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Abstract – This paper aims to apply a new methodology in 

bearing capacity analysis, often referred to as random finite 

element method (RFEM). This method considers the 

variability of soil parameters within the finite element method 

(FEM) by generating a Gaussian random field for the 

parameters within finite elements. The local average 

subdivision method (LAS) was used in this study to generate 

the Gaussian random field. However, soil parameters are not, 

generally, randomly distributed within neighboring soil 

elements; they tend to be correlated over a distance. Thus, the 

correlation length, the distance over the soil parameters are 

correlated to each other, was considered in this study. The 

Monte Carlo simulation was done for bearing capacity 

problem and some statistical and probabilistic methods were 

applied for analyzing the results to get the failure probability 

of footing on clay. This study would help to understand the 

effect of variability of soil parameter by using RFEM; so that 

the safety issues of geotechnical design can be determined in 

terms of probability of failure. 

Keywords – Random finite element method; Monte Carlo 

simulations; Gaussian random field generation; Statistical 

distribution; Probabilistic method; Correlation lengths; Risk 

assessment. 

I. INTRODUCTION 

In geotechnical engineering analysis, the soil parameters 
are often considered as constant within a soil layer. For 
instance, the bearing capacity of a strip footing is 

determined using constant value of c and  for each layer, 

where c is the cohesion and  is the angle of internal friction 
of soil particle. Thus, the equation for determining the 
bearing capacity on the surface of clay can be expressed as 
in Eq. (1) by Terzaghi [1] 

 
cu cNq  .  (1)     

where qu is bearing capacity, c is cohesion of soil, Nc is 

bearing capacity factor = 5.14 for  = 0. Eq. (1) gives 
bearing capacity of clay based on cohesion, c only. Thus, a 
design based on Eq. (1) can be conservative or optimistic 
with an associated risk based on how geotechnical engineer 
determine c for a clay layer. In practice, a value of c is 
approximated in such a way so that it gives a conservative 
estimation for design. 

However, in reality, c is not the same, i.e., it varies point 
to point in a soil layer because of complicated geological 
formation process. The deterministic approach as in Eq. (1) 
may be conservative, but do not consider realistic condition. 
Moreover, the implication of this simplification is not 
explored in details yet. Thus, it is necessary to consider the 
variation of c in bearing capacity analysis and compare with 
deterministic approach. So, a new method, (RFEM) 
Random Finite Element Method was used in this study to 
calculate bearing capacity.  

In RFEM, the material parameters are varied and 
distributed within finite elements. For example, the 
parameter c, in the above problem, is varied within finite 
elements for a clay layer. However, the variation of the 
parameters should be consistent with field condition. 
According to Fenton and Griffiths [2], the geotechnical 
parameters can possibly have several reasonable 
distributions, which include log-normal, normal and tanh 
bounded distribution. The parameter c is generally assumed 
to be log-normally distributed with an advantage of 
avoiding negative c that has no physical meaning [3, 4]. 
Then, based on the log-normal distribution, the Gaussian 
random field of c is generated by Local Average 
Subdivision, LAS method for finite elements. However, the 
variation of c within soil elements is not purely random; a 
smoother change of c between two neighboring soil 
elements is expected than two elements at a distance apart.  

A spatial correlation length is used within the random 
field to describe the distance over which random values tend 
to be correlated. When the correlation lengths in horizontal 
and vertical directions are same, the soil elements can be 
assumed as isotropic. Most of the previous studies focused 
on isotropic condition.  

This paper focuses on the variability and the effect of 
anisotropic distribution of material parameters in 
geotechnical analysis. Some statistical and probabilistic 
methods, such as random field generator with log-normal 
distribution, correlation length and Monte Carlo simulations 
[2] are used within the finite element analysis. The 
probability of failure of footing on clay was obtained from 
cumulative distribution function [2]. 

II. RANDOM FINITE ELEMENT METHOD 

RFEM considers that the engineering parameters are 
distributed over a correlation length as a Gaussian random 
field [2] generated by local average subdivision [2] within 
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finite elements. These techniques are discussed in following 
subsections.  

A. Correlation length 

In reality, soil parameters within the neighbouring points 
are similar, i.e., correlated. The distance over that parameter 
is correlated is called correlation length or scale of 
fluctuation.   According to Fenton and Griffiths [2], the 
correlation coefficient in isotropy can be determined as 

  /2)(  .  (2) 

where  is correlation coefficient,  is distance between two 
points. When the correlation lengths in horizontal and 
vertical direction are same, then it is called isotropic 
condition. Most of the previous studies are based on 
isotropic condition. However, in reality the correlation 
length in horizontal direction is higher than the vertical 
direction as geologically soil forms in horizontal layers [5, 
6]. The condition, when horizontal and vertical correlation 
lengths are different, is called anisotropic condition. The 
anisotropy condition can be expressed as 

     22
/2/2exp),( yyxxyx    .  (3) 

where x and y are the distance in horizontal and vertical 

direction respectively, x and y are horizontal and vertical 
correlation lengths, respectively.   

