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Abstract — Performance is an open issue in data intensive 
applications, such as image pattern recognition tasks. To 
process large-scale datasets with high performance more 
resources and reliable infrastructures are required for 
spreading the data and running the applications across 
multiple machines in parallel. The current use of parallelism in 
high performance computing and with multicore hardware 
support is costly and time consuming. To remove the burden of 
building, operating and maintaining expensive physical 
resources and infrastructures, Cloud computing is emerging as 
a cost-effective solution to address the increased demand for 
distributed data, computing resources and services. In this 
paper, we explore and evaluate parallel processing 
performance of an image pattern recognition task in the Life 
Sciences based on a Cloud computing model: Infrastructure-
as-a-Service. Namely, we rent computing infrastructures from 
cloud providers. We have developed the image pattern 
recognition task in both sequential and parallel ways, deployed 
them, and conducted our experiments on cloud infrastructure. 
The performance has been evaluated using speedup as a 
measurement. We have calculated the cost of our experiments, 
which demonstrates that cloud computing could be a cheaper 
alternative to supercomputers and clusters given this task.  

Keywords — Parallel Computing; Cloud Computing; Image 
Pattern Recognition; Life Sciences;  Data intensive application. 

I.  INTRODUCTION 
Advances in storage, pervasive computing, digital 

sensors, digital libraries and instrumentation have led to a 
massive growth in the volume of data collected and the 
number of geographically distributed data sources (e.g., in 
many fields, biomedical research or image-based diagnosis, 
data volumes are at least doubling each year). The efficient 
exploration on these large amounts of data is a critical task to 
enable scientists to gain new insights. Parallel computing is 
naturally as a solution to solve this kind of problems by 
dividing a large problem into smaller ones carrying out much 
small calculation concurrently. The current parallel 
processing systems are mainly supported by hardware with 
multi-core and multi-processors with multiple processing 
elements within a single machine and/or clusters and grids 
with multiple machines connected together to work on the 
same task simultaneously. 

To deal with large datasets, more compute resources are 
required to access large amounts of data and perform many 
calculations across multiple machines concurrently. 
However, incorporating data and compute resources into  
parallel infrastructures (e.g., clusters) amenable to data 
exploration is not an easy task. One has to take into account 
scalability, reliability, fault-tolerance and cost-reduction.  

To remove the burden of building, operating and 
maintaining expensive physical resources and infrastructures 
(e.g., hardware, clusters etc.), cloud computing is emerging 
as a cost-effective solution to address the increased demand 
for distributed data, computing resources and services. 

Cloud computing [1][2] is a type of distributed 
computing paradigm augmented with a business model via a 
Service Level Agreement between providers and consumers. 
This definition has a two-fold meaning: 1) at a technical 
level, cloud computing offers distributed resources, 
infrastructures and services over the Internet to users, which 
are created, operated and maintained by the cloud providers. 
The consumers access these resources remotely without 
running applications on local computers. Cloud computing 
models are broadly classified into service and delivery 
models. In terms of services provided by cloud providers, 
there are three types of service models: Software-as-a-
Service (SaaS), Platform-as-a-Service (PaaS) and 
Infrastructure-as-a-Service (IaaS). Based on the way clouds 
are delivered, three major types of clouds include public, 
private and hybrid clouds; 2) at a business level, cloud 
providers lease these resources immediately and temporarily 
to cloud consumers when required. Often leases are paid by a 
regular credit card transaction on a consumption basis. 

In this paper, we explore and evaluate the parallel 
processing performance of a task from the Life Science 
based on IaaS. Namely, we rent computing infrastructures 
from a cloud provider (i.e., Amazon Elastic Compute Cloud 
(Amazon EC2 [3]) with full control of those computing 
resources. We have developed the task in both sequential and 
parallel ways and deployed them onto the rented 
infrastructure. The performance has been evaluated and 
compared using speedup as  a metric.  

The rest of paper is structured as follows: Section 2 
presents an image pattern recognition use case in the Life 
Sciences, to which we have applied parallelisation. Section 3 
describes the experiments we have conducted. Section 4 
concludes the work. 

