ADVCOMP 2012 : The Sixth International Conference on Advanced Engineering Computing and Applications in Sciences

COMBAS: A Semantic-Based Model Checking Framework

Eduardo Gonzilez-Lépez de Murillas, Javier Fabra, Pedro Alvarez, Joaquin Ezpeleta
Aragon Institute of Engineering Research (I3A)
Department of Computer Science and Systems Engineering
University of Zaragoza, Spain
Email: {edugonza, jfabra, alvaper, ezpeleta} @unizar.es

Abstract—The introduction of semantic aspects in scientific
workflows is a powerful approach that allows the analysis of
the workflow prior to its development and deployment. In
this paper, the COMBAS framework for the semantic-based
model checking processing is presented. COMBAS integrates
the required languages and tools and implements its own
algorithms in order to allow the verification of properties
on a model specified with the U-RDF-PN formalism, a high-
level Petri net-based formalism, which introduces parametric
semantic annotations in the model. COMBAS facilitates the
generation of temporal logic formulae to express the properties
that are going to be verified in the model as well as it provides
system designers with an RDF and CTL adapted environment
to browse and review the results. The suitability of the proposed
framework is demonstrated by means of its application to the
analysis of the EBI InterProScan scientific workflow.

Keywords-Semantic Annotated Processes; RDF; SMT; High-
level Petri Nets.

I. INTRODUCTION

Scientific computing applications are being used in a
broad spectrum of domains related to science and human
life such as geography, biology, or the public sector, for
instance. Scientific workflows are a special type of work-
flows, which often underlies many large-scale complex e-
science applications, such as climate modelling, structural
biology and chemistry, medical surgery or disaster recovery
simulation, among others. Scientific workflows have been
progressively improved by means of the introduction of new
paradigms and technologies in order to achieve more com-
plex challenges. Once the deployment and execution of such
workflows has been carried out, the next challenge is focused
on the incorporation of semantic Web techniques [1], [2] in
order to analyse their behaviour.

With the development of semantic technologies, the in-
corporation of semantic aspects allows scientists to more
efficiently browse, query, integrate and compose relevant
cross discipline datasets and services [1]. Scientific workflow
executions are expensive in the use of execution resources,
as well as a time consuming activity. For this reason, it is
of special interest to dispose of tools and techniques making
possible the analysis of the workflow behaviour prior to its
execution. The aim of such analysis would be to ensure
a good behaviour (It is a waste of time and money to
realize after 20 hours executing a task that the output has

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-237-0

not the correct information to feed the next task!) as well
as facilitating having a very efficient (from the budget and
time points of view) resource utilization. The result of the
analysis should allow predicting the quality of the results and
also identifying those parameters suitable to get the expected
outcome.

The introduction of semantic aspects in workflows re-
quires new models and analysis techniques, able to deal
with such semantic aspects, to be considered. With this
respect, in this paper, the COMBAS framework is presented.
COMBAS seeks at helping system designers (scientists and
business process developers, among others) in the task of
validation and property analysis of workflows that include
semantic aspects in the task specification. The analysis
process should be as follows. First, the designer models the
workflow by means of a Petri net (the advantages of using
Petri nets for this purpose has been widely discussed in the
literature [3], [4]). The transitions of the Petri net model
would correspond to system actions changing the workflow
state (mainly, the execution of tasks the workflow requires).
Semantic information is attached to the transitions, corre-
sponding to the formal specification of the task and including
the description of the input and output parameters. Since
some of the outputs could correspond to data received or
computed at runtime, formal symbolic parameters (as usual
in procedure specification) will be used to represent such
data. On the other hand, preconditions and postconditions
for tasks should be considered and described as expressions
involving the parameters in the task specification.

