
Using Autarky to Evaluate Quantified Boolean Formulae

Jens Rühmkorf
Simulation and Software Technology

German Aerospace Center (DLR)
Linder Höhe, D-51147 Köln, Germany

E-mail: Jens.Ruehmkorf@dlr.de

Abstract— In this paper, we discuss algorithmical implica-
tions for the extension of autarky from propositional logic
to evaluate quantified boolean formulae (QBF). First, the
Davis-Putnam procedure for the satisfiability problem (SAT)
is described. Then we explain efficient known data structures
for SAT and extensions to QBF which we used in our solver.
Finally, we introduce the concept of autarky and describe how
detecting 2-autarky structures in a given QBF formula helps
pruning the search tree. To the best of our knowledge we are
the first to describe such techniques for QBF.

Keywords—Autarky; Davis-Putnam; SAT; QBF

I. I NTRODUCTION

In recent years, the language of quantified boolean formu-
lae (QBF) has gained importance for practical applications.
QBF allows for a concise representation of many classes of
problems [1], [2]: Gopalakrishnan et al. study the problem of
formally verifying shared memory multiprocessor executions
against memory consistency models for the Intel Itanium by
translating occurring problems to the satisfiability problem
(SAT) and QBF [1]. Mneimneh et al. also consider the ap-
plication area of formal hardware verification and transform
the diameter problem — determining the length of a longest
of all shortest paths — for a class of large digraphs to QBF,
but end up converting their problem to SAT, because no
existing QBF solver is able to solve their problems [2].

The paper is organized as follows: Section II introduces
preliminary definitions and concepts. Section III describes
the Davis-Putnam procedure for SAT along with efficient
data structures. Section IV discusses efficient data structures
used for extending Davis-Putnam to QBF. Based on our
experimental results (due to space limitations not discussed
in this paper). Sections V and VI derive enhancements to
the current algorithm by extending the concept of autarky to
QBF and discuss possible implementation approaches. Sec-
tion VII concludes the paper by briefly evaluating the current
status and provides information on future development.

II. PRELIMINARIES

A quantified boolean formulaΦ = q1z1 · · · qnzn ϕ con-
sists of a sequence of quantified variables, the so-called
prefix, followed by a quantifier free SAT formulaϕ, the
matrix of the formula. The prefixq1z1 · · · qnzn contains
universal∀ and existential∃ quantifiers for propositional

variableszi occurring inϕ. The evaluation problemfor a
given QBFΦ is to decide whetherΦ is true or not. Example
QBF formulas are∀y1∃x2 (y1 ∨ ¬x2) ∧ (¬y1 ∨ x2) which
is true and∀y1∀y2 (y1 ∨ y2) which is false.

A literal L is a variablez or ¬z. For two different literals
Li, Lj with corresponding variableszi, zj of a QBF formula
Φ we may writeLi < Lj if zi occurs to the left ofzj in the
prefix ofΦ. We use Lit(Z) as shorthand notation for the set
of literals for a given set of variablesZ. Similarly, Var(Φ)
and Var(ϕ) are used for the variable sets occurring in a QBF
formula Φ and a SAT formulaϕ, respectively. Aclauseis
a formulaκ = (L1 ∨ · · · ∨ Lk) with literalsLi; the second
clause of the first example is(¬y1 ∨ x2) with literals ¬y1
andx2. We say a SAT formulaϕ is in conjunctive normal
form (CNF), if it is expressed by a conjunction of clauses
ϕ = κ1 ∧ · · · ∧ κℓ.

III. D AVIS-PUTNAM FOR SAT

Both SAT and QBF describe prototypical complete prob-
lems for the important complexity classesNP andPSPACE ,
respectively. Syntactically restricted forms of QBF describe
complete problems forΣP

k andΠP
k within the polynomial

time hierarchyPH. For the remainder of this paper, we
consider only quantified boolean formulaeΦ whose matrix
ϕ is in CNF. Indeed, for a given QBF formulaΦ we may
generate in linear time an equivalent quantified boolean
formula whose matrix is in CNF [4, ch. 7].