II. PARALLEL  DATA INTENSIVE APPLICATIONS: AN 
IMAGE PATTEN RECOGNITION CASE STUDY 

A. Backgroung of the use case  
The use case is from EUREXpress [4][5], which aims to 

build a transcriptome-wide atlas for developing mouse 
embryo established by RNA in situ hybridisation. The 
project uses automated processes for in situ hybridisation 
experiments on all genes of whole-mount wild-type mouse 
embryos at the Stage 23. The result is many images of 
embryo sections that are stained to reveal where RNA is 
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present, namely, where gene patterns are expressed in 
embryos. These images were then annotated by human 
curators. The annotation consists of tagging images with 
anatomical terms from the ontology for mouse anatomy 
development. If an image is tagged with an anatomical term, 
it means that anatomical component is present in the image 
and it is exhibiting gene expression in some part of the 
component. So far, 80% of images (4 Terabytes in total) 
have been manually annotated by human curators. The goal 
is to automatically perform annotation by tagging the 
remaining 20% with the correct terms of anatomical 
components (there are still 85,824 images to be annotated 
with a vocabulary of 1,500 anatomical terms) and to provide 
a means of tagging future data automatically. The input is a 
set of image files and corresponding metadata. The output 
will be an identification of the anatomical components that 
exhibit gene expression patterns in each image. This is a 
typical pattern recognition task. As shown in Figure1 (a), we 
first need to identify the features of `humerus' in the embryo 
image and then annotate the image using ontology terms 
listed on the left ontology panel. 

 
(a) 

 
(b) 

Figure 1. An image pattern recognition task 

To automatically annotate images, three stages are 
required: at the training stage, the classification model has to 
be built, based on training image datasets with annotations; 
at the testing stage, the performance of the classification 
model has to be tested and evaluated; then at the deployment 
stage, the model has to be deployed to perform the 
classification of all non-annotated images. We mainly focus 
on the training stage in this case. The processes in the 
training stage include integration of images and annotations, 
image processing, feature generation, feature selection and 
extraction, and classifier design, as shown in Figure1 (b).  

The specific processes are described as follows: 
• Image integration: before starting the data mining, 

we need to integrate data from different sources: the 
manual annotations have been stored in the database 
and the images are located in the file system. The 
output of this process is images with annotations.  

• The size of the images is variable and there is noise 
in the images. We use image scaling and image 
filtering methods to rescale and denoise the images. 
The output of this process is standardised and 
denoised images, which can be represented as 2-
dimensional arrays. 

• After image pre-processing, we generate those 
features that represent different gene expression 
patterns in images. The resulting features of wavelet 
transforms are 2-dimensional arrays. 

• Due to the large number of features, the features 
need to be reduced and selected for building a 
classifier. Either feature selection or feature 
extraction or both can do this. Feature selection 
selects a subset of the most significant features for 
constructing classifiers. Feature extraction performs 
the transformation on the original features for the 
dimensionality reduction to obtain a representative 
feature vectors for building up classifiers. 

• The main task in this case is to classify images into 
the right gene terminologies. The classifier needs to 
take an image’s features as an input, and outputs a 
‘yes’ or ‘no’ for each of anatomical features. 

 

B. Parallel the image patten recognition task 
1) Overview of parallel approach  

It is well known that the speedup of an application to 
solve large computational problems is mainly gained by the 
parallelisation at either hardware or software levels or both 
(e.g., signal, circuit, component and system levels) [6]. 
Hardware parallelism focuses on signal and circuit levels and 
normally is constrained by manufacturers. Software 
parallelism at component and system levels can be classified 
into two types: automatic parallelisation of applications 
without modifying existing sequential applications and 
construction of parallel programming models using various 
software technologies to describe parallel algorithms and 
then match applications with the underlying hardware 
platforms. Since the nature of auto-parallelisation is to 
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recompile a sequential program without the need for 
modification, it has a limited capability of parallelisation on 
the sequential algorithm itself. Mostly, it is hard to directly 
transform a sequential algorithm into parallel ones. While 
parallel programming models try to address how to develop 
parallel applications and therefore can maximally utilise the 
parallelisation to obtain high performance, it does need more 
development effort on parallelisation of specific applications. 
In general, three considerations when parallelising an 
application include:  

• How to distribute workloads or decompose an 
algorithm into parts as tasks? 

