ADVCOMP 2010 : The Fourth International Conference on Advanced Engineering Computing and Applications in Sciences

Using Autarky to Evaluate Quantified Boolean Formulae

Jens Ruhmkorf
Simulation and Software Technology
German Aerospace Center (DLR)
Linder Hohe, D-51147 Koéln, Germany
E-mail: Jens.Ruehmkorf@dir.de

Abstract— In this paper, we discuss algorithmical implica- variablesz; occurring in . The evaluation problenfor a
tions for the extension of autarky from propositional logic given QBF® is to decide whethe® is true or not. Example

to evaluate quantified boolean formulae (QBF). First, the BE formul r 3 - - which
Davis-Putnam procedure for the satisfiability problem (SAT) 'Qt 0 ;vasva &y1dza (11 ;]/ ha?_z)]{\ I(y1 V z2) whic
is described. Then we explain efficient known data structures 'S fU€ anadvyi vy, (y_l V) which is alse.)

for SAT and extensions to QBF which we used in our solver. A literal L is a variablez or —z. For two different literals

Finally, we introduce the concept of autarky and describe how L;, L; with corresponding variables, z; of a QBF formula
detecting 2-autarky structures in a given QBF formula helps @ we may writeL; < L; if z; occurs to the left of; in the
prunng ige dseigicbhet;ii'hi‘;éﬂﬁigjgé ‘f)cf)rogrB'l‘:”OW'edge we are prefix of ®. We use LifZ) as shorthand notation for the set
' of literals for a given set of variable®. Similarly, Var(®)
Keywords—Autarky; Davis-Putnam; SAT; QBF and Valy) are used for the variable sets occurring in a QBF
formula ® and a SAT formulap, respectively. Aclauseis
a formulax = (Ly V --- vV L) with literals L;; the second
In recent years, the language of quantified boolean formuelause of the first example is-y; V x2) with literals =y,
lae (QBF) has gained importance for practical applicationsand z5. We say a SAT formulg is in conjunctive normal
QBF allows for a concise representation of many classes dbrm (CNF), if it is expressed by a conjunction of clauses
problems([1],[[2]: Gopalakrishnan et al. study the probldm o ¢ = k1 A -+ A K.
formally verifying shared memory multiprocessor execuosio
against memory consistency models for the Intel Iltanium by
translating occurring problems to the satisfiability peshl Both SAT and QBF describe prototypical complete prob-
(SAT) and QBF [D_] Mneimneh et al. also consider the ap_lems for the important CompleXity ClaSS&@) andPSPACE,
plication area of formal hardware verification and transfor respectively. Syntactically restricted forms of QBF déser
the diameter problem — determining the length of a longesEomplete problems fok:] and I1} within the polynomial
of all shortest paths — for a class of large digraphs to QBFtime hierarchyPH. For the remainder of this paper, we
but end up converting their problem to SAT, because ngsonsider only quantified boolean formul@ewhose matrix
existing QBF solver is able to solve their problems [2]. ¢ iS in CNF. Indeed, for a given QBF formuka we may
The paper is organized as follows: Sectioh Il introducesgenerate in linear time an equivalent quantified boolean
preliminary definitions and concepts. Sectlad Il deswibe formula whose matrix is in CNF_[4, ch. 7].
the Davis-Putnam procedure for SAT along with efficient The evaluation algorithm used within this paper is a
data structures. Secti@nllV discusses efficient data sirest generalization of the Davis-Putnam procedure for SAT [5]
used for extending Davis-Putnam to QBF. Based on ouf0 QBF [€]. Figure[I on the following pape describes the
experimental results (due to space limitations not diseiss Davis-Putnam algorithm as recursive function. The algo-
in this paper). Sectiors]V ard V! derive enhancements t¢ithm utilizes the following two fundamental observations
the current algorithm by extending the concept of autarky to . . .
QBF and discuss possible implementation approaches. Set€mMma 1 (monotone literal [S]) If the literal Z is mono-
tion[VIlconcludes the paper by briefly evaluating the cutren ©N€ 1-€. by definition,L, occurrs only positive f, =) or

status and provides information on future development. ~n€gative £ = —z) within the CNF formula o, then o is
equivalent toa[L/1] or «[L/0], respectively. O