The U-RDF-PN formalism (Unary RDF Annotated Petri
Net formalism) [5], is a subclass of Petri nets defined
to consider this class of systems. Semantic annotations
are specified using the RDF (Resource Description Frame-
work) [6]. With respect to pre- and post-conditions, SMT
(Satisfiability Modulo Theories) [7] solvers represent a very
useful tool. They are able to work with logical predicates and
solve the decision problem when using background theories.
Therefore, they are able to determine the satisfiability of
a collection of logical predicates, according to a certain
combination of such theories. Finally, it is necessary then
to have a tool, which allows us to verify the satisfiability
of certain predicates, and also a language to express such
predicates. The analysis of the workflow is carried out

46

ADVCOMP 2012 : The Sixth International Conference on Advanced Engineering Computing and Applications in Sciences

using model checking techniques, which define the way to
verify the model through its reachability graph by means
of queries expressed in terms of CTL (Computation Tree
Logic) predicates.

The remainder of this paper is organized as follows. The
design and implementation details of COMBAS are first
depicted in Section II, and its application to a real problem
in the scientific computing area is conducted in Section III.
Section IV briefly introduces the related standards and tools
for model checking analysis. Finally, Section V concludes
the paper and addresses future directions of the work.

II. COMBAS: A SEMANTIC-BASED MODEL CHECKER

The architectural view of the COMBAS framework is
depicted in Figure 1. COMBAS integrates a set of tools and
techniques to cover the full cycle for the model checking-
based analysis of semantically annotated workflows: from
the generation of U-RDF-PN models, the corresponding
reachability graph and its Kripke-structure, the creation and
edition of queries and CTL formulae, the execution of the
model checking process and, finally, the results browsing and
reviewing. Let us describe the comprehensive steps a system
designer must perform in order to achieve the verification
process using the framework:

1) First, the scientist must design the workflow or the
process using a Petri net. For that purpose, the graph-
ical tool Renew [8] can be used. The resulting model
will be then exported to the PNML standard (Petri
Net Markup Language, ISO/IEC 15909), an XML
based description for Petri nets. The initial marking
of the model as well as the model itself must be
semantically annotatedby means of RDF, building a set
of XML specification files (RDF graphs and patterns).
A graphical assistant will help in this process.

2) Now some steps are taken in a transparent way for the
user, who can review the results at each stage. The
reachability graph generator uses the previous files as
an input and generates two outputs: the reachability
graph (RG), which is stored in the RDF Triple Store,
and a set of XML files that contain the relation
between states and their markings and a collection
of RDF/XML files representing the RDFGs (RDF
Graph) corresponding to the marking. The graphical
representation of the reachability graph, which can be
viewed with the tool Graphviz, is also generated at this
step. Both the results from the previous processing and
the reachability graph can be browsed by means of a
Web viewer.

3) An annotated Kripke structure is constructed from this
RG (RDF-KS). The reachability graph of a U-RDF-
PN system can be easily transformed into an RDF
Annotated Kripke Structure [5].

4) Now, it is necessary to create the CTL formula to
be verified with the model checker. The designer can

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-237-0

build this formula by means of a user-oriented inter-
face provided by the Web editor, which will export
it as an XML file compliant with the corresponding
schema.

5) Finally, the model checker uses the CTL formula
along with the RDF Kripke structure (RDF-KS) to
compute and generate the output. This output consists
of a collection of XML files that represent and relate
states on the RG validated with the corresponding
excerpts from the CTL formula. Both input files and
results from the analysis at this stage can be viewed
and browsed through the Web interface in a very
convenient and intuitive manner.

COMBAS

RG Generator

Fof - ->{ pNML -> RDF
' 4---> Parser

S .

........... . l Ll
Petri Net |, e
(PNML Format)|; '
! ,

Reachability Graph
Generator

Reachability Graph
(XML Format)

RDF RG -> XML RG '~
Parser

Initial marking| ' Vo
& annotations H [

|
! S Web Interface !
v DR '
Legend SMT Wrapper| Web [€[1------ !
Service
—> RDF €1]
SMT
Process flow Solver Triple A '
ey Store Web RG, |<- '
Data flow A ! Formula ! !
! a & Results !
' S repo H :
R B . :
S R EE R oot :
| N ‘Model Checker !
— - 1
Ll 1 ' 1
'| XML -> RDF |1 H '
T2 Parser : E :
: ' ' ,
CTL Formula ! oo h !
(XML Format) ! ! '
vV V¥ v
CTL Model RDF-> XML [[~1°~
checking Results parser
Formula results
(XML Format)
Figure 1. Architecture of the COMBAS model-checking framework.
g g