• How to map the tasks onto various computing nodes 
and execute the subtasks in parallel? 

• How to coordinate and communicate subtasks on 
those computing nodes. 

There are mainly two common methods for dealing with 
the first two questions: data parallelism and task parallelism. 
Data parallelism represents workloads are distributed into 
different computing nodes and the same task can be executed 
on different subsets of the data simultaneously. Task 
parallelism means the tasks are independent and can be 
executed purely in parallel. There is another special kind of 
the task parallelism is called ‘pipelining’. A task is processed 
at different stages of a pipeline, which is especially suitable 
for the case when the same task is used repeatedly. The 
extent of parallelisation is determined by dependencies of 
each individual part of the algorithms and tasks. 

As for the coordination and communication among tasks 
or processes on various nodes, it depends on different 
memory architectures (shared memory or distributed 
memory). A number of communication models have been 
developed [7][8]. Among them, the MPI (Message Passing 
Interface) has been developed for HPC parallel applications 
with distributed memory architectures and has become the 
de-facto standard. There is a set of implementations of MPI, 
for example, OpenMPI [9], MPICH [10], GridMPI [11] and 
LAM/MPI [12]. 
 

2) Parallel approach in this use case   
Based on the flow chart of the use case in Figure 1b, we 

model this image pattern recognition task as a direct acyclic 
graph. Each node of the graph is a functional module, a 
process or a subtask and the edge connected between nodes 
is data flow, which shows true data dependency between 
them. A direct acyclic graph for the training stage is shown 
in Figure 2. The left-hand side shows the atomic processes of 
the training stage. The right-hand side shows a higher-level 
abstraction of the task. For instance, feature selection and 
extract is composed of ‘featureMean’, ‘featureVar’ and 
‘featureExtract’ atomic processes. 

In terms of the nature of the algorithm used in this case, 
parallel approaches used are mainly data parallelism and a 
typical task parallelism (pipelining).  

 
                Figure 2. The processes of the task 
In terms of the task graph shown in Figure 2 and the 

dependencies between the processes, data parallelism can be 
applied here. Processes such as ‘rescaleImg’ and 
‘denoiseImg’ to ‘featureGen’ can have multiple instances 
invoked without any internal status to be maintained between 
these instances. After we get image samples from the process 
‘obtainImg’, the samples can be partitioned into subsets and 
distributed to different nodes that run multiple instances of 
these processes. Therefore, the data can be parallelised.  

Furthermore, parallelisation should consider how to 
decompose a process itself into parts and executed these 
parts in parallel. In this case, the decomposition of the 
algorithms mainly focuses on feature selection and extraction 
(i.e., Fisher's Ration algorithm [13]) and Classifier design 
(i.e., K-Nearest Neighbour-KNN [14]). We have developed  
parallel forms of these two processes, as shown in Figure 3 
and Figure 4. 

 

 
Figure 3. A parallel form of Fisher’s Ratio  
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Figure 4. A parallel form of KNN 

a) The rationale behind of parallel Fisher Ratio  
The nature of the Fisher’s Ratio algorithm for feature 

selection is to calculate Mean and Variance of image 
samples for two classes (C1 and C2), as shown in the 
following Equation 1 [13]. 

 

where  represents the mean of samples at the ith 
feature in Class  and  represents the mean of samples 
at the ith feature in Class .  represents the variance of 
samples at the ith in Class .  represents the variance of 
samples at the ith feature in .  