The evaluation algorithm used within this paper is a
generalization of the Davis-Putnam procedure for SAT [5]
to QBF [6]. Figure 1 on the following page describes the
Davis-Putnam algorithm as recursive function. The algo-
rithm utilizes the following two fundamental observations:

Lemma 1 (monotone literal [5]) If the literal L is mono-
tone, i.e. by definition,L occurrs only positive (L = x) or
negative (L = ¬x) within the CNF formula α, then α is
equivalent toα[L/1] or α[L/0], respectively. �

Lemma 2 (unit clause [5]) Let L be the literal of a unit
clause of theCNF formula α. Thenα is satisfiable if and
only if α[L/1] is satisfiable. �

Hereα[L/ǫ] denotes the formula obtained fromα by re-
placing each occurrence ofL with ǫ ∈ {0, 1}. Furthermore,

154

ADVCOMP 2010 : The Fourth International Conference on Advanced Engineering Computing and Applications in Sciences

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-101-4

a clauseκ is calledk-clause, ifκ contains onlyk literals
(L1 ∨ · · · ∨ Lk), a 1-clause(L) is calledunit clause.

Function boolean Davis-Putnam(CNF formula*α)

Input : Pointer to CNF formulaα.
Output : true if α is satisfiable andfalse otherwise.

begin
if α = 1 then return true;
if α = 0 then return false;
L← Pure-Literal(α);
if L 6= NULL then

return Davis-Putnam(α[L/1]);
L← Unit-Literal(α);
if L 6= NULL then

return Davis-Putnam(α[L/1]);
L← Choose-Literal(α);
if Davis-Putnam(α[L/1]) then

return true;
return Davis-Putnam(α[L/0]);

end

Figure 1: The Davis-Putnam algorithm for SAT.

Function Pure-Literal corresponds to lemma 1: it
returns for a formulaα a pointer to a monotone literal if
it exists andNULL otherwise. FunctionUnit-Literal
utilizes lemma 2 and returns a unit clause if it exists and
otherwiseNULL. The functionChoose-Literal defines
the heuristic which literal to use next for branching. Good
experimental results are obtained by using the lexicograph-
ical heuristic [7]: Lethi(L) be the number of clauses of
length i in which a given literalL occurs. Then calculate:

Hi(A) = max
(
hi(x), hi(¬x)

)
+2min

(
hi(x), hi(¬x)

)
(1)

Then, the variable with maximal vector(H1(x), · · · , Hn(x))
according to the lexicographical ordering is chosen.

OO
��

OO
��

OO
��

OO
����

neg
}} !!��

x1
oo //

}} !!

OO
��

¬x1

}} !!

OO

��

x2
oo //

}} !!

OO
��

¬x2OO

��

pos
�� ��

oo // x1
oo //OO

��

x2
oo //OO

��oo // ¬x1
oo //OO

��

x2
oo //OO

��

oo // x1
oo //OO

��

¬x2
oo //OO

��

Figure 2: Data structure for the2-CNF formula
α1 = (x1 ∨ x2) ∧ (¬x1 ∨ x2) ∧ (x1 ∨ ¬x2).

As can be seen in figure 1, Davis-Putnam uses a depth first
strategy where backtracking occurs when a leaf labelled with
0 is reached in its execution tree. The algorithm executes a
method callAssign(α, L) or Assign(α, ¬L) for every
occurrence ofα[L/1] or α[L/0], respectively. Upon leaving
the recursion on levelα[L/1] the implicitly called method

Unassign(α, L) modifies the current formula toα by
making use of a recursion stack.

L1

OO
L2

OO
L

OO
L4

OO

L1

��

��

oo // L2

��

��

oo // L

��

��

oo // L4

��

��

pp00

L1

OO

L2

OO

L

OO

L4

OO

Figure 3: Data structure of clauseκL = (L1 ∨ L2 ∨ L ∨ L4).