All components in COMBAS expose an easy, flexible
and usable interface, and the complexity of the graph
generation, storage in the semantic triple store and veri-
fication processes are hidden from the user’s perspective.
During the model checking process, an RDF database (a
triple store) is used. The COMBAS framework allows using
several different RDF databases, such as the AllegroGraph
RDFStore database or the Virtuoso RDF Store, for instance.
The only requirement of a candidate RDF store is that it
must allow to be accessed through a SPARQL interface.
In this work the Virtuoso RDF Store has been used. As a
result from the processing, the truth about the verification
of the formula is obtained. Moreover, a graph depicting the

47

ADVCOMP 2012 : The Sixth International Conference on Advanced Engineering Computing and Applications in Sciences

reachability graph states can be browsed using a graphical
Web-based enabled interface. Doing so, it is possible to find
the specific situations in which a predicate violates some
wanted condition, having a better insight of the workflow
behaviour, and thus facilitating the way to improve the
workflow.

Internally, the generation of the reachability graph is
based on the classical algorithm used for computation of the
reachability graph in Petri nets and making the necessary
modifications to adapt to the semantic nature of annota-
tions [5]. Then, the implementation of our model checker is
based on an adaptation of the labelling algorithm proposed
in [9]. The inputs are an RDF-KS and an RDF CTL formula.
Both inputs are stored into the RDF database following
the corresponding RDF schemas. Basically, the algorithm
computes the set of states of the input system M that satisfy
the given CTL formula ¢. This process consists of three
steps. Initially, the formula ¢ is translated into an equivalent
formula in terms of the connectives AF, EU, EX, T, A
and —. The equivalence rules applied are defined as part of
the labelling algorithm. Secondly, the states of M satisfying
subformulas of ¢ (1)) are labelled, starting with the smallest
subformulas and finishing with the original formula. Finally,
the algorithm returns the states labelled with ¢.

A. Reachability graph generation

The reachability graph generation process needs a valid
model to be used as an input: an U-RDF-PN class Petri net,
with an initial marking corresponding to the system’s initial
state [5]. The semantic annotations can be linked to three
different elements of the net: arcs, where it is possible to
find RDF patterns; transitions, where guards can be defined;
and places, where tokens are stored as RDF graphs. The
generated reachability graph is stored also as RDF triples,
according to the ontology depicted in Figure 2.

URDFAPN J€«—hasNet

haslnitialNode

hasNode

hasSuccessor
hasBinding

hasMark:

hasPlace
hasRDFG

Figure 2.

hasTransition hasvv

Ontology for the Parametric Reachability Graph.

hasParametricData

In this paper, we are considering the parametric extension
over U-RDF-PN as defined in [5]. The concept is very
simple: to add parameters to the model, instead of static
values. This way, representing general cases of a process or
workflow consists of the addition of logical propositions to
the information, which annotates each state in the reachabil-
ity graph. Also the guards in transitions must be specified
making use of such annotations.

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-237-0

Let us now briefly describe the main differences of the
parametric approach with respect to the ordinary model
checking approach presented in [5] regarding to the reacha-
bility graph generation. First of all, a parametric U-RDF-PN,
which is an ordinary U-RDF-PN annotated with parametric
statements in some of its transitions (as guards), places (as
initial marking) and arcs (as part of the RDFG-Patterns),
is used as an input. It has been necessary to implement a
wrapper in order to make use of an SMT solver, crucial when
working with logic and parameters. This way, the generation
process is similar to the one of an ordinary U-RDF-PN,
except for the following considerations:

1) The initial state is formed not only by the initial
marking of every place in the net, but also by the
parametric initial marking of each state. In case there
is not such marking, the logical statement true will
be considered as initial parametric marking.

2) For every transition that has a parametric guard, the
validity of such guard must be verified. This is per-
formed making use of a SMT solver to check if the
conjunction of the logical statements in the guard and
the statements of the current state are satisfiable.

3) When generating a new state for the RG, its parametric
marking is formed by the conjunction of the one of the
parent state and the guard of the triggered transition.