Therefore, the feature selection can be decomposed into 
smaller subtasks ‘featureMean’ and ‘featureStd’ and 
executed with subsets of image samples on nodes. The 
parallel form of the algorithm can be presented in Figure 4. 

 
b) The Rationale behind of Parallel KNN 

KNN is a classification algorithm to identify unknown 
samples into a class based on the nearest distance with the 
training samples. The common distance function is 
Euclidean distance. In this case, the samples are represented 
with features as vectors. The Euclidean distances therefore 
are calculated between each training sample and a testing 
sample, and then the nearest ones can be chosen. For all of 
training samples, the calculation is a typical iteration task. To 
exploit parallelisation in this algorithm, we use a special task 
parallelism called ‘pipelining’. We divide an iteration of the 
KNN task into several pipeline stages. The sample images 
can be partitioned to subsets. The task of the distance 
calculation between subsets of training samples and the 
unclassified testing sample are executed at different stages 
respectively. Figure 4 shows the parallel form of the KNN 
algorithm using the concept of ‘pipelining’. 

 

III. EXPAERIMENTATION AND EVALUATION IN  CLOUD 
COMPUTING  

To evaluate the performance of the parallel image pattern 
recognition task described above we must conduct 

experiments on many physical computer nodes. However, to 
buy and maintain physical resources is costly and time 
consuming. We therefore make use of IaaS in the form of 
cloud computing to perform our evaluation.  

A. Overview of Cloud Computing  
Cloud computing is an evolution of various forms of 

distributed computing systems: from original distributed 
computing, parallel computing (cluster, to service-oriented 
computing (e.g., grid). Cloud computing extends these 
various distributed computing forms by introducing a 
business model, in which the nature of on-demand, self-
service and pay-by-use of resources is used. Cloud 
computing sells itself as a cost-effective solution and reliable 
platform. It focuses on delivery of services guaranteed 
through Service Level Agreements. The services can be 
application software—SaaS, development environments for 
developing applications—PaaS, and raw infrastructures and 
associated middleware —IaaS.  

In this study, without buying expensive clusters or 
supercomputers, we adopt the IaaS model that enables us to 
rent compute infrastructures from cloud providers. We have 
developed and then deployed our application onto rented 
compute infrastructure.   

Among cloud providers (Amazon, Google, Saleforce, 
IBM, Microsoft, etc), we have chosen Amazon EC2, one of 
the most popular cloud providers, who provides 
Infrastructure-as-a-Service to users, with a capability to 
allow users to elastically expand or shrink the amount of 
resources used. Unlike traditional physical resource leasing, 
Amazon EC2 uses virtualisation techniques (e.g., Xen [15]) 
and releases virtual machines (instances) to users. Table 1 
lists standard virtual instances from Amazon as an example 
(please refer to other types of virtual instances in [3]).  Users 
can choose any instance and operating systems and pay for 
the time an instance is ‘switched on’ (Table 1 also shows the 
pricing for using Linux/Unix operating system on 1 June 
2010).   

TABLE I.  AN EXAMPLE OF INSTANCE TYPES OF AMAZON EC2 

Stand. 
Instance 

Cores RAM Bit I/O Disk Cost 
Linux/Unix 

Small 
(m1.small) 

1 1.7GB 32 Med. 160GB $0.085/h 

large 
(m1.large) 

4 7.5GB 64 High 850GB $0.34/h 

Extra large 
(m1.xlarge) 

   8 15GB 64 High 1690gb $0.68/h 

B. Experimentatation and Evaluation in the Cloud 
1) Performance metrics 

We have used speedup as a performance indicator. 
Speedup is considered as a ratio between the execution time 
of the image pattern recognition task (Ts) on one single 
computing node and the execution time of the task on 
multiple computing nodes (Tm), represented as follows: 

€ 

S =
Ts
Tm
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The execution on one single node means all of processes, 
data, and storage on one computing node. The execution on 
multiple computing nodes includes any of these situations: 
distributed data, distributed processes and distributed 
storage. 