The correlation coefficient, , takes an important role in 
the random field generation. They will take part in LAS 
process in order to correlate the parameters in finite element 
meshes. The functions of correlation coefficient are 
illustrated in Fig.1. 

In isotropy, the coefficient is the same in both directions, 
thus it generates symmetric curve to the centre in both 

horizontal (x) and vertical directions (y) as shown in Fig. 
1a. But, in anisotropy, the correlation coefficient is different 
in horizontal and vertical directions. In Fig. 1b, when the 
horizontal correlation length increases to a high value of 
100, the correlation length becomes very close to 1.0 in 
horizontal direction. On the other hand, the vertical 
correlation coefficient is high at the middle and lower at the 
side. Hence, the parameters in horizontal direction will 
correlate better than the vertical direction.  

B. Local average subdivision 

The LAS technique is one of the techniques that widely 
used to generate the Gaussian random field. It was 
introduced in Vanmarcke [7]. At first, the global average is 
generated with mean of zero and unit variance of 1 [2]. The 
global average is defined by local average theory as in 
Fenton and Griffiths [2]. The global average can be written 
in terms of expectation function as in Eq. (4) 
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where T is the mesh size, t is location at the centre of each 

mesh cell, and  is location at moving average. The 
covariance of the local averages is defined by using a 
variance function as defined in Fenton and Griffiths [2]. 
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where  = variance function. The variance function indicates 

the average correlation coefficient,  between each pair of 2 

separated points within the defined area, where () is 
defined in Eq. (3). Then, based on the covariance between 
pair of cells, the LAS process can be generated. In LAS 
process, one parent cell, Q is subdivided into 4 equal cells, 
which are called child cells. The Fig. 2 illustrates the 
subdivision process, where Q is the parent cell and G is the 
child cell. 
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Figure 1. (a) Correlation coefficient in isotropy, x = y = 1.0 and (b) 

Correlation coefficient in anisotropy, x = 100 and y = 1.0 
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Figure 2. LAS process. 

The function which is used for the LAS process can be 
expressed as 

 LUQAG T  . (6) 

In this process, U is indicated as the vector of 
independent standard normal random variables with mean 
zero and unit standard deviation. 

The covariance described the relationship between the 
cells and can be written as the following equations. 

Covariance between parent cells 

  TQQER  .  (7) 

 
Covariance between parent and child cells 

  TQGES  .  (8) 

Covariance between child cells 

  TGGEB  .  (9) 

Then, the matrices A and L can be determined by 

 SRA 1 .  (10) 

 ASBLL TT  .  (11) 

The method used to generate matrix L is called matrix 
decomposition method, which is used to find the lower 
triangular matrix from the defined matrix. According to 
Fenton and Griffiths [2], the LAS technique is most reliable 
and efficient technique to generate the random field for 
RFEM and also give the best-fit results to the theory.  

C. Random field transformation 

The cohesion of soil, c, is considered as log-normal 
distribution and thus the log-normal distribution 
transformation in Gaussian random field can be expressed 
as 

 )],(exp[),( jiGjiX   .  (12) 

where X(i, j) is transformed random field,  is mean,  is 
standard deviation, and G(i, j) is random field generated by 
LAS process in Eq. (6). A distribution of c is shown in Fig. 
3.  

 
 

Figure 3. Log-normal distribution with =400 and =300 

D. RFEM and variability of soil parameters 

An elastic-perfectly plastic stress-strain law with Tresca 

failure criterion is used in finite element formulation. The 

theoretical method is described in details in Chapter 6 of the 

text by Smith and Griffiths [8]. The software used in this 

study is called Mrbear2D and freely available online. The 

soil parameters including dilation angle,, elastic modulus, 

E and Poisson’s ratio,  are assumed to be deterministic with 

specific constant values. However, the undrained shear 

strength parameter, c was a variable in terms of coefficient 

of variation (COV) can be expressed as 

 COV .  (13) 

where  is mean and  is standard deviation of c. The 
distribution of c within finite element meshes for small 

correlation of x = y = 0.1 and x = 10 & y = 4.0 are shown 
in Fig. 4a & b. A smoother variation is apparent for higher 
correlation length. 

III. MONTE CARLO SIMULATIONS 

     The LAS technique will generate a random field in each 
Monte Carlo simulation [2]. This type of simulation is 
applied in order to consider the possible variability of 
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parameter in geotechnical analysis. The Monte Carlo 
simulation process continues with LAS technique and 
distribution function until simulations obtain stable results. 
By using RFEM software, a reasonable number of 1000 
FEM simulations were done to obtain stable result as shown 
in Fig. 5. 
 

a) 

b) 

 

Figure 4. The mesh model with correlation coefficient; (a) x = y = 0.1 and 

(b) x = 10 and y = 4 
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Figure 5. Mean value and standard deviation of the results through Monte 

Carlo simulations. 

The y-axis and x-axis in Fig. 5 present bearing capacity 
and number of simulations, respectively. A number of 1000 
FEM simulations, using Monte Carlo simulation, is 

adequate for this study. However, the effect of COV on 
bearing capacity is also apparent in the figure.   

