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Abstract—The paper proposes two Nonlinear Model Predictive
Control schemes that uncover a synergistic relationship between
on-line receding horizon style computation and Particle Swarm
Optimization, thus benefiting from both the performance ad-
vantages of on-line computation and the desirable properties of
Particle Swarm Optimization. After developing these techniques
for the unconstrained nonlinear optimal control problem, the
entire design methodology is illustrated by a simulated inverted
pendulum on a cart, and compared with a particular numerical
linearization technique exploiting conventional convex optimiza-
tion methods. This is then extended to input constrained nonlin-
ear systems, offering a promising new paradigm for nonlinear
optimal control design.

Index Terms—particle swarm optimization; model predictive
control; optimal control

I. INTRODUCTION

Nonlinear Model Predictive Control (NMPC) is an attractive
control scheme for manipulating the behaviour of complex
systems [1], exhibiting excellent dynamic performance in both
industrial applications and theoretical studies [2]–[4]. However
its application to nonlinear control is complicated, largely
due to the optimization method that has come to be used
in these controllers. A fundamental difficulty of the NMPC
approach is the requirement to solve nonconvex constrained
optimization problems. Most existing works are based on
nonlinear programming methods [5] which only yield local
optimum values, with the latter depending on the selection
of the starting point. For this purpose, in [6] a particular
numerical linearization technique has been developed to obtain
a convex constrained optimization problem, albeit at the cost
of performance deterioration. Other attempts to solve the
nonconvex optimization problems exploit Genetic Algorithm
(GA) optimizers [7]. However these face many challenges,
including enormous computational effort due to its natural
genetic operations [8], [9]. Although this may be reduced
by using a real-value representation in the GA [8], [10],
some deficiencies in GA performance have been highlighted
in recent research. Applications governed by highly epistatic
objective functions [11], [12] reveal shortfalls in performance,
which is further worsened by the GA’s premature convergence
[11].

This paper presents two novel NMPC controllers based on a
very powerful optimizer: Particle Swarm Optimization (PSO).
First developed by Kennedy and Eberhart in 1995 [13], this

modern metaheuristic algorithm has been found to be robust
in solving continuous nonlinear optimization problems [10],
[12]–[14] and capable of generating high quality solutions with
more stable convergence characteristics and shorter calculation
times than other stochastic methods [10], [12], [15]. One of
the novel controllers presented in this paper is based on a nu-
merical linearization technique first proposed by Alaniz in [6],
which is based on conventional convex optimization methods.
By contrast, the proposed controller exploits PSO techniques
for optimization. The second novel controller proposed in this
paper does away with any form of numerical linearization
to achieve optimization of the cost function. Both controllers
are simulated for an inverted pendulum on cart problem and
compared with the NMPC controller in [6].

The rest of the paper is organized as follows. Section II is
a brief explanation of the implemented PSO algorithm, while
Section III outlines the design of the three NMPC controllers
evaluated in this paper. Section IV then presents the simulation
setup, results and analysis, followed by a brief conclusion in
Section V.

II. PARTICLE SWARM OPTIMIZATION

The particle swarm optimization (PSO) algorithm [13] is
a population-based search algorithm inspired by the social
behaviour of birds within a flock. The very simple behaviour
followed by individuals emulates their own successes and the
success of neighbouring individuals. The emergent collective
behaviour is that of discovering optimal regions of a high
dimensional search space.

In a PSO algorithm, each particle representing a potential
solution is maintained within a swarm. In simple terms, the
particles are therefore “flown” through a multidimensional
search space where the position of each particle is adjusted
according to the experience of itself and its neighbours. Let
xi(t) denote the position of particle i in the search space at
time step t, which denotes discrete time steps unless otherwise
stated. The position of the particle is changed by adding a
velocity vector, vi(t), to the current position i.e.

xi(t +1) = xi(t)+vi(t +1) (1)

with xi(0) ∼ U(xmin,xmax), where U(xmin,xmax) denotes the
continuous uniform probability distribution within the real-
valued space (xmin,xmax). The optimization process is driven
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by the velocity vector, reflecting both the experiential knowl-
edge of the particle (cognitive component) and socially ex-
changed information from the particle’s neighbourhood (social
component). In this paper we implement a particular PSO
algorithm know as global best PSO, which exhibits very
fast convergence rates [16] much needed for our predictive
control application. For the global best PSO, or gbest PSO,
the neighbourhood for each particle is the entire swarm, thus
employing the social network of the star topology type. In this
situation, the social information is the best position found by
the swarm, referred to as ŷ(t).