  
2) Experiment configuration 
 We have developed the image pattern recognition task in 

both sequential and parallel modes. We deployed them and 
conducted our experiments on small instances (virtual 
computers) of Amazon’s EC2, with speedup as a 
performance indicator. To create an infrastructure on EC2, 
we have registered a user account with Amazon EC2. We 
launch instances by specifying the instance types and virtual 
images that we have created for the image pattern 
recognition task. In this study, we have used 12 small 
instances for experimentation (at this moment Amazon EC2 
limits users to a maximum of 20 instances running 
concurrently). The specific configuration is listed in the 
second row in Table 1 (m1.small). 

 
3) Evaluation result  

We have measured the performance under two factors: 1) 
changing the size of input (i.e., number of image samples) 
and 2) varying number of nodes (i.e., virtual computers). We 
report averages over 30 independent runs for each scenario 
(the choice of 30 runs is based on statistics). The evaluation 
result is shown in Figure 5, Figure 6 and Figure 7. To 
validate the cost-effectiveness of Infrastructure-as-a-Service 
via cloud provision, we calculated the cost shown in Figure 
8.  Figure 5 shows the speedup. The X-axis represents input 
size and the Y-axis represents the speedup. The result 
demonstrates that the speedup increases with the increase of 
the number of computing nodes. The speedup increases with 
the increase of input size when the number of machines is 
12. It fully embodies the advantage of parallel computing 
when processing heavy loads (i.e., with 4000 images).  

 
Figure 5 Average speedup for experiments with 1000, 2000, 

3000 and 4000 images when using 2, 4, 8 and 12 nodes 
running concurrently 

 
Figure 6 Average execution time of the task with 

increasing number of images for different number of virtual 
nodes running concurrently 

 

 
Figure 7 Average communication time vs. the numbers 

of nodes for increasing number of nodes with different 
number of images 

 

 
Figure 8 Average cost for performing the task using 

Amazon EC2 in US Dollars with 1000, 2000, 3000 and 4000 
images when using 1, 2, 4, 8 and 12 virtual nodes running 

concurrently 
 
Figure 6 shows the execution time under different input 

sizes and different numbers of computing nodes. With the 
increase of input size, the execution time increases; with the 
increase of numbers of nodes, the execution time decreases. 

Figure 7 shows the relationship between communication 
time and numbers of nodes. With the increase of input size, 
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the communication time increases; with the increase of the 
number of nodes, the communication time increases in the 
first instance and then the increase rate slows down. In 
Figure 7, the communication time with input size 4000 at 
two nodes has a spike. This is mainly caused by the latency 
of the Cloud during the execution after we have checked 
various similar experiments. 

Figure 8 shows average costs for running a full task in 
US Dollars using Amazon’s EC2. In this case, since the 
maximum execution time of the whole task for various 
experiments running on one node is taken less than one hour, 
the cost increases with the number of the virtual computing 
nodes, for example, for one node, the cost is $0.085; for 12 
nodes, the cost is $1.02. From cost-effectiveness point of 
view, the users may consider running fewer virtual nodes 
(despite that the execution time of the task running on 12 
nodes is less than 5 minutes, comparing with 41-minute task 
execution on one node).  

IV. CONCLUDING REMARKS 
In this paper, by a way of a case study, we explore 

parallel approaches for an image pattern recognition task in 
the Life Sciences and have developed both sequential and 
parallel versions for this task. We have conducted a 
comparison of different parallel setups that ran in a cloud 
infrastructure provided by Amazon’s EC2. The performance 
of parallel processing of the task has been evaluated where 
the speedup increases with the increase of numbers of virtual 
computer nodes and we achieve a linear scale up when using 
maximum input size of 4000 images. The communication 
time increases with the increase of input size. With the 
increase of number of virtual computer nodes, the 
communication time increases at the first beginning and then 
the increase rate slows down.  

We have calculated the average cost for running the 
whole task. The maximum cost is $1.02 when lunching 12 
virtual nodes, which shows that the use of Cloud computing 
is still a cheaper solution comparing with that of buying 
supercomputers or clusters. Nevertheless, it is also found the 
cost increases with the number of computing nodes as long 
as the maximum execution time of the task running one node 
is less than one hour. In this case, there is still a possibility 
that the users may choose to lunch fewer virtual nodes for 
cost saving. 
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