The formulation of Davis-Putnam is surprisingly simple.
Of key importance is the realization of data structures that
efficiently support necessary operations. With the sparse data
structure by Böhm and Speckenmeyer [7] used for our solver
the operationsAssign() and Unassign() need time
O
(
|α|−|α[L/1]|

)
, the test for unit clauses needs timeO(1).

L1

��

�
�

�

.
6

L2

��

�
�

�

.
6

L

��

L4

��

�
�

�

.
6

L1

OO

��

oo // L2

OO

��

oo // L

OO

��

oo // L4

OO

��

pp00

L1

ZZ

�
�

�

.
6

L2

ZZ

�
�

�

.
6

L

OO

L4

ZZ

�
�

�

.
6

Figure 4: Remove clauseκL in timeO(|κL|).

Figure 2 shows the used data structure for a2-CNF
formula. There, literals and clauses are connected in the
following way: Every occurrence of a literal in a clause
corresponds to a literal object within the data structure, in
figures 2 to 5 depicted by ¬x or L .

L1

OO
L2

OO
L

��

L4

OO

L1

��

��

oo // L2

��

��

55R V [_ d h
L

OO

��

//oo
L4

��

��

uu RV[_dh
pp00

L1

OO

L2

OO

L

OO

L4

OO

Figure 5: Shorten clauseκL in timeO(1).

All literals of a clause are connected through a doubly-
linked circular clause list as shown in figure 3. All literals
of the same type are connected through doubly-linked cir-
cular lists, so calledliteral occurrence listsdepicted by the
columns in figure 2. The head of such a literal occurrence
list is displayed by ¬x . These list heads are themselves
divided in two doubly-linked, circular lists. The list pos

155

ADVCOMP 2010 : The Fourth International Conference on Advanced Engineering Computing and Applications in Sciences

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-101-4

connects the list heads of all positive literals, whereas the
list neg connects the list heads of all negative literals.
These two lists represent the yet unassigned literals in the
given formula.

When applying changes within the data structure,
bookmarking links are set to be able to easily revert
changes made when traversing the execution tree. Fig-
ure 4 on the preceding page shows the changes to the datas-
tructure when removing a clause (e.g. when performing
α[L/1]) and similarly figure 5 shows the changes performed
when shortening a clause (e.g. when performingα[L/0]).

Operation Runtime
Unassign(α,L), Assign(α, L) O

(
|α| − |α[L/1]|

)

Unit-Literal(α) O(1)
Remove clauseκ from α O(|κ|)
RemoveL from clauseκ O(1)
Find clauseκ with L ∈ κ O(1)

Figure 6: Runtime of operations for CNF data structure.

Figure 6 lists important operations of the data structure
with their corresponding runtime behaviour.

IV. EVALUATING QBF

This section describes the changes necessary to extend
Davis-Putnam to QBF. The following lemma proves to be
an easy but fundamental tool for this:

Proposition 3 (substitution lemma [4]) Let Π be a prefix
and letΦ1 as well asΦ2 be two quantified boolean formulae.
Then follows from the equivalence ofΦ1 and Φ2, written

Φ1 ≈ Φ2, that the quantified formulaΠ Φ1 is equivalent to

Π Φ2, in other words:Π Φ1 ≈ Π Φ2. �

According to proposition 3, we may transform the matrix
of a QBF formula, just like we would for a CNF formula.
The proof is an easy induction on the length of the prefixΠ.
Furthermore, we consider the following two lemmas which
may be easily derived from their CNF counterparts.

Lemma 4 (monotone quantified literal [6]) Let Φ be a
quantified boolean formula and letL be a monotone literal
of Φ, i.e. a literal whose complement¬L does not occur in
the matrix ofΦ. Then the following holds:

1) In caseL is ∃-quantified, thenΦ is true if and only if
Φ[L/1] is true.