For gbest PSO, the velocity of particle i is calculated as

vi j(t +1) = vi j(t)+ c1r1 j(t)[yi j(t)− xi j(t)]+

c2r2 j(t)[ŷ j(t)− xi j(t)] (2)

where xi j(t), yi j(t) and vi j(t) are the position, personal best
position and velocity of particle i in dimension j = 1, . . . ,nx
at time step t respectively, ŷ j(t) is the global best position
in dimension j, c1 and c2 are positive acceleration constants
used to scale the contribution of the cognitive and social com-
ponents respectively, and r1 j(t),r2 j(t) ∼ U(0,1) are random
values in the range [0,1], sampled from a continuous uniform
distribution. These random values introduce a random element
to the algorithm. Algorithm 1 summarizes the gbest PSO,
where yi denotes the personal best position associated with
particle i and ŷ denotes the global best position.

Algorithm 1 gbest PSO

Create and initialize an nx-dimensional swarm
repeat

for each particle i = 1, . . . ,ns do
//set the personal best position
if f (xi)< f (yi) then

yi = xi;
end
//set the global best position
if f (yi)< f (ŷ) then

ŷ = yi;
end

end
for each particle i = 1, . . . ,ns do

update the velocity using equation (2);
update the position using equation (1);

end
until stopping condition is true;

III. NONLINEAR MODEL PREDICTIVE CONTROL

A nonlinear dynamic system may be represented by a set of
nonlinear differential equations [17], which may be discretized
for computational purposes using Euler’s method, where Ts is
the sampling period and k is the sample index in discrete-time,
as follows:

x(k+1) = x(k)+Ts f (x(k),u(k),v(k),k) (3)
y(k) = g(x(k),u(k),v(k),k) (4)

Arguments of the nonlinear function f include a state vector
x(k), a control input u(k), and a disturbance input v(k). The
set of physical quantities that can be measured from the
system constitute the output, y(k), which is also a nonlinear
function g of the same arguments. More accurate discretization
approximations, such as the Runge-Kutta methods, can be used
if the system dynamics are highly nonlinear or the desired time
step is large.

The Model Predictive Control (MPC) design methodology is
characterized by three main features: an explicit model of the
plant, computation of control signals by optimizing predicted
plant behaviour, and a receding horizon [18]. An internal
model is used to predict how the plant will react, starting at
the current time k, over a discretized prediction interval. The
objective is to select the control history that results in the best
predicted behaviour with respect to a reference trajectory and
optimization parameters.

The cost function used in this paper is given by equation
(5) which has a quadratic structure comprising two terms.
The first term, weighted by a symmetric weighting matrix
Q(k), penalizes the deviations from a reference trajectory that
occur throughout the prediction interval. The second term,
weighted by a symmetric weighting matrix R(k), penalizes
the magnitude of each control value in the control history.
We will now describe the three nonlinear model predictive
controllers considered in this paper, two of which represent
the novel contributions of this work.

J =
l−1

∑
i=0
||(y(k+ i)− ỹ(k+ i))||2Q(k+i)+

m−1

∑
i=0
||u(k+ i)||2R(k+i)

(5)
A. A numerical linearization method

This method, proposed by Alaniz in [6], centres around a
particular numerical linearization technique for generating the
predicted output trajectory y. A nominal control history ū is
first chosen, then the corresponding nominal output trajectory
ȳ is computed through numerical integration. Typically ū is
the previous optimal solution, but it can be set equal to zero if
none exist. The predicted output is then based on linearizing
the control perturbation ∆u about the nominal trajectory as
follows:

y(k) = ȳ(k)+α0∆u(k)
y(k+1) = ȳ(k+1)+α1∆u(k)+β0∆u(k+1) (6)
y(k+2) = ȳ(k+2)+α2∆u(k)+β1∆u(k+1)+γ0∆u(k+2)

...

The coefficients αi, βi, γi, . . . are produced by computing
a perturbed trajectory for each ∆u(k + i) and finding the
subsequent deviation from the nominal trajectory. Perturbed
trajectories are the result of adding a pulse of magnitude one
to the nominal control history at time (k+ i). Each trajectory
is formed by propagating the present state x(k) over a fixed
interval of time while applying an associated control history.
The prediction interval and control history are divided into l
and m discrete steps, respectively, of length Ts, where Ts is the
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time step, and m≤ l. After the control history has ended, the
control is held constant for the final (l−m) time steps.

