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Abstract—We consider the problem of blocking all rays
emanating from a closed unit disk with a minimum number
of closed unit disks in the two-dimensional space, where the
minimum distance from a disk to any other disk is given. We
study the asymptotic behavior of the minimum number of disks
as the minimum mutual distance approaches infinity. Using a
regular ordering of disks on concentric circular rings we derive
an upper bound and prove that the minimum number of disks
required for blocking is quadratic in the minimum distance
between the disks.
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I. INTRODUCTION

Let U be a closed unit disk, i.e., a disk with radius 1, in
the two-dimensional plane and let R denote the set of all
rays that emanate from U . A ray r ∈ R is said to be blocked
by a disk δ if r and δ have a non-empty intersection. A set
D of closed unit disks, with U /∈ D, is called a blocking set
if every ray r ∈ R is blocked by a disk in D. In addition,
a blocking set D is called d-apart if the distance between
each pair of disks in D∪ {U} is at least d, where distances
are measured from center to center.

Minimum Cardinality Blocking Set Problem. Given d,
what is the minimum cardinality Nd of a d-apart blocking
set?

More specifically, we are interested in the asymptotic behav-
ior of Nd, as d tends to infinity. For reasons of convenience,
we focus on the following problem, which is equivalent to
the minimum cardinality blocking set problem.

Maximum Distance Blocking Set Problem. Given N unit
disks, what is the maximum distance d for which the disks
may form a d-apart blocking set?

Motivation. The problems considered in this paper are
related to occlusion problems in table-top interaction de-
vices, where multiple sensors, for example, light sensors
or cameras, scan the two-dimensional plane just above the
table’s surface for objects like game pieces or fingers. A
circular object emitting light in that plane cannot be ”seen”
by the sensors, in other words, it is no longer visible if
all rays emanating from it are blocked by other circular

objects, for example. The results presented in this paper
give a valuable insight on the number of objects required
for one such occlusion problem to occur. In other words, we
explored one of the ”limitations” of the described technology
for object detection and by presenting the results, we showed
that the occlusion problems can be easily avoided in practice,
using a small number of objects, for instance, or designing
an application in such a way, that it does not allow objects
to be relatively close one to another.

Our Contributions. In this paper we show that both upper
and lower bounds on the minimum number Nd of disks are
quadratic in d, i.e., we prove that Nd = Θ(d2). In more
detail, we first show that N ≥ 6 disks can be positioned
such that they form a 2-apart blocking set. The disks of
that blocking set are placed on a circle concentric to U
with neighboring disks being mutually tangent. We present a
simple algorithm of pushing the disks towards the center of
U such that the blocking of rays is preserved. The algorithm
provides a regular ordering of disks on concentric circular
rings such that the disks form a d-apart blocking set, where
d > 2. This is used to show that

π2

16
≤ lim
d→∞

Nd
d2
≤ π2

2
,

where the lower bound is derived as an immediate conse-
quence of the existing lower bound in [7].

Related Work. Jovanović, Korst and Janssen [6] consider
a variant of the above blocking set problem, where they
consider blocking all lines intersecting a given unit disk,
instead of blocking all rays emanating from a given unit
disk. The authors presented upper and lower bounds for
small values of the minimum mutual distance d between
the disks, namely, for 2 ≤ d ≤ 4. Jovanović et al. [7]
show that the minimum number of unit disks needed to
block all rays emanating from a single point is quadratic
in d. In addition, we refer to Fulek, Holmsen and Pach [3],
who focus on hitting a maximum number of disks with one
ray from an arbitrary point, while we aim at blocking all
rays emanating from a given disk with a minimum number
of disks. The problem of our interest is also related to the
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Figure 1. 24 disks positioned on the circle of radius Rc concentric to U .

work of Dumitrescu and Jiang [1] and Mitchell [2], where
the authors consider an illumination problem for maximal
disk packings by proving the existence of points that are
not visible from outside a disk packing. We are not aware
of other work that is closely related, although there are
many more remotely related visibility problems; see e.g.
Chapter 28 on visibility by O’Rourke in [8] or the work
presented in [9], [10], [11]. For further details on object
detection on related table-top devices we refer to [4], [5].

Overview. The rest of the paper is organized as follows. In
Section II we present a construction of a 2-apart blocking
set and a method that transforms the constructed blocking
set into a d-apart blocking set. In Section III we introduce an
ordering of disks on circular rings with which we maximize
the distance d between the disks of the blocking set, and we
present a simple algorithm that for a given number of disks
determines the described ordering. Section IV gives upper
and lower bounds on the minimum number of disks required
to hide a disk. We conclude the paper with the discussion
in Section V.