4) Also when introducing a new state in the store, it
is necessary to check if it is unique. To do so, the
generator must compare the semantic part, and also the
parametric part. When comparing the last one, an SMT
solver is used to check the equivalence of both logical
statements (P and Q), observing the satisfiability of
the formula P - Q A Q — P.

B. Edition and visualization service

The basic features of this Web user interface are: 1)
reachability graph visualization; 2) creation and edition of
CTL formulae used by the Model Checker; and 3) review of
Model checking results. The initial aim was to integrate all
this functionalities in a single interface. Let us now detail
the components of this interface.

RG visualization. As previously mentioned, the output
of the RG generator consists of a main XML file, which
describes the RG graph structure and a collection of XML
files containing the RDF graphs that mark every state in the
RG. In case we are dealing with a parametric model, also
several SMT-Lib files will be generated. These files contain
the parametric predicates corresponding to each state. The
generated graph will contain a big amount of states, around
hundreds in case it is a simple model, but it will raise
exponentially as the complexity increases. Therefore, the
review of the graph can be a tedious task. This was one
of the principal aims to develop a viewer to represent the
graph as a diagram, so it makes easier to check the marking
of every state.

48

ADVCOMP 2012 : The Sixth International Conference on Advanced Engineering Computing and Applications in Sciences

The developed application makes possible to select a
certain reachability graph, and visualize its structure in a
graphical way, allowing to consult the marking in an easy
and intuitive way.

Formula edition. Due to the purpose of this project, it
is also important to provide an effective tool to edit CTL
formulae. It represents an important benefit to the verifica-
tion process, avoiding typing mistakes, and improving user
experience because it reduces the learning curve from the
user point of view and increases the formula creation and
editing speed. That is why it is important to design a tool as
intuitive as possible. It seemed right to develop a formulae
constructor, which could provide a list of components and a
mechanism to include them in the formula in an interactive
way. Also, we thought it would be interesting to include
a verification phase to make sure that all the input is well
constructed, avoiding syntactic errors.

Among the features of this part, we find interesting the
ability to create/edit formulae, visualize them in a graphical
environment and the interactive creating using intuitive user
interfaces.

Model Checker results review. A very important stage
in the model checking process is the result review. In this
stage, the user needs to verify the results and analyse them in
order to identify the errors, if any, in the model. Therefore,
it is crucial to provide the tools to manage the output of our
Model Checker.

The developed interface makes possible to select a graph
and inspect the execution result of a certain formula, using
the reachability graph visualization, and checking the mark-
ing and satisfiability of the formula components in every
state in the RG.

C. Model checking process

The ontology represented in Figure 3 is used to
specify the input CTL formula for the model cheker.
It may contain any of the unary CTL operators
AF EF,AX,EX, AG,EG,NOT, or binary ones
AND,OR,AU,EU,IMP, or any of the terminal
nodes TRUE, FALSE, RDFG,RDFGP,SMT — EXP
being RDFG a RDF-Graph, RDFGP a RDF-Graph Pattern,
and SMT-EXP a logical statement in SMT-Lib format.

The other input of our model checker is the reachability
graph, which generation process has been previously ex-
plained. Because this RG may contain parametric data, we
still need to make use of an SMT solver. So, the same SMT
wrapper mentioned in II-A is required.

The verification process is similar to the one used with
ordinary U-RDF-PN and CTL formulae as described in [5].
The main difference lies in the terminal node SMT —-EX P,
which is represented by a logical statement in SMT-Lib
format. In order to know if a state satisfies such statement,
we need to make use of the SMT wrapper. Therefore,
the parametric marking of such state must be compared

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-237-0

to the parametric statement in the formula. Being P the
parametric data stored in the state, and () the content of the
SMT — EXP node in the formula, the logic expression
PV @ is used to check the validity of the state parametric
marking (P) and the formula parametric expression (Q).
This way, we will know if both logic statements are com-
patible or contradictory.