The MPC problem is to solve for the optimal control per-
turbation ∆u∗ by minimizing a cost function with respect to a
reference trajectory and optimization parameters. The optimal
control history is then the sum of the nominal control history
and the optimal control perturbation [6]. By rearranging and
simplifying the form of equation (5), a set of matrices is
obtained which leads to the unconstrained and constrained
optimization problems. For the unconstrained case, Alaniz
[6] presents a solution by using an equivalent least squares
technique, while for the constrained case, the problem is
reinterpreted so as to obtain the standard form handled by
quadratic programming solvers.

Once the optimal control history is chosen, the first N
time steps of the solution are applied to the plant. The cycle
of forming predicted behaviours and solving for the optimal
control perturbations is then repeated using the most recent
feedback from the plant. The interested reader is referred to
[6] for further detail about this technique.

B. A novel numerical linearization technique using PSO

A novel application of PSO proposed here exploits the
aforementioned numerical linearization technique used in con-
junction with the PSO algorithm, where the convex least
squares or quadratic programming optimization methods are
now replaced by the global best PSO algorithm. The evaluation
function is the cost given by equation (5), so that PSO searches
for the optimal perturbed control history of equation (6),
denoted by ∆u(k)∗, in order to obtain the optimal control
history u(k)∗ that minimizes J. For this purpose, we require
an m-dimensional PSO, with each particle’s position defined
by K, an m-dimension column vector equal to ∆U(k)∗, which
is a column vector having ∆u(k+ i)∗ as its elements.

C. A novel PSO-based nonlinear MPC strategy

The second novel controller makes use of the PSO search
algorithm for obtaining the optimal control history that min-
imizes directly the cost function J given by equation (5)
without resorting to numerical linearization as represented by
equation (6). In this manner we simply use equation (5) as the
evaluation function to be minimized using global best PSO,
thereby avoiding any linearization technique or mathematical
result for minimization, albeit at an increased computational
complexity. Each particle’s position in the swarm represents
the m-dimension column vector defining the optimal control
history, U(k)∗.

As we shall see, this remarkably simple method produces
the best results for the controllers studied in this paper in
terms of the performance index obtained. The block dia-
gram in Figure 1 illustrates the structure of the proposed
predictive control loop. A particle swarm optimizer uses the
reference input and predicted output trajectories to minimize
the quadratic cost function given by equation (5) and compute
the optimal control history which is then applied to the
plant. The proposed controller is further enhanced by actively

 

Physical Plant 

Model of 
Physical Plant 

Cost Function 

Particle Swarm Optimizer 

PSO-based NMPC controller 

Reference Output 
Control 
Action 

Fig. 1. PSO-based nonlinear MPC loop

correcting the weighting matrix R in an adaptive manner, so
that the chattering effect of the control input observed about
the equilibrium point is reduced.

IV. PERFORMANCE EVALUATION: INVERTED PENDULUM
ON CART

The performance of the proposed controllers is evaluated by
analyzing the results from simulation experiments. The plant
chosen for simulation is an inverted pendulum on a cart and
two types of controllers are generated for the three methods
presented in this paper; an unconstrained and constrained ver-
sion. The latter problem shall only consider single constraints
and therefore no penalty functions are required. The pendulum
is initially at the stable equilibrium point and the purpose of
each controller is to invert the pendulum. Since the dynamics
at the stable and unstable equilibrium points are very different,
this is a good problem to demonstrate the effectiveness of our
nonlinear MPC controllers.

A. Plant Model

The nonlinear model of the plant is derived by applying
Newton’s Laws of Motion to the free body diagrams in Figure
2. The resulting equations of motion are given by equations
(7) and (8). A complete derivation is given in [6].

(a) (b) (c)
Fig. 2. (a) Inverted Pendulum on a Cart; (b) Free body diagram 1; (c) Free
body diagram 2.

ẍ =
1

M+m
[u−bẋ−mlθ̈cos(θ)+mlθ̇2 sin(θ)] (7)

θ̈ =
3

4ml2 [mgl sin(θ)−mlẍcos(θ)−hθ̇] (8)

M is the mass of the block that slides along a surface, m is
the uniformly distributed mass of an ideal pendulum, 2l is the
length of the ideal pendulum, b is the surface friction damping
constant, h is the rotational friction damping coefficient, u
is the force applied to the block, θ is the clockwise angle
between the normal and the pendulum (as shown in Figure
2(c)), and x is the cart’s horizontal displacement from its
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equilibrium position. To allow the model to be numerically
integrated, equations (7) and (8) are expressed in terms of the
state variables x, ẋ, θ, and θ̇. The second-order differential
equations are then discretized using the fourth-order Runge-
Kutta method [6].