2) In caseL is ∀-quantified, thenΦ is true if and only if
Φ[L/0] is true. �

Lemma 4 means that in case of an∃-quantified monotone
literal L we may remove all clauses containingL, whereas
in case of an∀-quantified such literal we may shorten all
clauses that containL by removingL.

We call a clause of a quantified boolean formulaunit
existential clauseif it contains exactly one∃-quantified

literal for a variable y and all ∀-quantified literals for
variablesx occur to the right ofy within the prefix of the
formula. The QBF datastructure saves all literals of a clause
in the order their corresponding variables occur within the
prefix.

Lemma 5 (existential unit clause)Let L be the ∃-
quantified literal of an unit existential clauseκ of a
quantified boolean formulaΦ, i.e., L < Li for all other
(∀-quantified) literalsLi of the clauseκ. ThenΦ is true if
and only ifΦ[L/1] is true. �

Function boolean DP-QBF(QBF formula*Φ)

Input : Pointer to QBF formulaΦ.
Output : true if Φ evaluates to true andfalse otherwise.

begin
if Φ = true or Φ = false then return Φ;
L← Pure-Literal(Φ);
if L 6= NULL then

switch Quantifier(L) do
case∃ : return DP-QBF(Φ[L/1]);
case∀ : return DP-QBF(Φ[L/0]);

L← Unit-Literal(Φ);
if L 6= NULL then

return DP-QBF(Φ[L/1]);
L← Choose-Literal(Φ);
switch Quantifier(L) do

case∃ :
if DP-QBF(Φ[L/1]) or DP-QBF(Φ[L/0])
then

return true;
else

return false;

case∀ :
if DP-QBF(Φ[L/1]) and DP-QBF(Φ[L/0])
then

return true;
else

return false;

end

Figure 7: Skeleton of Davis-Putnam algorithm for QBF.

The Davis-Putnam extension to QBF may be for-
mulated as described in figure 7. There the functions
Pure-Literal() andUnit-Literal() correspond to
lemmata 4 and 5, respectively. We examine the heuristic
which delivers the literal to set next. Different to SAT
the choice for QBF is restricted to the leftmost group
of variables within the prefix that have the same quanti-
fier. That means for a quantified boolean formulaΦ =
∀Y1∃X2∀Y3 · · · ∃Xk ϕ with ∀-quantified variable setsYi and
∃-quantified setsXj first all literals belonging to variables
from Y1 are considered, then all literals belonging to vari-
ables fromX2, and so forth.

156

ADVCOMP 2010 : The Fourth International Conference on Advanced Engineering Computing and Applications in Sciences

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-101-4

The choice of a literal out of Lit(Yi) respectively Lit(Xj)
is then determined by the functionChoose-Literal().
For the lexicographic heuristic for SAT described by equa-
tion (1), the literal is chosen which occurs most often in the
shortest clauses of a given formula. Translated to QBF, a
literal with such properties out of the leftmost prefix group
is chosen. For QBF, the length of a clause is measured
by counting the number of∃-quantified literals whithin a
clause, irrespective of its corresponding position withinthe
clause (see [8] for a similar approach). For example: a clause
(x1 ∨ y2 ∨ y3) is treated by this modified heuristic just like
the clause(y4∨x5∨y6∨y7), while the unmodified heuristic
from equation (1) would rank the literals of the first clause
better than literals from the second clause.

V. UTILIZING AUTARKY FOR QBF

A function I : {x0, x1, x2, . . .} → {0, 1} for variablesxi

is called atruth assignment. If I is a partial assignment
that operates on a subset of the variables Var(ϕ) of a
SAT formulaϕ, thenI(ϕ) denotes the formula obtained by
assigning truth values to this subset’s variables accordingly.

Definition 6 (autark assignment [9]) A truth assignment
I of some variables{xi1 , . . . , xik} of a SAT formula ϕ is
called autark, if the following holds: every clause ofϕ that
contains a variablexij is already satisfied byI.