I. INTRODUCTION

IIl. DAVIS-PUTNAM FOR SAT

Il. PRELIMINARIES
Lemma 2 (unit clause [5]) Let L be the literal of a unit

8Iause of theCNF formula «. Thena is satisfiable if and
only if a[L/1] is satisfiable. O

A quantified boolean formul® = ;21 - - gn2, ¢ CON-
sists of a sequence of quantified variables, the so-calle
prefix followed by a quantifier free SAT formule, the
matrix of the formula. The prefixq;2; ---g,z, contains Here a[L/e] denotes the formula obtained fromby re-
universalV and existentiad quantifiers for propositional placing each occurrence @f with € € {0, 1}. Furthermore,

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-101-4 154

ADVCOMP 2010 : The Fourth International Conference on Advanced Engineering Computing and Applications in Sciences

a clausex is called k-clause, ifx contains onlyk literals Unassi gn(«, L) modifies the current formula tex by
(Ly V---V L), al-clause(L) is calledunit clause making use of a recursion stack.

Function boolean Davi s- Put nam(CNF formula* «) °
Input: Pointer to CNF formulax.
Output: t rue if « is satisfiable and al se otherwise. -

| DEBSOEIE

if o =1 then return true;

if & =0 then return f al se;
L+ Pure-Literal («); éb é éb &
if L # NULL then °

| return Davi s- Put nanm(«[L/1]) ;

L+ Unit-Literal (a); Figure 3: Data structure of clause, = (L1 V Lo V L'V Ly).
if L # NULL then
L retum Davi s- Put nam(a[L/1]); The formulation of Davis-Putnam is surprisingly simple.
L < Choose-Literal (o); Of key importance is the realization of data structures that
'fLD?gt'u; Ft)urturg’.m(a[L/1]) then efficiently support necessary operations. With the spaae d
return Davi s- P’ut nam(a[L/0]) ; structure by Bohm _and Speckenmey@r_ [7] used for our solver
end the operationsAssi gn() and Unassi gn() need time

O(|a|—|a[L/1]]), the test for unit clauses needs ti%1).
Figure 1: The Davis-Putnam algorithm for SAT.

Function Pur e- Li t eral corresponds to lemmal 1: it @ @

returns for a formulax a pointer to a monotone literal if e BN
it exists andNULL otherwise. Functiorni t - Li t er al ‘

o : . . L Lo 7 =< '.L
utilizes lemma R and returns a unit clause if it exists and]>’. L A]>. 2 A > L ek ,4, i

otherwiseNULL. The functionChoose- Li t er al defines R 2
the heuristic which literal to use next for branching. Good @ @
experimental results are obtained by using the lexicograph

ical heuristic [T]: Leth;(L) be the number of clauses of

lengthi in which a given literalL occurs. Then calculate: Figure 4: Remove clausey in time O(Jr.[)

H;(A) = max(h;(z), hi(—x)) +2min(h;(z), hi(-z)) (1) Figure 2 shows the used data structure foQ—ﬁ:NF

] _) formula. There, literals and clauses are connected in the
Then, the variable with maximal vect(ﬂl(x?,m »Hn(2)) following way: Every occurrence of a literal in a clause
according to the lexicographical ordering is chosen. corresponds to a literal object within the data structune, i

figures[2 td® depicted by ==> or ().

L
A
v
_ “““““ L
J\
Y
L
Figure 2: Data structure for th2 CNF formula Figure 5: Shorten clauser, in time O(1

o] = (1‘1 \Y 332) A (—\xl V 1'2) A (acl Vv _‘.TQ).
All literals of a clause are connected through a doubly-
As can be seen in figuEé 1, Davis-Putnam uses a depth firSinked circular clause list as shown in figre 3. All literals

strategy where backtracking occurs when a leaf labellel wit of the same type are connected through doubly-linked cir-
0 is reached in its execution tree. The algorithm executes gular lists, so callediteral occurrence listsdepicted by the
method callAssi gn(o, L) or Assi gn(a, —L) for every columns in figurd 2. The head of such a literal occurrence
occurrence ofv[L/1] or a[L/0], respectively. Upon leaving list is displayed by [—=] . These list heads are themselves
the recursion on levek[L/1] the implicitly called method divided in two doubly-linked, circular lists. The Ii

