
Accelerating Data-Intensive Applications: A Cloud Computing Approach to Parallel
Image Pattern Recognition Tasks

Liangxiu Han, Tantana Saengngam, and Jano van Hemert
UK National e-Science Centre, School of informatics, University of Edinburgh, United Kingdom

liangxiu.han@ed.ac.uk; ttntans@gmail.com; j.vanhemert@ed.ac.uk

Abstract — Performance is an open issue in data intensive
applications, such as image pattern recognition tasks. To
process large-scale datasets with high performance more
resources and reliable infrastructures are required for
spreading the data and running the applications across
multiple machines in parallel. The current use of parallelism in
high performance computing and with multicore hardware
support is costly and time consuming. To remove the burden of
building, operating and maintaining expensive physical
resources and infrastructures, Cloud computing is emerging as
a cost-effective solution to address the increased demand for
distributed data, computing resources and services. In this
paper, we explore and evaluate parallel processing
performance of an image pattern recognition task in the Life
Sciences based on a Cloud computing model: Infrastructure-
as-a-Service. Namely, we rent computing infrastructures from
cloud providers. We have developed the image pattern
recognition task in both sequential and parallel ways, deployed
them, and conducted our experiments on cloud infrastructure.
The performance has been evaluated using speedup as a
measurement. We have calculated the cost of our experiments,
which demonstrates that cloud computing could be a cheaper
alternative to supercomputers and clusters given this task.

Keywords — Parallel Computing; Cloud Computing; Image
Pattern Recognition; Life Sciences; Data intensive application.

I. INTRODUCTION
Advances in storage, pervasive computing, digital

sensors, digital libraries and instrumentation have led to a
massive growth in the volume of data collected and the
number of geographically distributed data sources (e.g., in
many fields, biomedical research or image-based diagnosis,
data volumes are at least doubling each year). The efficient
exploration on these large amounts of data is a critical task to
enable scientists to gain new insights. Parallel computing is
naturally as a solution to solve this kind of problems by
dividing a large problem into smaller ones carrying out much
small calculation concurrently. The current parallel
processing systems are mainly supported by hardware with
multi-core and multi-processors with multiple processing
elements within a single machine and/or clusters and grids
with multiple machines connected together to work on the
same task simultaneously.

To deal with large datasets, more compute resources are
required to access large amounts of data and perform many
calculations across multiple machines concurrently.
However, incorporating data and compute resources into
parallel infrastructures (e.g., clusters) amenable to data
exploration is not an easy task. One has to take into account
scalability, reliability, fault-tolerance and cost-reduction.

To remove the burden of building, operating and
maintaining expensive physical resources and infrastructures
(e.g., hardware, clusters etc.), cloud computing is emerging
as a cost-effective solution to address the increased demand
for distributed data, computing resources and services.

Cloud computing [1][2] is a type of distributed
computing paradigm augmented with a business model via a
Service Level Agreement between providers and consumers.
This definition has a two-fold meaning: 1) at a technical
level, cloud computing offers distributed resources,
infrastructures and services over the Internet to users, which
are created, operated and maintained by the cloud providers.
The consumers access these resources remotely without
running applications on local computers. Cloud computing
models are broadly classified into service and delivery
models. In terms of services provided by cloud providers,
there are three types of service models: Software-as-a-
Service (SaaS), Platform-as-a-Service (PaaS) and
Infrastructure-as-a-Service (IaaS). Based on the way clouds
are delivered, three major types of clouds include public,
private and hybrid clouds; 2) at a business level, cloud
providers lease these resources immediately and temporarily
to cloud consumers when required. Often leases are paid by a
regular credit card transaction on a consumption basis.

In this paper, we explore and evaluate the parallel
processing performance of a task from the Life Science
based on IaaS. Namely, we rent computing infrastructures
from a cloud provider (i.e., Amazon Elastic Compute Cloud
(Amazon EC2 [3]) with full control of those computing
resources. We have developed the task in both sequential and
parallel ways and deployed them onto the rented
infrastructure. The performance has been evaluated and
compared using speedup as a metric.

The rest of paper is structured as follows: Section 2
presents an image pattern recognition use case in the Life
Sciences, to which we have applied parallelisation. Section 3
describes the experiments we have conducted. Section 4
concludes the work.