If such anI “touches” a clause ofϕ, this clause is already
satisfied byI: every clause ofI(ϕ) occurs inϕ. Autarky
has the nice property that we may remove all clauses with
variablesxij from ϕ without changing the satisfiability of
ϕ. The following easy remark gives further insight:

Remark 7 (Satisfiability of autark assignments) If I is
an autark assignment of variablesVaut = {xi1 , . . . , xik}
for a SAT formulaϕ, thenϕ is satisfiable if and only if an
assignmentI′ exists that satisfiesϕ and the restriction ofI′

to Vaut is identical toI, i.e., I′|Vaut
= I.

Proof. Let I be an autark assignemnt forϕ, with variable
setVaut and letH be a thruth assignment that satisfiesϕ. We
may alterI in accordance toH by definingI′(x) = I(x)
if x belongs toVaut andI′(x) = H(x) otherwise. ThenI′

satisfiesϕ. �

For the easy case of 1-autarky with|Vaut| = 1 remark
7 corresponds to lemma 1 on page 1, the rule monotone
literal. Our experiments showed that this rule lead to good
results for quantified formulas, i.e. to considerably less
branching nodes within our execution tree.

Therefore we examine how to extend the concept of
autarky to quantified boolean formulae. We consider the case
of 2-autarky for a QBF formulaΦ. Without loss of generality
Φ may contain no monotone literals. That means we examine
all variable subsets from Var(Φ) with size 2, respecting their

order in the prefix. The idea is to compute these subsets in
advance and later utilize them for search tree pruning. For
this, the following cases need to be considered:

Case 1: 2-∃∃-autarky{xi1 , xi2}. If an autark truth assign-
ment exists for two∃-quantified variablesxi1 < xi2 , we
have an already known case: all clauses, that contain either
xi1 oderxi2 may be removed. This is also true ifxi1 and
xi2 do not belong to the leftmost prefix group.

Case 2: 2-∀∀-autarky{yi1 , yi2}. For this case we closer
examine the structure of all clauses that containyi1 or yi2 .
There are eight possibilites for membership ofyi1 or yi2
within a clause. Figure 8(a) shows the four possible ways
that a clause contains eitheryi1 or yi2 , positive or negative.
Figure 8(b) shows the four possibilities thatyi1 as well as
yi2 are contained in a clause. There• describes a positive
literal, • describes a negative literal, and◦ shows that the
variable in question is not contained in the clause.

• ◦

• ◦

◦ •

◦ •
(a) 1-structure.

• •

• •

• •

• •
(b) 2-structure

Figure 8: Clause structure for 2-autarky.

We have28 = 256 possible structural occurrences of two
given distinct variables in the clauses of a CNF formula. Of
these occurrences only those need to be considered where
both variables occur at least once in a clause; so seven cases
may be rejected. By a combinatorical argument with some
case distinctions we may identify 90 cases of 2-autarkies
and therefore 159 cases of not-2-autarkies — this includes
symmetries and renamings of the kindz ← ¬z.

⇓ ⇓ ⇓

• •

• •

• •

1 1

1 0

0 1

1 0

1 1

0 0

0 1

0 0

1 1

0 0

0 1

1 0

(a) Three necessary branchings.

⇓ ⇓

• ◦

• •

• •

1

1 0

0 1

1

1 1

0 0

0

0 0

1 1

0

0 1

1 0

(b) Two necessary branchings.

Figure 9: Branchings for 2-∀∀-autarky.

We discuss essential ideas with the help of some exam-
ples. Figure 9(a) shows a 2-autarky with three possible types
of clause-structures(. . . yi1 ∨ yi2 . . .), (. . . yi1 ∨ ¬yi2 . . .) as
well as (. . .¬yi1 ∨ yi2 . . .). First we consider the case that
both variables are part of the leftmost prefix group. Then
branching according to the first column (i.e.I(yi1) = 1 und
I(yi2) = 1) does not make sense due to the 2-∀∀-structure.