IIT. ANALYSIS OF THE EBI INTERPROSCAN WORKFLOW

In order to show the suitability of the COMBAS frame-
work, in this section the InterProScan workflow is going
to be analysed. This workflow relies on the use of the
EBIs WSInterProScan service [10], an its workflow can be
checked out at the Myexperiment.org community [11]. The
workflow receives as an input the protein sequence to be
processed, a user email address for notification purposes and
a few more parameters required for the analysis. Starting
with this input, a protein sequence is searched inside a
set of protein families and domain signature databases
integrated in InterPro [12]. As a result, a set of matches
are properly formatted and returned. These matches are also
annotated with the corresponding InterPro and GO term as-
signments (for further explanations about these assignments,
please refer to the experiment page). In order to execute
the runInterProScan activity, two different Web ser-
vices, runInterProScanl and runInterProScan2,
are available in a repository. Both services are able to carry
out the protein analysis, which represents the more expensive
part of the experiment.

Figure 4 depicts the workflow modelled as a High-Level
Petri net using the Renew tool [8] and semantically anno-
tated according to the parametric U-RDF-PN formalism. All
the data flowing through the workflow have been semanti-
cally annotated using instances based on the Protein On-
tology [13]. Nodes corresponding to the original workflow
are in dark grey, whereas some additional structures, which
have been included in order to provide more generality in the
generated reachability graph (representing a higher variety
of cases and states to analyse) are in light grey.

Let us now briefly describe the parametric net. The seven
annotated places at the top of the net are the main inputs
of the workflow. Five of those inputs, which represent the
job parameters and are also necessary to configure properly
the service InterProScan, are grouped in the left side:
goterms_default, async_default, crc_default, seqtype_default
and email_address. These inputs are required for transition
job_params to be enabled and then fired. In the right
side, two places represent the protein sequence data: se-
quence_or_ID and input_datatype_default. They are also
required to fire the transition Input_data. From the morphol-
ogy of the net, we can observe that all mentioned parameters
are necessary for the execution of the service InterProScan.
When this service is executed, the process enters the bottom
half of the net, in which the output is converted to the proper

49

ADVCOMP 2012 : The Sixth International Conference on Advanced Engineering Computing and Applications in Sciences

CTLFormula

haslnitialNode

Formula

hasRightPhi

BinaryFormula

EE)

LiteralFormula

SMT-EXP

Figure 3.

crc_default email_address input_datatype_default
goterms_defaufsyne_default"™- seqtype default ~ sequence_or_ID

async_pattern seqtype_pattern
gotermipatterny P crc_pattern qype_p email_pattern datatype_pattern

seq_pattern

input_data

async_pattern seq_pattern

seqtype_pattern
goterm_pattern crc_pattern/_emaﬂattem

seq_pattern

job_params

params_pattern content_pattern

params_pattern content_pattern

runinterProScan

OKE%}HFAIL

status_pattern

text_packed_pattern

XML_packed_pattern

text_packed_pattern status_pattern xM[packed _pattern

unpack_text_result unpack XML _result
text_Result_pattern
\
text_Result_pattern|

text_Result_pattern XML_Result_pattern

format_as_GFF
GFFiResuIthpattern

®

XML_Result

Job_ID GFF_Result Text_Result Status

Figure 4. Parametric U-RDF-PN modeling the InterProScan workflow for
the analysis of a protein sequence.

format. The are two places in charge of selecting the proper
format, and they also represent an input of the workflow: 1)
text and 2) XML. These places are semantically annotated,
containing, each of them, the reference to a parameter.
Below both places, a light grey section has been added. The
purpose of this structure is to assign two different values to
the mentioned parameters (true or false), so it is possible
to analyse the behaviour of the workflow in any situation,
using a single reachability graph. The same technique has
been used in the top part of the net, with the five parameters
described earlier. At the bottom, there are five output places:
Job_ID, GFF_Result, Text_Result, XML _Result and Status.
These are the places in which the results of the workflow

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-237-0

CTL formula ontology with parametric elements.

will be stored. They represent the five different output data
types we can obtain: the job identifier, the result in GFF,
text and XML format, and the status value, respectively.

This model is then processed by the Reachability Graph
Generator to compute the graph. The resulting reachability
graph has been built in 1343 seconds, and it is composed of
798 states.

