer Guide.
http://docs.amazonwebservices.com/AWSEC2/latest/DeveloperGuide.
07.07.2010.

[19] Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Alex
Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, et al.
Dynamo: Amazon’s highly available key-value store. In Proceedings
of twenty-first ACM SIGOPS symposium on Operating systems
principles, ACM Press New York, NY, USA, 2007, pp. 205–220.

[20] Google App Engine, http://www.google.com/apps/intl/en/business/
index.html. 07.07.2010.

[21] Desktop cloud computing services. http://www-
935.ibm.com/services/us/index.wss/offering/eus/a1026737.
07.07.2010.

[22] VMWARE ThinApp——Agentless Application Virtualization
Overview. White Paper. Available at
http://www.vmware.com/files/pdf/thinapp_intro_whitepaper.pdf.,
07.07.2010.

[23] Windows Live SkyDrive, http://skydrive.live.com/, 07.07.2010.

[24] Bowen Alpern, Joshua Auerbach, Vasanth Bala, Thomas Frauenhofer,
Todd Mummert, and Michael Pigott. PDS: a virtual execution
environment for software deployment. Proceedings of the First
ACM/USENIX international conference on Virtual execution
environments, March, 2005, pp. 175-185.

[25] http://www.microsoft.com/systemcenter/softgrid/default.mspx.
07.07.2010.

Figure 2. The start-up time (The server is inside and values have been normalized).

Figure 3. The start-up time (The server is outside and values have been normalized).

135

ADVCOMP 2010 : The Fourth International Conference on Advanced Engineering Computing and Applications in Sciences

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-101-4

Figure 4. The run time (The server is inside and values have been normalized).

Figure 5. The run time (The server is outside and values have been normalized).

136

ADVCOMP 2010 : The Fourth International Conference on Advanced Engineering Computing and Applications in Sciences

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-101-4