157

ADVCOMP 2010 : The Fourth International Conference on Advanced Engineering Computing and Applications in Sciences

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-101-4

Then, in the worst case, each of the other branchings needs
to be considered.

How does the prefix order influence the algorithm? If
yi1 belongs to the leftmost prefix group we may branch
immediately. Because we have 2-autarky, the assignment of
yi1 leads to a monotone literalyi2 in the reduced formula
(which may be pruned, column 2). If this branch does not
lead to an abort, columns 3 and 4 need to be considered.
Here we must wait with the assignment ofyi2 until either
allowed by the prefix ordering or a special rule (monotone
quantified literal, unit existential clause) applies.

For the case thatyi1 does not belong to the leftmost
prefix group we may bookmark the 2-autarky for later
consideration.

⇓ ⇓

• ◦

• •

• •

1

1 0

0 1

1

1 1

0 0

0

0 0

1 1

0

0 1

1 0

Figure 10: Two branchings for 2-∀∃-autarky.

For the case of figure 9(b) on the preceding page we
have a different situation. Here also three different clause
types need to be considered, but with only two meaningful
branchings. Just like for figure 9(a) we do not need to branch
as described in column 1. This also holds for column 4 due
to the structure of column 3. Furthermore the same remarks
as above apply with regard to the moment we are allowed
to branch.

Case 3: 2-∀∃-autarky{yi1 , xi2}, with yi1 ∀-quantified and
xi2 ∃-quantified, andyi1 < xi2 . We look at the preceeding
example: In caseI(yi1) = 1, thenxi2 becomes monotone,
and only branching for column 1 is necessary. IfI(yi1) =
0, also because of monotony only column 4 needs to be
considered.

Case 4: 2-∃∀-autarky {xi1 , yi2}, with xi1 ∃-quantified,
yi2 ∀-quantified, andxi1 < yi2 . For a structure analogous
to figure 9(b) on the previous page we only need to branch
for columns 2 and 3 (similar to the 2-∀∀-autarky).

︷ ︸︸ ︷

• ◦

◦ •

• •

• •

1

1

0 1

0 0

1

0

0 0

0 1

0

1

0 1

1 0

0

0

0 0

1 1

Figure 11: Two branchings for not-2-autarky.

All four cases have in common, that one reduction occurs
because of the rule monotone literal. This may ease the later
implementation. Also, not-autarky allows for simplifications
as well, as shown in column 3 and 4 of figure 11.

VI. CHANGES TOQBF DATA STRUCTURES

From existing experiments with the rule monotone literal
for SAT formulas it is known [7], that this rule does not

lead to considerable improvements and is usually left out.
For SAT solvers which use the described data structure
the heuristic (and its computation cost) has considerable
implications on the overall practical runtime of the solver.
For QBF formulas the heuristic has less choice due to
the prefix, on the other hand a wrong choice has stronger
implications. Here we consider how to practically implement
the proposed considerations by integrating them into our data
structure.

For a quantifiedk-CNF clauseα with n variables andm
clauses the data structure requiresO(k · 2n + k ·m) space
so far: each literalL has a field of lengthk that counts
occurrences ofL in clauses of length1, . . . , k, wherek ·
m is the size of the matrix. Therefore, the runtime of the
lexicographic heuristic isO(k · 2n). For QBF formulas the
heuristic requiresO(k · 2 · |Z1|) time, whereZ1 denotes the
leftmost prefix group.

In order to consider structural information for a given vari-
able pair(z1, z2) for the heuristicChoose-Literal(),
a field s of length8 is used for each relevant combination,
which counts the occurrence of the pairs(z1, z2) in the
clauses of the formula. Only combinations of pairs are
relevant that occur at least once together in a clause. For
example: if x1 and y2 occur only as(. . . ∨ x1 ∨ . . .) or
(. . . ∨ ¬x1 ∨ . . .) and (. . . ∨ y2 ∨ . . .) or (. . . ∨ ¬y2 ∨ . . .),
the removal of a clause containingx1 or ¬x1 may not lead
to y2 becoming monotone. Therefore, structural information
of at mostO(k2 ·m) many ofO(n2) possible pairs needs to
be kept: for each of them clauses only up tok·(k−1)

2 new,
so far not considered pairs may be introduced.