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-101-4 155

ADVCOMP 2010 : The Fourth International Conference on Advanced Engineering Computing and Applications in Sciences

connects the list heads of all positive literals, whereas th
list connects the list heads of all negative literals.

literal for a variabley and all V-quantified literals for
variablesz occur to the right ofy within the prefix of the

These two lists represent the yet unassigned literals in theormula. The QBF datastructure saves all literals of a @aus

given formula.

When applying changes within the data structure,

in the order their corresponding variables occur within the
prefix.

bookmarking links are set to be able to easily revert

changes made when traversing the execution tree. Fi

9"emma 5 (existential unit clause)Let L be

the 3-

ure|4 on the preceding pgge shows the changes to the datqg;) iifieq literal of an unit existential clause of a

tructure when removing a clause (e.g. when performin
a[L/1]) and similarly figuréb shows the changes performe
when shortening a clause (e.g. when performiig /0]).

Operation Runtime
Unassi gn(o,L), Assi gn(o, L) O(|a] — |a[L/1]])
Unit-Literal () o)
Remove clause from « O(|x])
RemoveL from clausex o(1)
Find clausex with L € O(1)

Figure 6: Runtime of operations for CNF data structure.

Figure[® lists important operations of the data structure

with their corresponding runtime behaviour.
IV. EVALUATING QBF

This section describes the changes necessary to extend

Davis-Putnam to QBF. The following lemma proves to be
an easy but fundamental tool for this:

Proposition 3 (substitution lemma [4]) Let I be a prefix
and let®; as well asd, be two quantified boolean formulae.
Then follows from the equivalence @f and ®,, written
d, = &y, that the quantified formul@l &, is equivalent to
II ®,, in other words:II ®; ~ II ®,. O

According to propositionl3, we may transform the matrix
of a QBF formula, just like we would for a CNF formula.
The proof is an easy induction on the length of the préffix
Furthermore, we consider the following two lemmas which
may be easily derived from their CNF counterparts.

Lemma 4 (monotone quantified literal [6]) Let ® be a
quantified boolean formula and Iét be a monotone literal
of ¥, i.e. a literal whose complementl. does not occur in
the matrix of®. Then the following holds:

1) In caseL is 3-quantified, thend is true if and only if

®[L/1] is true.
2) In caselL is V-quantified, thend is true if and only if
®[L/0] is true. O

Lemmal4 means that in case of amuantified monotone
literal L we may remove all clauses containiig whereas
in case of anv-quantified such literal we may shorten all
clauses that contain by removingL.

We call a clause of a quantified boolean formuiait
existential clauseif it contains exactly one3-quantified

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-101-4

%uantified boolean formulab, i.e., L < L; for all other
d(V-quantified) literalsL; of the clausex. Then® is true if

and only if®[L/1] is true. O

Function boolean DP- QBF(QBF formula* @)

Input: Pointer to QBF formulad.
Output: t rue if ® evaluates to true anfdal se otherwise.
begin
if ®=true or & =fal se then return &;
L+ Pure-Literal (9);
if L # NULL then
switch Quanti fi er (L) do
cased : return DP- QBF(®[L/1]);
L caseV : return DP- QBF(®[L/0]);

L+ Unit-Literal (9);

if L # NULL then

| return DP- QBF(®[L/1]);
L < Choose-Literal (®);
switch Quanti fi er (L) do
cased:

if DP- QBF(®[L/1]) or DP- QBF(®[L/0))
then

| return true;
else

| return fal se;

casev :

if DP- QBF(®[L/1]) and DP- QBF(®[L/0])
then

| return true;

else

| return fal se;

end

Figure 7: Skeleton of Davis-Putnam algorithm for QBF.