II. PARALLEL DATA INTENSIVE APPLICATIONS: AN
IMAGE PATTEN RECOGNITION CASE STUDY

A. Backgroung of the use case
The use case is from EUREXpress [4][5], which aims to

build a transcriptome-wide atlas for developing mouse
embryo established by RNA in situ hybridisation. The
project uses automated processes for in situ hybridisation
experiments on all genes of whole-mount wild-type mouse
embryos at the Stage 23. The result is many images of
embryo sections that are stained to reveal where RNA is

148

ADVCOMP 2010 : The Fourth International Conference on Advanced Engineering Computing and Applications in Sciences

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-101-4

present, namely, where gene patterns are expressed in
embryos. These images were then annotated by human
curators. The annotation consists of tagging images with
anatomical terms from the ontology for mouse anatomy
development. If an image is tagged with an anatomical term,
it means that anatomical component is present in the image
and it is exhibiting gene expression in some part of the
component. So far, 80% of images (4 Terabytes in total)
have been manually annotated by human curators. The goal
is to automatically perform annotation by tagging the
remaining 20% with the correct terms of anatomical
components (there are still 85,824 images to be annotated
with a vocabulary of 1,500 anatomical terms) and to provide
a means of tagging future data automatically. The input is a
set of image files and corresponding metadata. The output
will be an identification of the anatomical components that
exhibit gene expression patterns in each image. This is a
typical pattern recognition task. As shown in Figure1 (a), we
first need to identify the features of `humerus' in the embryo
image and then annotate the image using ontology terms
listed on the left ontology panel.

(a)

(b)

Figure 1. An image pattern recognition task

To automatically annotate images, three stages are
required: at the training stage, the classification model has to
be built, based on training image datasets with annotations;
at the testing stage, the performance of the classification
model has to be tested and evaluated; then at the deployment
stage, the model has to be deployed to perform the
classification of all non-annotated images. We mainly focus
on the training stage in this case. The processes in the
training stage include integration of images and annotations,
image processing, feature generation, feature selection and
extraction, and classifier design, as shown in Figure1 (b).

The specific processes are described as follows:
• Image integration: before starting the data mining,

we need to integrate data from different sources: the
manual annotations have been stored in the database
and the images are located in the file system. The
output of this process is images with annotations.

• The size of the images is variable and there is noise
in the images. We use image scaling and image
filtering methods to rescale and denoise the images.
The output of this process is standardised and
denoised images, which can be represented as 2-
dimensional arrays.

• After image pre-processing, we generate those
features that represent different gene expression
patterns in images. The resulting features of wavelet
transforms are 2-dimensional arrays.

• Due to the large number of features, the features
need to be reduced and selected for building a
classifier. Either feature selection or feature
extraction or both can do this. Feature selection
selects a subset of the most significant features for
constructing classifiers. Feature extraction performs
the transformation on the original features for the
dimensionality reduction to obtain a representative
feature vectors for building up classifiers.

• The main task in this case is to classify images into
the right gene terminologies. The classifier needs to
take an image’s features as an input, and outputs a
‘yes’ or ‘no’ for each of anatomical features.

B. Parallel the image patten recognition task
1) Overview of parallel approach

It is well known that the speedup of an application to
solve large computational problems is mainly gained by the
parallelisation at either hardware or software levels or both
(e.g., signal, circuit, component and system levels) [6].
Hardware parallelism focuses on signal and circuit levels and
normally is constrained by manufacturers. Software
parallelism at component and system levels can be classified
into two types: automatic parallelisation of applications
without modifying existing sequential applications and
construction of parallel programming models using various
software technologies to describe parallel algorithms and
then match applications with the underlying hardware
platforms. Since the nature of auto-parallelisation is to

149

ADVCOMP 2010 : The Fourth International Conference on Advanced Engineering Computing and Applications in Sciences

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-101-4

recompile a sequential program without the need for
modification, it has a limited capability of parallelisation on
the sequential algorithm itself. Mostly, it is hard to directly
transform a sequential algorithm into parallel ones. While
parallel programming models try to address how to develop
parallel applications and therefore can maximally utilise the
parallelisation to obtain high performance, it does need more
development effort on parallelisation of specific applications.
In general, three considerations when parallelising an
application include:

• How to distribute workloads or decompose an
algorithm into parts as tasks?

• How to map the tasks onto various computing nodes
and execute the subtasks in parallel?

• How to coordinate and communicate subtasks on
those computing nodes.

There are mainly two common methods for dealing with
the first two questions: data parallelism and task parallelism.
Data parallelism represents workloads are distributed into
different computing nodes and the same task can be executed
on different subsets of the data simultaneously. Task
parallelism means the tasks are independent and can be
executed purely in parallel. There is another special kind of
the task parallelism is called ‘pipelining’. A task is processed
at different stages of a pipeline, which is especially suitable
for the case when the same task is used repeatedly. The
extent of parallelisation is determined by dependencies of
each individual part of the algorithms and tasks.