B. Controller Layout

The simulation experiments were run on the Simulink
software package [19]. The layout shown in Figure 3 is the
simulated realization of the control loop given in Figure 1.
It makes use of S-Functions that implement constrained or
unconstrained versions of the PSO-based NMPC controller.

Fig. 3. Nonlinear MPC Simulink layout

C. Controller Parameters

The MPC controller rate is 1
NTs

, where N is the number of
controls in the control history that are applied to the plant. N =
1 is used in the controller since this is the typical value selected
[18]. The computational load of MPC can be reduced if N is
increased, but a disadvantage to having N > 1 is that some of
the controls applied to the plant are based on old feedback.
The fourth-order Runge-Kutta method is tested using different
values for Ts, and it is established that the response with Ts =
0.1s is almost indistinguishable from the actual response, thus
using this value for the controller.

Since this controller is very computationally intensive, it
is not feasible to have a long prediction length or control
history. A value of l = m = 20 is chosen as a balance between
performance and computation time. This results in a controller
capable of predicting for 2 seconds.

The two novel PSO-based controllers use the following
PSO parameters, which were derived empirically through
successive simulations:
• Each particle consists of 20 members, corresponding

to the 20 elements that make up the optimal control
perturbation history column vector, ∆U(k)∗, for the PSO-
based numerical linearization method, or the optimal
control history column vector, U(k)∗, for the PSO-based
NMPC controller.

• Swarm size, ns = 30.
• Inertia weight starting with w(0) = 0.9 and linearly de-

creasing to w(nt) = 0.4.
• Velocity clamped to within half the particles’ positional

constraints.
• Search space is limited to real-valued variables between
−300N (xmin, j) and 300N (xmax, j) for the unconstrained
case.

• Acceleration coefficients c1 = 2 and c2 = 2.
• Number of iterations = 30.

Both weighting matrices Q and R given in equation (5) are
set equal to the values shown in equation (9). Deviations are
measured from the reference trajectory which is set equal to
a zero column vector. There is a zero for each state variable
at each time step in the prediction interval. This reference
remains constant for the duration of the simulation.

Q =


1 0 0 0
0 1 0 0
0 0 100 0
0 0 0 1

 , R = 1 (9)

D. Simulation Results

The response of the unconstrained controller, using the three
control schemes described in this paper, is shown in Figure 4
with the pendulum initially at the stable equilibrium point (180
degrees), hanging straight down. The running performance
index plot describes the minimized value of the cost function
for each time step. The cart’s position moves back and forth so
that the pendulum gains momentum. This continues until there
is enough momentum to swing up and invert the pendulum in
the 0 degree position. Table I shows the superior performance
obtained for the proposed PSO-based NMPC controller for
the unconstrained case. The performance index values quoted
here are obtained using equation (5), this time using the actual
output trajectory and the applied control inputs, summed over
a sufficiently large amount of time (10s). This reveals the true
performance index for the whole control action. When PSO is
used in conjuction with the numerical linearization technique,
no significant advantage is obtained over the least squares
method (an improvement in J of only 1.46%), as expected for
the convex optimization problem being solved. On the other
hand, the second proposed nonlinear PSO controller gives an
improvement in J of 8.04% over the numerical linearization
(least squares) counterpart.
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Fig. 4. Unconstrained nonlinear MPC: A comparison

Figure 5 plots the response of the constrained controller
when a single constraint, restricting the control input of the
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TABLE I
UNCONSTRAINED NMPC: PERFORMANCE INDEX VALUES

Method Numerical
Linearization
(Least Squares) [6]

Numerical
Linearization
(PSO)

PSO

Performance Index
J (×106)

1.4538 1.4326 1.3369

cart to be within −45N and 45N, is active. In Figure 5, the
final angular deflection is either 0◦ or 360◦. Note that both
these angles correspond to the same inverted position of the
pendulum. For the novel PSO-based NMPC controller, the cart
is noted to move a much smaller distance to achieve swing-
up. In real-world terms, this translates to a more efficient
process, with less work being done by the cart to achieve
swing-up and equilibrium. This is further evidenced by Table
II, which indicates that the novel PSO-based nonlinear MPC
controller has the edge over the numerical linearization tech-
nique which uses quadratic programming, a method known
to have the problem of getting stuck in local minima [20].
We record a 14.78% improvement in J, accompanied by a
very low standard deviation when the experiment is repeated
over 10 trials indicating PSO’s repeatable nature despite be-
ing a metaheuristic optimization method. Note that for the
constrained case, using the numerical linearization technique
in conjunction with PSO is computationally inefficient since
every particle must be checked for its corresponding optimal
control history, doubling the workload of its unconstrained
counterpart, rendering it practically useless to investigate for
this purpose. The advantage of the novel PSO-based NMPC
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Fig. 5. Constrained nonlinear MPC: Restricting control input to within −45N
and 45N (10 independent trials)