The Davis-Putnam extension to QBF may be for-
mulated as described in figuig 7. There the functions
Pure-Literal () andUnit-Literal () correspondto
lemmatal¥ andl5, respectively. We examine the heuristic
which delivers the literal to set next. Different to SAT
the choice for QBF is restricted to the leftmost group
of variables within the prefix that have the same quanti-
fier. That means for a quantified boolean formuba =
YY13X,VY; - - - 3XG o with V-quantified variable sets; and
J-quantified setsX; first all literals belonging to variables
from Y; are considered, then all literals belonging to vari-
ables fromXs,, and so forth.

156

ADVCOMP 2010 : The Fourth International Conference on Advanced Engineering Computing and Applications in Sciences

The choice of a literal out of L{t;) respectively LitX;) order in the prefix. The idea is to compute these subsets in
is then determined by the functidZhoose- Literal (). advance and later utilize them for search tree pruning. For
For the lexicographic heuristic for SAT described by equa-his, the following cases need to be considered:
tion (d), the literal is chosen which occurs most often in the Case 1: 2Z33-autarky{x;, , z;, }. If an autark truth assign-
shortest clauses of a given formula. Translated to QBF, anent exists for two3-quantified variables;, < z;,, we
literal with such properties out of the leftmost prefix group have an already known case: all clauses, that contain either
is chosen. For QBF, the length of a clause is measured;, oderz;, may be removed. This is also trueaf, and
by counting the number of-quantified literals whithin a x;, do not belong to the leftmost prefix group.
clause, irrespective of its corresponding position witthia Case 2: 2¢V-autarky{y;,,v:, }. For this case we closer
clause (se€é[8] for a similar approach). For example: a elausexamine the structure of all clauses that contginor y;, .

(x1 V y2 Vys) is treated by this modified heuristic just like There are eight possibilites for membershipef or y;,
the clausdy, Vx5 Vys V y7), while the unmodified heuristic within a clause. Figurg 8(a) shows the four possible ways
from equation[{ll) would rank the literals of the first clausethat a clause contains eithgy, or y;,, positive or negative.

better than literals from the second clause. Figure[8(B) shows the four possibilities tha; as well as
yi, are contained in a clause. Thesedescribes a positive
V. UTILIZING AUTARKY FOR QBF literal, s describes a negative literal, andshows that the

A function 3 : {xg, z1,22,...} — {0,1} for variablesz; variable in question is not contained in the clause.
is called atruth assignmentlf J is a partial assignment

that operates on a subset of the variables(¢/arof a ° ° ° °
SAT formulay, thenJ(y) denotes the formula obtained by O o . .
assigning truth values to this subset’s variables accghylin o o - o

. : - o 0 O O
Definition 6 (aytark assignment [9]) A truth aSS|gnmgnt (@) 1-structure. (b) 2-structure
J of some variableqz;,,...,z;, } of a SAT formula ¢ is
called autark if the following holds: every clause qf that Figure 8: Clause structure for 2-autarky.

contains a variabler;; is already satisfied by.

8 _ .
If such anJ “touches” a clause o, this clause is already We have2® = 256 possible structural occurrences of two

L . . given distinct variables in the clauses of a CNF formula. Of

satisfied byJ: every clause ofi(¢) occurs ing. Autarky :
) . these occurrences only those need to be considered where

has the nice property that we may remove all clauses with ; : i

. . : P both variables occur at least once in a clause; so seven cases
variablesz;; from ¢ without changing the satisfiability of . . . :

The following easy remark gives further insight: may be rejected. By a combinatorical argument with some
L& ' case distinctions we may identify 90 cases of 2-autarkies
and therefore 159 cases of not-2-autarkies — this includes

R k7 isfiability of k i If Ji) i .
emark 7 (Satisfiability of autark assignments)If 7 is symmetries and renamings of the kind— —=.

an autark assignment of variabl&3,. = {zi,,..., 2}
for a SAT formulayp, theny is satisfiable if and only if an

assignmenf’ exists that satisfieg and the restriction of’ L) ¢ 0 0 ¢ L 0 ¢ 0

to Vaut is identical to7J, i.e., 3/|v,m =7. J Lo - o 0 0 1
_ .) v . 0 1 0 0 1o 10

Proof. Let 7 be an autark assignemnt far, with variable (a) Three necessary branchings.