As for the coordination and communication among tasks
or processes on various nodes, it depends on different
memory architectures (shared memory or distributed
memory). A number of communication models have been
developed [7][8]. Among them, the MPI (Message Passing
Interface) has been developed for HPC parallel applications
with distributed memory architectures and has become the
de-facto standard. There is a set of implementations of MPI,
for example, OpenMPI [9], MPICH [10], GridMPI [11] and
LAM/MPI [12].

2) Parallel approach in this use case
Based on the flow chart of the use case in Figure 1b, we

model this image pattern recognition task as a direct acyclic
graph. Each node of the graph is a functional module, a
process or a subtask and the edge connected between nodes
is data flow, which shows true data dependency between
them. A direct acyclic graph for the training stage is shown
in Figure 2. The left-hand side shows the atomic processes of
the training stage. The right-hand side shows a higher-level
abstraction of the task. For instance, feature selection and
extract is composed of ‘featureMean’, ‘featureVar’ and
‘featureExtract’ atomic processes.

In terms of the nature of the algorithm used in this case,
parallel approaches used are mainly data parallelism and a
typical task parallelism (pipelining).

 Figure 2. The processes of the task
In terms of the task graph shown in Figure 2 and the

dependencies between the processes, data parallelism can be
applied here. Processes such as ‘rescaleImg’ and
‘denoiseImg’ to ‘featureGen’ can have multiple instances
invoked without any internal status to be maintained between
these instances. After we get image samples from the process
‘obtainImg’, the samples can be partitioned into subsets and
distributed to different nodes that run multiple instances of
these processes. Therefore, the data can be parallelised.

Furthermore, parallelisation should consider how to
decompose a process itself into parts and executed these
parts in parallel. In this case, the decomposition of the
algorithms mainly focuses on feature selection and extraction
(i.e., Fisher's Ration algorithm [13]) and Classifier design
(i.e., K-Nearest Neighbour-KNN [14]). We have developed
parallel forms of these two processes, as shown in Figure 3
and Figure 4.

Figure 3. A parallel form of Fisher’s Ratio

150

ADVCOMP 2010 : The Fourth International Conference on Advanced Engineering Computing and Applications in Sciences

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-101-4

Figure 4. A parallel form of KNN

a) The rationale behind of parallel Fisher Ratio
The nature of the Fisher’s Ratio algorithm for feature

selection is to calculate Mean and Variance of image
samples for two classes (C1 and C2), as shown in the
following Equation 1 [13].

where represents the mean of samples at the ith
feature in Class and represents the mean of samples
at the ith feature in Class . represents the variance of
samples at the ith in Class . represents the variance of
samples at the ith feature in .

Therefore, the feature selection can be decomposed into
smaller subtasks ‘featureMean’ and ‘featureStd’ and
executed with subsets of image samples on nodes. The
parallel form of the algorithm can be presented in Figure 4.

b) The Rationale behind of Parallel KNN

KNN is a classification algorithm to identify unknown
samples into a class based on the nearest distance with the
training samples. The common distance function is
Euclidean distance. In this case, the samples are represented
with features as vectors. The Euclidean distances therefore
are calculated between each training sample and a testing
sample, and then the nearest ones can be chosen. For all of
training samples, the calculation is a typical iteration task. To
exploit parallelisation in this algorithm, we use a special task
parallelism called ‘pipelining’. We divide an iteration of the
KNN task into several pipeline stages. The sample images
can be partitioned to subsets. The task of the distance
calculation between subsets of training samples and the
unclassified testing sample are executed at different stages
respectively. Figure 4 shows the parallel form of the KNN
algorithm using the concept of ‘pipelining’.

III. EXPAERIMENTATION AND EVALUATION IN CLOUD
COMPUTING

To evaluate the performance of the parallel image pattern
recognition task described above we must conduct

experiments on many physical computer nodes. However, to
buy and maintain physical resources is costly and time
consuming. We therefore make use of IaaS in the form of
cloud computing to perform our evaluation.

A. Overview of Cloud Computing
Cloud computing is an evolution of various forms of

distributed computing systems: from original distributed
computing, parallel computing (cluster, to service-oriented
computing (e.g., grid). Cloud computing extends these
various distributed computing forms by introducing a
business model, in which the nature of on-demand, self-
service and pay-by-use of resources is used. Cloud
computing sells itself as a cost-effective solution and reliable
platform. It focuses on delivery of services guaranteed
through Service Level Agreements. The services can be
application software—SaaS, development environments for
developing applications—PaaS, and raw infrastructures and
associated middleware —IaaS.