II. BLOCKING RAYS

In this section we propose an ordering of disks that
enables blocking all rays from R for a given number N
of disks. We assume for convenience that N = 6n. The N
disks are placed on a circle c concentric to the given disk
U , such that the centers of the disks are on the circle c and
there is no gap between neighboring disks; see Figure 1.

More precisely, two neighboring disks positioned on c are
mutually tangent. The radius Rc of circle c is easily derived
from Rc = 1/ sin π

6n . Given the mutual tangency of each
pair of neighboring disks, one can easily see that any ray
r ∈ R is blocked by at least one and at most two disks of
the given set of 6n disks. Hence, these disks form a blocking
set. The distance between the neighboring disks on c is 2,
while the distance between U and a disk from the blocking
set is at least 2 for any n ≥ 1. Therefore, the constructed
blocking set is 2-apart. Let this blocking set be denoted by
D2.

For the maximum distance blocking set problem, we are
interested in the maximum distance d for which the 6n disks

form a d-apart blocking set for R. As such, the problem
appears to be hard: constructing a d-apart blocking set for
an arbitrary d is certainly challenging, because it requires
proving that a set of N disks is a blocking set. Therefore,
we focus on transforming the constructed 2-apart blocking
set into a d-apart blocking set.

In order to transform D2 into a d-apart blocking set, with
d > 2, the disks of D2 should be separated from each other,
while the blocking of all rays should be preserved. Let us
next describe one step of the proposed transformation.

Figure 2. Each ray blocked by D1 is also blocked by D2.

Let D1 and D2 be two unit disks such that their centers
and the center of the given disk U are collinear and D2 is
between U and D1; see Figure 2. Let R1 and R2 denote
the sets of rays blocked by disks D1 and D2, respectively.
Since each ray r that is blocked by D1 is also blocked by
D2, as shown in [6], we can conclude that R1⊂R2.

Hence, the rays blocked by a given disk D are still blocked
by D after the disk is moved towards the center of U , i.e.,
along the line segment that connects the two disks’ centers.
Consequently, a transformation of the blocking set D2 where
some disks of D2 are shifted from their original position on
circle c towards the center of U represents a transformation
into a d-apart blocking set, where d is the minimum of all
pair-wise distances between the disks; see Figure 3. The
problem of interest to us now is to determine the maximum
d for which we can transform D2 into a d-apart blocking
set.

Figure 3. Transformation of D2 into a d-apart blocking set.

III. ORDERING DISKS ON CIRCULAR RINGS

In Section II we proved that we can construct blocking
sets by pushing the disks of D2 into the interior of the circle
c, given that the disks are moved in the direction of the center
of c. In this section we propose a regular ordering of disks
forming a blocking set that can be obtained as follows.

Let D2 be the 2-apart blocking set constructed as in
Section II, consisting of 6n disks. In the interior of the
circle c we can define a number of circles called rings and
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Figure 4. The definition of three circular rings with radii d, 2d and 3d.

denoted as c1, c2, . . . , ck, where the radius of the ring c1
is d, the radius of c2 is 2d, etc. The last ring ck with the
radius kd is assumed to be the given circle, which has radius
Rc = 1/ sin π

6n ; see Figure 4. In the process of shifting the
disks of D2 towards the center, we place the center of each
of them exactly on one of the rings.

The line segment that connects the center of a disk in D2

and the center of U is called a thread. Thus, the disks of D2

define 6n threads. Since we chose to place the disks on the
rings and the disks can be moved only along their threads,
each disk can be placed in one of the k intersection points
of its thread and the k rings. Note that the d-apart rings
ensure that the distance between any two disks positioned on
different rings is at least d. However, choosing an arbitrary
ring for each disk may result in two disks of the same ring
being less than distance d apart; see Figure 5.

Figure 5. Shifting two disks onto inner rings: left, the disks are not d-apart,
and right, the disks are d-apart.

The number k of rings determines the distance d for given
n. Given that the radius of the largest ring is Rc = 1/ sin π

6n
and as we mentioned above Rc = kd, we have that

d =
1

k sin π
6n

. (1)

Hence, in order to maximize the distance d, we need to
minimize the number k of rings needed, for 6n disks to
form a d-apart blocking set.

For a ring of given radius, it is easy to determine the
maximum number of disks that can be positioned equally
spaced, such that the distance between two neighboring disks
on this ring is at least d. For example, at most 6 disks can

be placed on the first ring, at most 12 disks on the second
ring, at most 18 disks on the third ring, etc. In this way, we
can easily derive a lower bound on the minimum number
k of rings needed, for a given n. However, the minimum
number of rings that suffices for disks to form a d-apart
blocking set is often larger than this lower bound. This is
because of the restriction of fixed positions for placing the
disks, which does not always allow placing the maximum
number of disks on the rings. In the construction we propose,
we place less than maximum disks on some of the rings or
even keep some of the rings empty.