setV,u and let$ be a thruth assignment that satisfiesVe n n

may alterJ in accordance t¢) by defining3d’'(z) = J(z) e o | 1 L 0 0

if 2 belongs toV,,; andJ (x) = $(x) otherwise. Therd’ . s 1 0 11 0 0 0

satisfiesp. O T e 0 1 0 o 11 1 0

. (b) Two necessary branchings.
For the easy case of l-autarky with,..] = 1 remark
[0 corresponds to lemma 1 on pade 1, the rule monotone Figure 9: Branchings for 2v-autarky.

literal. Our experiments showed that this rule lead to good

results for quantified formulas, i.e. to considerably less We discuss essential ideas with the help of some exam-

branching nodes within our execution tree. ples. Figur¢ 9(a) shows a 2-autarky with three possiblestype
Therefore we examine how to extend the concept ofof clause-structure§ .. y;, Vi, ...), (... ¥, VY, ...) @S

autarky to quantified boolean formulae. We consider the caseell as(...—y;, V yi, ...). First we consider the case that

of 2-autarky for a QBF formul®. Without loss of generality both variables are part of the leftmost prefix group. Then

® may contain no monotone literals. That means we examinbranching according to the first column (i¥y;,) = 1 und

all variable subsets from V&p) with size 2, respecting their J(y;,) = 1) does not make sense due to th&2structure.

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-101-4 157

ADVCOMP 2010 : The Fourth International Conference on Advanced Engineering Computing and Applications in Sciences

Then, in the worst case, each of the other branchings needisad to considerable improvements and is usually left out.
to be considered. For SAT solvers which use the described data structure
How does the prefix order influence the algorithm? Ifthe heuristic (and its computation cost) has considerable
yi, belongs to the leftmost prefix group we may branchimplications on the overall practical runtime of the solver
immediately. Because we have 2-autarky, the assignment ¢for QBF formulas the heuristic has less choice due to
yi, leads to a monotone litera};, in the reduced formula the prefix, on the other hand a wrong choice has stronger
(which may be pruned, column 2). If this branch does notimplications. Here we consider how to practically implemen
lead to an abort, columns 3 and 4 need to be considerethe proposed considerations by integrating them into otar da
Here we must wait with the assignment gf until either structure.
allowed by the prefix ordering or a special rule (monotone For a quantified:-CNF clausex with n variables andn

quantified literal, unit existential clause) applies. clauses the data structure requi®ék - 2n + k - m) space
For the case tha;, does not belong to the leftmost so far: each literall. has a field of length: that counts
prefix group we may bookmark the 2-autarky for later occurrences of. in clauses of length, ..., k, wherek -
consideration. m is the size of the matrix. Therefore, the runtime of the
lexicographic heuristic i€)(k - 2n). For QBF formulas the
. .l v) o o v heuristic rquire@(k -2-|Zy|) time, whereZ; denotes the
e s 10 1110 o0l o 1 leftmost prefix group.
s o lo 1]l ool 1 1]1 0 In order to consider structural information for a given vari

able pair(zy, z2) for the heuristicChoose- Literal (),
a field s of length8 is used for each relevant combination,

_ which counts the occurrence of the pairs,z2) in the
For the case of figur¢_S(b) on the preceding page Wejauses of the formula. Only combinations of pairs are
have a different situation. Here also three different @aus rejevant that occur at least once together in a clause. For

types need to be considered, but with only two meaningfubyample: ifz; and y, occur only as(... Vv a1 Vv ...) or

Figure 10: Two branchings for 25-autarky.