A. Properties checking

Due to the size of the generated reachability graph, a
manual checking would not be feasible, resulting in a tedious
and complex task. This represents the perfect situation to
apply the proposed solution to analyse the problem. Let
us now design and formulate some different queries over
the model in order to verify its correctness. These queries
are expressed as formulae in CTL language and have been
implemented using the corresponding XML format, which is
ready to be processed by COMBAS. The Model Checker is
then in charge of verifying the satisfiability of the formula.

The first query to be consider when verifying a work-
flow could be to satisfy if the process is able, in some
situation, to end in a proper way. This will happen if
the output places in the net are marked with a resulting
graph. Five different output places are distinguished: Job_ID
place; Text_Result place; GFF_Result place; Status place
and, finally, XML_Result place. These places correspond
to the ones located in the bottom of the net presented in
Figure 4. Therefore, to verify if those places are reached,
it is possible to check if there exists any state in which
such places are marked by any graph (the empty graph
represents the any graph’ concept). This query corresponds
to the following CTL predicate: EF(RDFGTem_Result \Y,
RDFGgrF_Resutt VRDFGx p1_Resutt V RDFG giatus V
RDFG o _1D)

This formula, when executed in the Model Checker,
provides the next output:

INFO [main] (CombasApp.java) Model satisfies the formula!
INFO [main] (CombasApp.java) Output files generated.

INFO [main] (CombasApp.java) Checked in 17159 millis

INFO [main] (CombasApp.java) Formula: formula_lh9wbb3xwwj7c
INFO [main] (CombasApp.java) Model: netIdl1337458105565_RG

This means that the model satisfies the formula and,
therefore, it is possible to reach a state where any of the

ADVCOMP 2012 : The Sixth International Conference on Advanced Engineering Computing and Applications in Sciences

specified states is marked. The next step would be to verify
if the workflow is always able to finish. The corresponding
formula is expressed as follows: AF(RDFGrezt_Resuit V
RDFGGFF_ResuZt \ RDFGXML_Result \ RDFGStatus \
RDFG jor_1D)

The results from the model checking state that this for-
mula is not satisfied, which means that the model will not
always reach any of those places in the net. This can happen,
for instance, when the net reaches a deadlock state with no
transitions ready to fire.

Due to the morphology of the net, in order to trigger
the transition named runinterProScan its source places
must be marked. These places, which are referred to as
params and content_list places, will be marked in some
situation. Otherwise, the first query would not be satisfied
(the one asking if it is possible to reach any of the output
places). Then, it would be interesting to know if every
time these two places are marked the workflow will
reach any of the output places. This is the corresponding
CTL query: AG((RDFGparams N RDFGeontent) —
AF(RDFGGFF_Result \ RDFGText_Result \
RDFGstatus)- When processed, the Model Checker
states that the model satisfies the property.

Another useful query is related to verifying if ev-
ery time a result is obtained (at least one of the out-
put places is reached), the value of the status result is
true (so the token in the place status has the value
true for the status variable). The mentioned property in
CTL is: AG((RDFGText_Result \ RDFGGFF_Result \
R-DFGXML_Result) — RDFGPStatus(true)- The predi-
cate satisfies the model, which means that every time we
get a result, the status variable is set to true.

As shown, the model is very suitable to be analysed by
means of CTL queries related to the properties we want to
verify. Once the input model and its corresponding annota-
tions have been defined, COMBAS allows to easily perform
a model checking process, browse through the reachability
graph checking in which states the conditions are not being
verified, review the results, etc. No prior knowledge of the
model checking algorithm is required for the scientist nor
internal or technological details. Just using the interface with
the framework allows a set of advanced features and tools
for the analysis of complex systems.