The fact that the set ofO(k2 ·m) many field addresses is
static for a given input formula may be used for accelerated
access: A supporting data structure must provide for fast
access for any given variable pair. A possible solution for
this is to use correspondinghash functions.

When using hashing, a set of keysS ⊆ U with universe
U = {1, . . . , N} and |S| ≪ |U| is mapped to numbers
0, . . . , t − 1 with t ≥ s := |S|. Here, a hash function
h : U → {0, . . . , t − 1} is used. In caseh|S is one-
to-one, we call it aperfect hash function, which is per
definitionem collision free. We cite from [10] the result:
for every t ≥ 3 · s there exists a perfekt hash function,
which can deterministically be computed in timeO(s · N)
and probabilistically in timeO(s) and whose execution
requires timeO(1). One such hash function is described
by a program withO(s · logN) bits. For a short overview
on the subject we refer to [11].

Aside from hash functions we may also consider a hybrid
data structure like thetrie or prefix trie for our purposes. So
[12] describes a variant of such a trie data structure suitable
for storing a setS ⊆ U , wheres := |S| andN := |U| are
as above, withO(s) memory slots withO(log s) bits each
and worst-case access ofO

(
logs(N)

)
. For our case (r in

r · n = m denotes the ratio of clauses to variables)N = n2

158

ADVCOMP 2010 : The Fourth International Conference on Advanced Engineering Computing and Applications in Sciences

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-101-4

is polynomial in s = k2 · m = k2 · r · n, which leads to
the access time ofO

(
logs(N)

)
= O

(
logN
log s

)
= O(1). The

layout of the data structure requires some effort, therefore for
first experiments a method is proposed that uses probabilistic
methods to calculate an adequate hash function for the given
instance.

The information on the structure of a given variable pair
(z1, z2) may now be managed as follows: First for all
relevant variable pairs corresponding memory is allocated
(access timeO(1)) and the corresponding counters are
initialized with 0; then, for each of them clauses and
therein for each of theO(k2) pairs the corresponding8
structure counters are updated. To later allow a clause
(L1, . . . , Lℓ−1, Lℓ) of length ℓ to be shortened by setting
a literal tofalse, ℓ − 1 counters must each be decreased
by 1. In case a clause of lengthℓ is removed,ℓ·(ℓ−1)

2 many
counters need to be decreased by1. Accordingly, these op-
erations have to be reverted in reverse order when returning
from a lower recursion level. The relevant structural classes
necessary to identify a2-autarky as such may be deposited
in tabular form, where the table can be generated during
compile time.

Altogether, the space requirements for the data structure
is increased fromO(k · 2n + k · m) to O(k · 2n + k2 ·
m). The time requirement to shorten a clause is stillO(k),
whereas the removal of a clause leads to the changed runtime
requirement ofO(k2).

VII. C ONCLUSION AND FUTURE WORK

The strength of the described SAT data structure may
also be observed for its extension to QBF: because of a
small memory footprint along with its operation, formulas
of considerable size fit into the CPU data cache, with small
runtime requirements for elemenary operations. Up to date,
recent QBF solvers in contrast to recent SAT solvers can
only cope with comparatively small randomized instances of
quantified boolean formulae [13], which shows the benefits
of a compact data structure.

Therefore a paramatrized analysis of2-autarky based SAT
reductions seems promising to identify measures that sig-
nificantly purge the QBF search tree. Also subject of future
examinations is the analysis how to efficiently integrate and
parametrize these SAT reductions with other implemented
reductions (like trivial truth or trivial falsity), while still
keeping the memory footprint of the corresponding QBF
data structure small.