In more detail, we choose to place 6nj disks on the j-th
ring, where

nj = 2blog2 jc, (2)

such that the disks form a regular polygon. Note that 6nj is
equal to the maximum number of disks that can be placed,
only for the rings j = 2l, for some l ≥ 0, however, it is
less than maximum for all other rings; see the comparison
given in Table I. For symmetry reasons, we focus on one

Ring j 1 2 3 4 5 6 7 8
Max disks 6 12 18 24 30 36 42 48

6nj 6 12 12 24 24 24 24 48

Table I
THE MAXIMUM NUMBER OF DISKS AND THE CHOSEN NUMBER OF

DISKS FOR RINGS 1 TO 8.

of the six sections of D2 with n disks. We show that any
set of n disks can be split into k subsets, where the j-th
subset contains either 2blog2 jc or 0 disks. The j-th subset is
then placed on the j-th ring such that the distance between
each two disks is at least d. More precisely, we show that
the given number n can be represented as

n = n̄1 + n̄2 + · · ·+ n̄k, (3)

where n̄j ∈ {0, nj}, or simplified, any natural number n can
be represented as

n = b0 + 2 + 2︸ ︷︷ ︸
max 2

+ 4 + 4 + 4 + 4︸ ︷︷ ︸
max 4

+ · · ·+ 2t + 2t + · · ·+ 2t︸ ︷︷ ︸
max 2t

,

(4)
for some t ≥ 0 and b0 ∈ {0, 1}. Note that the total number
of addends in (3) is k, i.e., each addend corresponds to a
ring, more precisely, to the number of disks placed on each
of the six sections of the ring. This results in including the
zero-addends in counting, since they indicate the presence
of empty rings. More precisely, we include the zero-addends
in counting when we have less than the maximum number
of equal addends, for all addends except for the largest ones.
For example, n = 15 can be represented as 15 = 1 + 2 +
0 + 4 + 4 + 4 and the number of rings needed is k = 6, with
the third ring being empty.
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Formally, we prove the existence of a representation of n
in form (4), using the following lemma.

Lemma 1: For any positive integer n a sequence
An = (a0, a1, . . . , at) exists such that

n =
t∑
i=0

ai · 2i (5)

where 0 ≤ ai ≤ 2i and at > 0.
Proof: The proof of the lemma follows from the binary

scale representation of n.
For a given n, there are generally multiple sequences An.

From Equation (1), to construct a d-apart blocking set, where
distance d is as large as possible, we need to minimize the
number k of rings. The number of rings we define is equal
to the number of addends in (4). Hence, the number k of
rings is given by

k = (1 + 2 + 4 + 8 + · · ·+ 2t−1) + at = 2t − 1 + at (6)

where at is the number of addends of size 2t in (4). Hence,
our interest is in the sequences A∗n for which 2t + at is
minimal.

Figure 6. An example of a d-apart blocking set for n = 8, where d ≈ 4.

A. Disk ordering algorithm

In the previous section we showed how to determine the
number of rings and the number of disks on each of them,
using Lemma 1 and choosing the sequence A∗n for which
the number of rings is minimal. In this section, we present
an algorithm that given the sequence A∗n, for each disk
of D2 determines the ring on which it should be placed,
which results in the disks forming a d-apart blocking set;
see Figure 6.

We restrict ourselves to finding the solutions for all n that
are divisible by their largest addend 2t in the representation
(4). Note that 2t|n implies that nj |n, for all j.

Let us define a table T with k rows and n columns, such
that each thread corresponds to one column of T and each
ring corresponds to one row of T , with the outermost ring
corresponding to the top row. Each cell of the table T then

represents a position on which the corresponding disk can
be placed, i.e., it is the intersection of its thread and a ring.
When one disk is moved to a certain position, the value in
the corresponding cell of T is set to 1 or “full”, while the
other cells of the same column have values 0 or “empty”;
see Figure 7. The defined table represents one of the six
identical sections of the blocking set, thus, we consider the
table as if its columns are cyclic (its first and its last column
are connected).

Figure 7. A set of 16 disks with 6 rings and the corresponding 6 x 16
table.

An ordering of full cells in a table T is called valid if
and only if the following conditions hold:
• There is exactly one full cell in each column;
• The j-th row is either empty or it contains exactly nj

full cells;
• The number of empty cells between any two successive

full cells of the j-th row is exactly n
nj
− 1.