IV. RELATED WORK

There already exist numerous Model Checking tools,
which can be classified according to the language they use
to express models and properties. Some of the tools allow us
to define properties in Computation Tree Logic and Linear
Temporal Logic (CTL and LTL, respectively), although in
this paper we will focus on the most widespread alternatives
supporting CTL as the language to express properties. BAN-
DERA uses code analysis techniques to verify properties
on models defined in Java, while CADENCE SMV uses

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-237-0

plain model checking to verify models expressed in Cadence
SMV, SMV or Verilog languages [14]. Another example
is NuSMV, which supports CTL, LTL and PSL to define
properties, in order to do plain model checking on SMV
models. APMC uses an approximate probabilistic technique
on Reactive Modules, and properties are expressed in PCTL
and PLTL languages [15]. PRISM supports CSL in addition
to both previous languages, and uses a probabilistic model
checking technique on models expressed in a big variety of
languages, like PEPA, PRISM language or Plain MC [15].
Between the probabilistic model checkers, we find MCMR,
which supports properties defined in CSL, CSRL, PCTL
or PRCTL languages, and uses real time and probabilistic
model checking on Plain MC models.

Other tools support the language p-calculus to describe
properties, like TAPAs, which also supports CTL on CCSP
models. ARC performs plain model checking of CTL*
properties on AltaRica models. GEAR is an alternative tool,
which accepts p-calculus properties too, among others like
AFMC and CTL [16]. CWB-NC is a similar tool, and uses
plain and temporized model checking on CCS, CSP, LOTOS
and TCCS models, using AFMC, CTL and GCTL properties.
Finally, MCMAS is a plain and epistemic model checker on
ISPL models, which verifies CTL and CTLK properties [17].

Regarding the use of SMT solvers, there exists a wide
variety solvers to choose from. The main characteristic as-
pects to choose among them are the collection of supported
theories and languages, the programming language they
are implemented in and also its portability and reusability
features. However, there are other points to take into account,
like the activity of the user community, how often new
versions are released, and the quality of the documenta-
tion. Regarding to these concepts, the list of options is
considerably reduced. CVC, OpenSMT and STP represent
the most active projects. STP only supports formulas over
the theory of bit-vectors and arrays, therefore it does not
represent a valid solution for our problem, because the main
theory we need support for is linear arithmetic, specifically
over reals, integers and booleans. Although OpenSMT is a
valid option, we choose CVC instead because it is a more
stable and production ready alternative. More precisely, we
choose CVC3, which is the stable version of CVC due to
the instability of CVC4, which is in beta phase.

With respect to the description of predicates to per-
form the model checking process, the Satisfiability Mod-
ulo Theories Competition (SMT-COMP) is celebrated each
year, since 2005, with the purpose of encouraging the
development of SMT solvers, and also as an impulse to
the adoption of the Satisfiability Modulo Theories Library
standard (SMT-LIB) [18]. SMT-LIB is a format designed
by the community that tries to unify the description of
the background theories and the inputs/outputs for SMT
solvers as well as to provide a collection of benchmarks
to boost the development of this kind of tools. Therefore,

51

ADVCOMP 2012 : The Sixth International Conference on Advanced Engineering Computing and Applications in Sciences

compared to other formats like CVC language or DIMACS,
SMT-LIB represents the most recommendable option to keep
compatibility and portability for our predicates.

To sum up, there are a great variety of standards and
tools that are involved in the model checking process.
However, there are no frameworks that integrate them in a
comprehensive way in order to allow scientists to analyse
their scientific workflows prior to their deployment and
execution, becoming COMBAS a suitable approach for this
kind of scenarios.

V. CONCLUSIONS AND FUTURE WORK

In this work, the COMBAS framework to carry out
model checking of semantically annotated processes and
workflows has been presented. COMBAS represents a novel
approach to add RDF semantic information to the source
model as well as to achieve its processing and analysis.
This will allow the scientists community to take advantages
of the new semantic technologies and also to facilitate
sharing workflows and tasks as well as reasoning about
the results and behaviours. The framework allows verifying
and viewing the intermediate structures and the results by
means of a visual environment able to handle RDF and
CTL aspects. The use of the Unary RDF Annotated Petri
Net formalism (U-RDF-PN) for the modeling of processes
has been extended with the addition of parametric aspects,
allowing to consider a more flexible and powerful analysis
for complex systems. Our proposal represents a novel ap-
proach to manage semantic-based computation problems by
means of the integration of several model checking related
standards and tools, and its suitability has been demonstrated
in the analysis of the InterProScan workflow.