To the best of our knowledge, no research has been
undertaken yet to utilize the detection of2-autarky structures
for pruning the search tree of existing QBF solvers.

VIII. A CKNOWLEDGMENTS

The author would like to thank Ewald Speckenmeyer,
Stefan Porschen, and Bert Randerath for many fruitful dis-
cussions and the reviewers who helped improve the original
manuscript.

REFERENCES

[1] G. Gopalakrishnan, Y. Yang, and H. Sivaraj, “QB or Not QB:
An Efficient Execution Verification Tool for Memory Order-
ings,” in Proceedings of the 16th International Conference on
Computer Aided Verification (CAV 2004), 2004, pp. 401–413.

[2] M. Mneimneh and K. Sakallah, “Computing Vertex Eccen-
tricity in Exponentially Large Graphs: QBF Formulation and
Solution,” in Proceedings of the 6th International Conference
on Theory and Applications of Satisfiability Testing (SAT
2003), 2003, pp. 411–425.

[3] J. Rühmkorf, “Entwicklung eines leistungsfähigen Lösers für
Quantifizierte Boolesche Formeln,” Master’s thesis, Univer-
sity of Cologne, 2005.

[4] H. Kleine Büning and T. Lettman,Propositional Logic:
Deduction and Algorithms. Cambridge University Press,
1999.

[5] M. Davis and H. Putnam, “A Computing Procedure for
Quantification Theory,”Journal of the ACM, vol. 7, no. 3,
pp. 201–215, Mar. 1960.

[6] M. Cadoli, A. Giovanardi, and M. Schaerf, “An Algorithm
to Evaluate Quantified Boolean Formulae,” inProceedings of
the 15th National Conference on Artificial Intelligence (AAAI
1998), Madison, WI, 26.–30. Jul. 1998, pp. 262–267.

[7] M. Böhm and E. Speckenmeyer, “A Fast Parallel SAT-Solver
– Efficient Workload Balancing,”Annals of Mathematics and
Artificial Intelligence, vol. 17, pp. 381–400, 1996.

[8] R. Feldmann, B. Monien, and S. Schamberger, “A Distributed
Algorithm to Evaluate Quantified Boolean Formulae,” in
Proceedings of the 17th National Conference on Artificial
Intelligence (AAAI 2000). Austin, TX: American Association
of Artificial Intelligence, 30. Jul. – 3. Aug. 2000, pp. 285–
290.

[9] B. Monien and E. Speckenmeyer, “Solving Satisfiability in
less than 2n Steps,”Discrete Applied Mathematics, vol. 10,
no. 3, pp. 287–295, Mar. 1985.

[10] M. L. Fredman, J. Komlós, and E. Szemerédi, “Storing a
Sparse Table with O(1) Worst Case Access Time,”Journal of
the ACM, vol. 31, no. 3, pp. 538–544, Jul. 1984.

[11] K. Mehlhorn and A. K. Tsakalidis, “Data Structures,” in
Handbook of Theoretical Computer Science, Volume A: Al-
gorithms and Complexity, J. van Leeuwen, ed. Amsterdam:
Elsevier, 1990, pp. 301–342.

[12] R. E. Tarjan and A. C.-C. Yao, “Storing a Sparse Table,”
Communications of the ACM, vol. 22, no. 11, pp. 606–611,
Nov. 1979.

[13] “The Third Competitive Evaluation of QBF Solvers,” 2008,
http://www.qbflib.org/, last accessed 1. Jul. 2010.

159

ADVCOMP 2010 : The Fourth International Conference on Advanced Engineering Computing and Applications in Sciences

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-101-4

http://www.qbflib.org/

	Introduction
	Preliminaries
	Davis-Putnam for SAT
	Evaluating QBF
	Utilizing Autarky for QBF
	Changes to QBF Data Structures
	Conclusion and future work
	Acknowledgments
	References