branchings. Just like for figufe 9a) we do notneed to branch 2, v ..) and (... Vys V...) or (...V =g V...),

to the structure of column 3. Furthermore the same remarkg, ., becoming monotone. Therefore, structural information
as above apply with regard to the moment we are allowedf at mostO (k2 - m) many of O(n?) possible pairs needs to
to branch. _ B be kept: for each of then clauses only up td=*=1) new,
Case 3: 2/3-autarky{yi,, =i, }, with y;, V-quantified and g4 tar not considered pairs may be introduced.
a;, -quantified, andy;, < z;,. We look at the preceeding The fact that the set aP(k? -m) many field addresses is
example: In casé(y;,) = 1, thenz;, becomes monotone, gatic for a given input formula may be used for accelerated
and only branching for column 1 is necessaryJ(i,) = access: A supporting data structure must provide for fast
0, also because of monotony only column 4 needs 10 b&ccess for any given variable pair. A possible solution for
considered. _ B this is to use correspondirtgash functions
Case 4: Z3v-autarky {zi,,y:, }, with z;, 3-quantified, When using hashing, a set of kegsC ¢ with universe
yi, V-quantified, andr;, < y;,. For a structure analogous ;, _ {1,...,N} and |S| < || is mapped to numbers

to figure[9(b) on the previous pdge we only need to brancl@w._’t — 1 with t > s := |S|. Here, a hash function
for columns 2 and 3 (similar to the \2#-autarky). h:U — {0,....t — 1} is used. In casehs is one-
. to-one, we call it aperfect hash function, which is per
s ol L 0 0 definitionem collision free. We cite froni_[10] the result:
o e 1 0 1 0 for everyt > 3 - s there exists a perfekt hash function,
o o 0 1 0 0 0 1 0 0 which can deterministically be computed in tind¥s - N)
e s | 0 0 | 0 0 and probabilistically in timeO(s) and whose execution

requires timeO(1). One such hash function is described
by a program withO(s - log N) bits. For a short overview

All four cases have in common, that one reduction occurd" the subject we refer to_[11].

because of the rule monotone literal. This may ease the latey Aside from hlf'fh Lun_ctlons V‘]’f m_ayf also consider a héb”d
implementation. Also, not-autarky allows for simplificais ata structure like therie or prefix trieor our purposes. S0

as well, as shown in column 3 and 4 of figlrd 11. [12] de;cribes a variant of such a trie data structure deitab
for storing a setS C U, wheres := |S| and N := || are
VI. CHANGES TOQBF DATA STRUCTURES as above, withO(s) memory slots with®(log s) bits each
From existing experiments with the rule monotone literaland worst-case access 6f(log,(NV)). For our caser(in
for SAT formulas it is known[[F], that this rule does not r-n = m denotes the ratio of clauses to variabl@g)= n>

Figure 11: Two branchings for not-2-autarky.

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-101-4 158

ADVCOMP 2010 : The Fourth International Conference on Advanced Engineering Computing and Applications in Sciences

is polynomial ins = k2 -m = k% - r - n, which leads to
the access time oD (log,(N)) = O(F£5) = O(1). The
layout of the data structure requires some effort, theechor
first experiments a method is proposed that uses probabilist
methods to calculate an adequate hash function for the given
instance. 2]
The information on the structure of a given variable pair
(z1,22) may now be managed as follows: First for all
relevant variable pairs corresponding memory is allocated
(access timeO(1)) and the corresponding counters are
initialized with 0; then, for each of then clauses and
therein for each of the)(k?) pairs the corresponding
structure counters are updated. To later allow a clause
(L1,...,Ls—1,Ly) of length ¢ to be shortened by setting
a literal tof al se, £ — 1 counters must each be decreased [4]
by 1. In case a clause of lengthis removed,e'(g_l) many
counters need to be decreasedlbyAccordingly, these op-
erations have to be reverted in reverse order when returnings;
from a lower recursion level. The relevant structural aass
necessary to identify a-autarky as such may be deposited
in tabular form, where the table can be generated during 6
compile time. [6]
Altogether, the space requirements for the data structure
is increased fromO(k - 2n + k- m) to O(k - 2n + k? -
m). The time requirement to shorten a clause is §¥i(k),
whereas the removal of a clause leads to the changed runtimé&’]
requirement ofO(k?).

(1]

(3]

VII. CONCLUSION AND FUTURE WORK

The strength of the described SAT data structure may
also be observed for its extension to QBF: because of a
small memory footprint along with its operation, formulas
of considerable size fit into the CPU data cache, with small
runtime requirements for elemenary operations. Up to date,
recent QBF solvers in contrast to recent SAT solvers can 9
only cope with comparatively small randomized instances of
quantified boolean formulag[13], which shows the benefits
of a compact data structure.