The COMBAS framework is currently being extended
in order to integrate other standards and tools used in the
scientific community. Also, it is being applied to solve some
open challenges in the scientific workflow area, and the
reachability graph generator is being adapted in order to
be executed in grid environments, therefore improving the
overall execution costs.

ACKNOWLEDGMENTS

This work has been supported by the research project
TIN2010-17905, granted by the Spanish Ministry of Science
and Innovation, and the regional project DGA-FSE, granted
by the European Regional Development Fund (ERDF).

REFERENCES

[1] C. Berkley, S. Bowers, M. Jones, B. Ludischer, M. Schild-
hauver, and J. Tao, “Incorporating Semantics in Scientific
Workflow Authoring,” in SSDBM 2005, 2005, pp. 75-78.

[2] C. Goble, J. Bhagat, S. Aleksejevs, D. Cruickshank,
D. Michaelides, D. Newman, M. Borkum, S. Bechhofer,
M. Roos, P. Li, and D. De Roure, “myExperiment: a repos-
itory and social network for the sharing of bioinformatics
workflows,” Nucleic Acids Research, 2010.

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-237-0

[3] W. M. P. van der Aalst, “The application of Petri nets to
workflow management.” Journal of Circuits, Systems, and
Computers, vol. 8, no. 1, pp. 21-66, 1998.

[4] T. Gubala, D. Herezlak, M. Bubak, and M. Malawski, “Se-
mantic composition of scientific workflows based on the Petri
nets formalism,” in E-SCIENCE’06.

[5] M.]. Ibafiez, J. Fabra, P. Alvarez, and J. Ezpeleta, “Model
checking analysis of semantically annotated business pro-
cesses,” Systems, Man, and Cybernetics — Part A: Systems
and Humans, 2012.

[6] P. Hayes, “RDF Semantics,” W3C, Tech. Rep., February
2004, http://www.w3.org/TR/rdf-mt/.

[7] C. Barrett, R. Sebastiani, S. Seshia, and C. Tinelli, “Satisfi-
ability modulo theories,” Handbook of Satisfiability, vol. 4,
2009.

[8] O. Kummer and F. Wienberg, “Renew - the Reference Net
Workshop,” in Tool Demonstrations, 21st International Con-
ference on Application and Theory of Petri Nets, 2000, pp.
87-89.

[9] E. A. Emerson, “Temporal and Modal Logic,” Handbook
of Theoretical Computer Science, vol. Formal Models and
Semantics, pp. 995-1072, 1990.

[10] WSInterProScan, available at http://www.ebi.ac.uk
/Tools/webservices/services/archive/pfa/wsinterproscan
[retrieved: September, 2012].

[11] EBI’s WSInterProScan workflow at My-
Experiment community, available at
http://www.myexperiment.org/workflows/814.html
[retrieved: September, 2012].

[12] InterPro protein sequence analysis & classification, available
at http://www.ebi.ac.uk/interpro/

[retrieved: September, 2012].

[13] Protein Ontology, available at
http://bioportal.bioontology.org/ontologies/1052
[retrieved: September, 2012].

[14] D. Garlan, S. Khersonsky, and J. S. Kim, “Model checking
publish-subscribe systems,” in SPIN’03, 2003, pp. 166-180.

[15] M. Duflot, L. Fribourg, T. Hérault, R. Lassaigne, F. Magniette,
S. Messika, S.Peyronnet, and C. Picaronny, ‘“Probabilistic
model checking of the csma/cd protocol using prism and
apme,” Electr. Notes Theor. Comput. Sci., vol. 128, no. 6,
pp. 195-214, 2005.

[16] O. Grumberg and H. Veith, Eds., 25 Years of Model Checking

- History, Achievements, Perspectives, ser. Lecture Notes in
Computer Science, vol. 5000. Springer, 2008.
[17] A. Lomuscio, H. Qu, and F. Raimondi, “Mcmas: A model
checker for the verification of multi-agent systems,” in CAV,
2009, pp. 682-688.
[18] SMT-Lib: The Satisfiability Modulo Theories Library, avail-
able at http://www.smtlib.org/ [retrieved: September, 2012].

52