In this study, without buying expensive clusters or
supercomputers, we adopt the IaaS model that enables us to
rent compute infrastructures from cloud providers. We have
developed and then deployed our application onto rented
compute infrastructure.

Among cloud providers (Amazon, Google, Saleforce,
IBM, Microsoft, etc), we have chosen Amazon EC2, one of
the most popular cloud providers, who provides
Infrastructure-as-a-Service to users, with a capability to
allow users to elastically expand or shrink the amount of
resources used. Unlike traditional physical resource leasing,
Amazon EC2 uses virtualisation techniques (e.g., Xen [15])
and releases virtual machines (instances) to users. Table 1
lists standard virtual instances from Amazon as an example
(please refer to other types of virtual instances in [3]). Users
can choose any instance and operating systems and pay for
the time an instance is ‘switched on’ (Table 1 also shows the
pricing for using Linux/Unix operating system on 1 June
2010).

TABLE I. AN EXAMPLE OF INSTANCE TYPES OF AMAZON EC2

Stand.
Instance

Cores RAM Bit I/O Disk Cost
Linux/Unix

Small
(m1.small)

1 1.7GB 32 Med. 160GB $0.085/h

large
(m1.large)

4 7.5GB 64 High 850GB $0.34/h

Extra large
(m1.xlarge)

 8 15GB 64 High 1690gb $0.68/h

B. Experimentatation and Evaluation in the Cloud
1) Performance metrics

We have used speedup as a performance indicator.
Speedup is considered as a ratio between the execution time
of the image pattern recognition task (Ts) on one single
computing node and the execution time of the task on
multiple computing nodes (Tm), represented as follows:

€

S =
Ts
Tm

151

ADVCOMP 2010 : The Fourth International Conference on Advanced Engineering Computing and Applications in Sciences

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-101-4

The execution on one single node means all of processes,
data, and storage on one computing node. The execution on
multiple computing nodes includes any of these situations:
distributed data, distributed processes and distributed
storage.

2) Experiment configuration
 We have developed the image pattern recognition task in

both sequential and parallel modes. We deployed them and
conducted our experiments on small instances (virtual
computers) of Amazon’s EC2, with speedup as a
performance indicator. To create an infrastructure on EC2,
we have registered a user account with Amazon EC2. We
launch instances by specifying the instance types and virtual
images that we have created for the image pattern
recognition task. In this study, we have used 12 small
instances for experimentation (at this moment Amazon EC2
limits users to a maximum of 20 instances running
concurrently). The specific configuration is listed in the
second row in Table 1 (m1.small).

3) Evaluation result

We have measured the performance under two factors: 1)
changing the size of input (i.e., number of image samples)
and 2) varying number of nodes (i.e., virtual computers). We
report averages over 30 independent runs for each scenario
(the choice of 30 runs is based on statistics). The evaluation
result is shown in Figure 5, Figure 6 and Figure 7. To
validate the cost-effectiveness of Infrastructure-as-a-Service
via cloud provision, we calculated the cost shown in Figure
8. Figure 5 shows the speedup. The X-axis represents input
size and the Y-axis represents the speedup. The result
demonstrates that the speedup increases with the increase of
the number of computing nodes. The speedup increases with
the increase of input size when the number of machines is
12. It fully embodies the advantage of parallel computing
when processing heavy loads (i.e., with 4000 images).

Figure 5 Average speedup for experiments with 1000, 2000,

3000 and 4000 images when using 2, 4, 8 and 12 nodes
running concurrently

Figure 6 Average execution time of the task with

increasing number of images for different number of virtual
nodes running concurrently

Figure 7 Average communication time vs. the numbers

of nodes for increasing number of nodes with different
number of images

Figure 8 Average cost for performing the task using

Amazon EC2 in US Dollars with 1000, 2000, 3000 and 4000
images when using 1, 2, 4, 8 and 12 virtual nodes running

concurrently

Figure 6 shows the execution time under different input

sizes and different numbers of computing nodes. With the
increase of input size, the execution time increases; with the
increase of numbers of nodes, the execution time decreases.