Therefore a paramatrized analysi2edutarky based SAT [10]
reductions seems promising to identify measures that sig-
nificantly purge the QBF search tree. Also subject of future
examinations is the analysis how to efficiently integratd an [11]
parametrize these SAT reductions with other implemented
reductions (like trivial truth or trivial falsity), while tgl
keeping the memory footprint of the corresponding QBF
data structure small. [12]

To the best of our knowledge, no research has been
undertaken yet to utilize the detection®futarky structures
for pruning the search tree of existing QBF solvers.

(8]

[13]
VIIl. A CKNOWLEDGMENTS
The author would like to thank Ewald Speckenmeyer,
Stefan Porschen, and Bert Randerath for many fruitful dis-
cussions and the reviewers who helped improve the original
manuscript.

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-101-4

REFERENCES

G. Gopalakrishnan, Y. Yang, and H. Sivaraj, “QB or Not QB:
An Efficient Execution Verification Tool for Memory Order-
ings,” in Proceedings of the #BInternational Conference on
Computer Aided Verification (CAV 2004004, pp. 401-413.

M. Mneimneh and K. Sakallah, “Computing Vertex Eccen-
tricity in Exponentially Large Graphs: QBF Formulation and
Solution,” in Proceedings of the'®International Conference
on Theory and Applications of Satisfiability Testing (SAT
2003) 2003, pp. 411-425.

J. Ruhmkorf, “Entwicklung eines leistungsfahigen Losers fiir
Quantifizierte Boolesche Formeln,” Master’s thesis, Univer-
sity of Cologne, 2005.

H. Kleine Bining and T. LettmanPropositional Logic:
Deduction and Algorithms Cambridge University Press,
1999.

M. Davis and H. Putnam, “A Computing Procedure for
Quantification Theory,"Journal of the ACMvol. 7, no. 3,
pp. 201-215, Mar. 1960.

M. Cadoli, A. Giovanardi, and M. Schaerf, “An Algorithm
to Evaluate Quantified Boolean Formulae,”"Rmoceedings of

the 18" National Conference on Atrtificial Intelligence (AAAI
1998) Madison, WI, 26.—30. Jul. 1998, pp. 262-267.

M. B6hm and E. Speckenmeyer, “A Fast Parallel SAT-Solver
— Efficient Workload Balancing,Annals of Mathematics and
Artificial Intelligence vol. 17, pp. 381-400, 1996.

R. Feldmann, B. Monien, and S. Schamberger, “A Distributed
Algorithm to Evaluate Quantified Boolean Formulae,” in
Proceedings of the 17 National Conference on Artificial
Intelligence (AAAI 2000) Austin, TX: American Association
of Artificial Intelligence, 30. Jul. — 3. Aug. 2000, pp. 285—
290.

B. Monien and E. Speckenmeyer, “Solving Satisfiability in
less than 2 Steps,”Discrete Applied Mathematicsol. 10,
no. 3, pp. 287-295, Mar. 1985.

M. L. Fredman, J. Komlés, and E. Szemerédi, “Storing a
Sparse Table with O(1) Worst Case Access Tinde{irnal of
the ACM vol. 31, no. 3, pp. 538-544, Jul. 1984.

K. Mehlhorn and A. K. Tsakalidis, “Data Structures,” in
Handbook of Theoretical Computer Science, Volume A: Al-
gorithms and Complexifyd. van Leeuwen, ed. Amsterdam:
Elsevier, 1990, pp. 301-342.

R. E. Tarjan and A. C.-C. Yao, “Storing a Sparse Table,”
Communications of the ACMol. 22, no. 11, pp. 606-611,
Nov. 1979.

“The Third Competitive Evaluation of QBF Solvers,” 2008,
http://www.gbflib.org/, last accessed 1. Jul. 2010.

159

http://www.qbflib.org/

	Introduction
	Preliminaries
	Davis-Putnam for SAT
	Evaluating QBF
	Utilizing Autarky for QBF
	Changes to QBF Data Structures
	Conclusion and future work
	Acknowledgments
	References