Lemma 2: A valid table T exists for any positive integer
n represented by (4) for which 2t|n.

Proof: The proof of the lemma is given by a method for
constructing a valid table, which follows from the equation
2m = 2m−1 + 2m−1. In more detail, a complete row of full
cells can be split into n/2t rows, where each row contains
2t full cells, as illustrated in Figure 8. Each of the resulting
rows can again be split into two rows, by pushing every
second full cell to a new row. After a finite number of
”splitting” steps, each row corresponds to a non-zero addend
in representation (4). The rows can be swapped then if
necessary, such that each row r that is directly above a row
r′ contains at least the same number of full cells as r′. The
process is completed by inserting empty rows where needed.

Note that the proof of Lemma 2 represents a disk ordering
algorithm that for each of the n disks determines the ring
on which it should be placed, such that the disks form a
d-apart blocking set.

IV. UPPER AND LOWER BOUNDS

In Sections II and III, we showed that we can construct a
d-apart blocking set for each n that is divisible by its largest
addend in representation (4). In this section, we present
upper and lower bounds on the cardinality Nd of such a
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Figure 8. Constructing a valid table for n = 24.

blocking set, as a function of the minimum distance d. We
start by deriving an upper bound.

One can easily show that the ordering of disks presented
in Section III-A implies that the minimum of all pair-
wise distances between the disks is d. The relation between
the distance d, the given number n and the corresponding
number k of rings is given by

d =
1

k sin π
6n

(7)

From the choice of sequence A∗n in Lemma 1, for which
at + 2t is minimal, we have that

t−1∑
j=0

22j + (at − 1) · 2t ≤ n (8)

where at is the number of largest addends 2t in representa-
tion (4). From (8) and

t−1∑
j=0

22j =
1
3

(4t − 1) (9)

it follows that

4t + 3(at − 1)2t ≤ 3n+ 1 (10)

With further transformations of inequality (10) we have

((2t)2 + 2(at − 1)2t) + (at − 1)2t ≤ 3n+ 1
⇔ k2 + (at − 1)(2t − at + 1) ≤ 3n+ 1 (11)

Since 1 ≤ at ≤ 2t, we have that

(at − 1)(2t − at + 1) ≥ 0 (12)

Finally, from (11) and (12), we bound the number k of rings
by a function in n as follows.

k ≤
√

3n+ 1 (13)

We transform (7) into

1
kd
≤ sin

π

6n
(14)

and multiply (13) by
√
n

k
√
n ≤

√
3n2 + n (15)

Multiplication of (14) and (15) and expressing the limit for
d→∞, results in

lim
d→∞

n

d2
≤ π2

12
(16)

and since N = 6n, we derived an upper bound on Nd, i.e.,

lim
d→∞

Nd
d2
≤ π2

2
(17)

In [7], the authors proved that the lower bound on the
minimum number of disks which form a d-apart blocking
set for the set of all rays emanating from a single point is
π2

16 d
2, as d tends to infinity. To block the rays emanating

from a given unit disk we need at least as many as to block
the rays emanating from its center. Hence, the lower bound
on the minimum number Nd of disks is given by

lim
d→∞

Nd
d2
≥ π2

16
. (18)

Combining the results of (17) and (18), we proved the
following theorem.

Theorem 1: For the minimum cardinality Nd of a d-apart
blocking set to block all rays emanating from a unit disk we
have

π2

16
≤ lim
d→∞

Nd
d2
≤ π2

2
.

V. CONCLUSION

We expect that both bounds, especially the upper bound,
can be further improved. The following discussion provides
some directions for potential improvements.

Constructing a d-apart blocking set from D2 through a
sequence of transformation steps where a number of disks is
pushed towards the center results in the rather large constant
π2/2. The disks pushed inside circle c block much larger sets
of rays than the sets of rays they block from their original
positions on c. Consequently, the sets of rays blocked by two
disks on different rings may not be disjoint. This implies
that constructing blocking sets for which the overlap of
sets of blocked rays is minimized may potentially provide
a better upper bound. In addition, the number of disks on
one ring is less than the maximum possible number for the
majority of rings. Placing the maximum number of disks
on each of the rings may further improve the upper bound.
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The combination of the last two conjectures may be used
to define an optimization problem, similar to the problem
of opening a combination lock with k rings, i.e., to find
the rotation angle for each of the k rings that are d-apart
and contain the maximum number of d-apart disks, such
that the disks form a blocking set and the total overlap
of blocked rays is minimized. We expect that the solution
of this problem provides a better upper bound. The main
challenge here is still the problem of proving that a set of
disks, positioned following some constraints, is a blocking
set for the set R of all rays.
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