Figure 7 shows the relationship between communication
time and numbers of nodes. With the increase of input size,

152

ADVCOMP 2010 : The Fourth International Conference on Advanced Engineering Computing and Applications in Sciences

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-101-4

the communication time increases; with the increase of the
number of nodes, the communication time increases in the
first instance and then the increase rate slows down. In
Figure 7, the communication time with input size 4000 at
two nodes has a spike. This is mainly caused by the latency
of the Cloud during the execution after we have checked
various similar experiments.

Figure 8 shows average costs for running a full task in
US Dollars using Amazon’s EC2. In this case, since the
maximum execution time of the whole task for various
experiments running on one node is taken less than one hour,
the cost increases with the number of the virtual computing
nodes, for example, for one node, the cost is $0.085; for 12
nodes, the cost is $1.02. From cost-effectiveness point of
view, the users may consider running fewer virtual nodes
(despite that the execution time of the task running on 12
nodes is less than 5 minutes, comparing with 41-minute task
execution on one node).

IV. CONCLUDING REMARKS
In this paper, by a way of a case study, we explore

parallel approaches for an image pattern recognition task in
the Life Sciences and have developed both sequential and
parallel versions for this task. We have conducted a
comparison of different parallel setups that ran in a cloud
infrastructure provided by Amazon’s EC2. The performance
of parallel processing of the task has been evaluated where
the speedup increases with the increase of numbers of virtual
computer nodes and we achieve a linear scale up when using
maximum input size of 4000 images. The communication
time increases with the increase of input size. With the
increase of number of virtual computer nodes, the
communication time increases at the first beginning and then
the increase rate slows down.

We have calculated the average cost for running the
whole task. The maximum cost is $1.02 when lunching 12
virtual nodes, which shows that the use of Cloud computing
is still a cheaper solution comparing with that of buying
supercomputers or clusters. Nevertheless, it is also found the
cost increases with the number of computing nodes as long
as the maximum execution time of the task running one node
is less than one hour. In this case, there is still a possibility
that the users may choose to lunch fewer virtual nodes for
cost saving.

REFERENCES
[1] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic,

“Cloud Computing and Emerging IT Platforms: Vision, Hype and
Reality for Deliverung Domputing as the 5th Utility,” Future
Generation Computer Systems, Vol.25, No. 6., pp.599-616, June
2009.

[2] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud Computing and Grid
Computing 360-Degree Compared,” Grid Computing Environments
Workshop, 2008.

[3] Amazon Elastic Compute Cloud, http://aws.amazon.com/ec2/,
Retrieved 15, May, 2010.

[4] L. Han, J. van Hemert, R. Baldock, and M. Atkinson, “Automating
Gene Expression Annotation for Mouse Embryo,” In Lecture Notes in

Computer Science (Advanced Data Mining and Applications, ADMA
2009), vol. LANI 5678, pp.469-478, 2009.

[5] EURExpress-II project, http://www.eurexpress.org/ee/, Retrieved 10,
May, 2010.

[6] L. Silva, and R. Buyya, “High Performance Cluster Computing:
Programming and Applications,” ch. Parallel Programming Models
and Paradigms, pp. 4–27. No. ISBN 0-13-013785-5. Prentice Hall
PTR, NJ, USA, 1999

[7] P. S. Pacheco Parallel Programming with MPI. Morgan Kaufmann
Publishers, Inc., 1997.

[8] PVM, 2009, http://www.csm.ornl.gov/pvm/, Retrieved 5 May, 2010.
[9] OpenMPI, 2009, http://www.open-mpi.org/, Retrieved 5 May, 2010.
[10] MPICH, http://www.mcs.anl.gov/research/projects/mpi/mpich1/,

Retrieved 5 May, 2010.
[11] GridMPI, http://www.gridmpi.org/index.jsp, Retrieved 5 May, 2010.
[12] LAMMPI, http://www.lam-mpi.org/, Retrieved 5 May, 2010.
[13] R. O. Duda and P. E., Hart, “Pattern Classification and Scene

Analysis,” John Wiley & Sons, 1973.
[14] T. M. Cover and P. E. Hart, ”Nearest Neighbor Pattern

Classification,” Information Theory, IEEE Transactions on, Vol. 13,
No. 1. pp. 21-27,1967.

[15] P. Barham, B. Dragovic, K. Fraser, S. Hand, T.L. Harris, A. Ho, R.
Neugebauer, I. Pratt and A. Warfield , “Xen and the art of
virtualisation,” In SOSP, pp. 164-177. ACM, 2003.

153

ADVCOMP 2010 : The Fourth International Conference on Advanced Engineering Computing and Applications in Sciences

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-101-4