TABLE II
CONSTRAINED NONLINEAR MPC: PERFORMANCE INDEX VALUES

Method Numerical Lineariza-
tion (Quadratic Pro-
gramming) [6]

PSO
(mean J)

PSO (standard
deviation)
(×106)

Performance
Index J (×106)

2.8534 2.4316 0.02396

controller is even more evident in Figure 6, where the proposed
active correction for the chattering effect of the control input
is implemented for the same constrained NMPC problem by
changing R dynamically. The control input is being more
heavily penalized when the angle approaches the equilibrium
point by increasing R from 1 to 30. In other words, we are
telling the system that in the close neighbourhood of the
equilibrium point, minimal control effort is required, miti-
gating the effect of metaheuristic stochasticity. This reduces
the performance index even further, giving an improvement
in J of 16.65% (see Table III), making the process even more
efficient. The system’s robustness to model uncertainty is best
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Fig. 6. Actively controlling control input weight R for reduced chattering.

TABLE III
PERFORMANCE INDEX VALUE COMPARISON FOR ACTIVE R CORRECTION

Method Numerical Linearization
(Quadratic Programming) [6]

PSO

Performance Index J
(×106)

2.8534 2.3810

illustrated by the simulation results of Figure 7. This is tested
by randomly increasing or decreasing each of the plant model’s
parameters by 5% (all parameters are changed for every trial),
so despite the fact that the constrained NMPC controller is
using a severely inaccurate model for its predictions, and we
are not actively controlling the control input weight R (to
consider the worst case), excellent performance is noted, and
the pendulum swings up normally, except for a larger distance
now required. Table IV shows the corresponding changes
implemented in the model’s parameters for the simulation
results of Figure 7. The corresponding performance index
values are given in Table V, where although both controllers
manage swing-up and equilibrium similarly as for the results
shown in Figure 5, the novel PSO-based NMPC controller
exhibits an improvement in J of 12.07%. Repeatability is
tested by performing several trials with different constraints, as
shown in Table VI. The novel PSO nonlinear controller shows
consistently better performance, with a mean improvement in
J of 9.17%.
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Fig. 7. Robustness Test: Model’s parameters are significantly different from
the actual plant parameters (constrained NMPC problem results shown).

TABLE IV
ACTUAL PLANT AND MODEL PARAMETERS (FOR A PARTICULAR TRIAL)

Parameter Units Actual Plant Model
M Kg 14.6 15.33
m Kg 7.3 6.935
2l m 2.4 2.52
b Kg/s 14.6 15.33
h Kgm2/s 0.0136 0.0129

TABLE V
PERFORMANCE INDEX VALUES OBTAINED FOR THE ROBUSTNESS TEST

Method Numerical Linearization
(Quadratic Programming) [6]

PSO

Performance Index J
(×106)

2.7369 2.4065

TABLE VI
SIMULATION RESULTS FOR DIFFERENT CONSTRAINTS (10 INDEPENDENT

TRIALS WITH CONSTANT R)

Constraint Numerical Linearization
(Quadratic Programming) [6]

PSO

−30N ≤U ≤ 30N 2.7182 2.4026
−35N ≤U ≤ 35N 2.5374 2.3947
−40N ≤U ≤ 40N 2.4590 2.3880
−45N ≤U ≤ 45N 2.8534 2.3810

V. CONCLUSION AND FUTURE WORK

In this paper two novel controllers were proposed for the
receding horizon strategy, both exploiting the desirable opti-
mization properties of PSO. One makes use of the numerical
linearization technique where instead of convex optimization
methods, we employed a PSO strategy. The latter yielded
a minor improvement in performance index over its convex
optimization counterpart for a simulated inverted pendulum
on cart problem. However the second novel PSO-based con-
troller proved superior to both, approaching up to 16% less
performance cost at best. In addition, we proposed a further
enhancement for this novel controller by actively controlling
the control input weight R to reduce the chattering effect of
the control input observed for the nonlinear model predictive

controller. Having shown that this framework extends to input
constrained systems, we have provided the foundation to
include other advances in control theory as they become avail-
able. Further work may include investigation of the use of PSO
to obtain the much needed connection between the selection of
weighting matrices Q and R, and performance specifications,
possibly through some time-domain performance criterion. A
similar investigation may be carried out for other control
schemes, including linear quadratic optimal control strategies.
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