IV. RESULTS 

When doing the analysis with 1000 Monte Carlo 
simulations, there are 1000 bearing capacities for 1000 
different c fields. In RFEM, the cohesion, c was the input 
with log-normal distribution.  Then, the bearing capacity 
factor, Nc will be determined by using cohesion and bearing 
capacity in Eq. (1).  

 
cuc qN / .  (14) 

Because c log-normally distributed, Nc then can be 
considered as log-normally distributed. Thus, the mean and 
standard deviation of Nc can be expressed as 

 



1000

1

1000/
i

cic NN .  (15) 

 

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1

1000/)(
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ccic NNN  .  (16) 

where Nci is Nc from each simulation, µNc is mean of 1000 

Nci, Nc is standard deviation of 1000 Nci. As Nc log-

normally distributed, the logarithm values of mean and 

standard deviation of Nc were used in the probabilistic 

method for calculating the probability of failure. The 

conventional deterministic method in geotechnical 

engineering adopted Prandtl solution for the bearing 

capacity factor, Nc of 5.14 [9]. Thus, the probability of 

failure is considered as the chance of the mean bearing 

capacity factor, µNc less than 5.14 [3, 10]. The probability 

can be expressed in terms cumulative function, Φ 

 )(]/14.5[  FSNP c
.  (17) 

where β is reliability index and FS is the factor of safety. 
The factor of safety is applied to minimise the probability of 

failure of the footing. The reliability index,  of Nc, which is 
the expression of margin of safety, M from its critical value 
(M=0) [5] can be defined as 

 MM  / .  (18) 

where µM is mean of margin of safety, M is standard 
deviation of margin of safety. 

In this case, the margin of safety, M is the difference 
between the Prandtl solution from deterministic approach 
and the mean of bearing capacity factor [5]. Thus, mean and 
standard deviation of M can be expressed as 
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cNFSM   /14.5 .  (19) 

 
cNM   .  (20) 

The probability of failure, hence, can be determined by 
the cumulative function of β. The cumulative function can 
be illustrated as Fig.6. 

The correlation length in RFEM has impacts on the 
probability of failure for geotechnical problems [2] and this 
study considered different correlation lengths both for 
isotropic and anisotropic cases. The isotropic study with 
RFEM was mentioned by many authors includes Griffiths 
and Fenton [3], Vessia et al. [6] and Popescu et al. [11]. The 
probability of failure for isotropic condition for FS=3.0 and 
COV =1.0 is compared with other published data in Fig. 7. 
A good match is observed with Griffiths and Fenton [3], 
however significant discrepancies are observed with 
Kasama and Whittle [10]. It is worth nothing that this study 
used displacement based finite element method whereas 
Kasama and Whittle [10] used numerical limit analysis. 
However, the differences are not obvious and need further 
investigation. The probability of failure for anisotropic cases 

is also plotted in Fig. 7, x = 1, 2 and 4 are plotted with 

varying y/B (B is width of footing). It shows that the 
probability of failure for anisotropic cases can be higher 
than the isotropic case irrespective of the method used in 
Griffiths and Fenton [3] and Kasama and Whittle [10]. 
However, the probability of failure in any case is not higher 
than 25%. 

 

 
Figure 6. Cumulative density function of β 

For better understanding the probability of failure in 
anisotropic condition, a contour map is presented for 
COV=0.1 in Fig. 8, where red is higher and blue is lower 
probability of failure. In Fig. 8, the probability of failure is 
very high at the small correlation length and the probability 
of failure decreases when correlation length increases. 
Generally, the probability of failure is affected by the 

correlation length and COV of c in RFEM. When the 
correlation length is high, the probability is low. In contrast, 
the COV is high; the probability of failure will be high. In 
anisotropy, the ratio of correlation length is increasing while 
the probability of failure is decreasing. It is interesting to 
note that the higher correlation length in horizontal direction 

(x) with y in the range of 1 to 3 is better in terms of 
stability when comparing with higher correlation length in 

vertical direction (y). This is favorable as this is more 
realistic for general field condition. However, the opposite 
condition is not usual in field conditions though it is not 
impossible. 

 

Figure 7. Probability of failure against vertical correlation length 
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Figure 8. Probability of failure contour plot for COV=0.1 against horizontal 

and vertical correlation length. 
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As mentioned previously, this study considered higher 
horizontal correlation length than the vertical direction and 
this is presented as the ratio of the horizontal and vertical 

correlation length,x/y. The effect ofx/y on the 
probability of failure is shown in Fig. 9.  

 
Figure 9. Probability of failure against COV 

Fig. 9 shows that the probability of failure will be 
increasing when the COV of c increases. It is obvious that 
the results from anisotropy are significantly different than 
the isotropic results in Kasama and Whittle [10]. The results 
in both conditions do not match well when COV=2.0 to 3.0. 
For anisotropic conditions, at small COV, the greater the 
ratio of correlation length is, the higher the probability of 
failure is. In contrast, at high COV, the greater the ratio is, 
the smaller the probability of failure is. 

V. CONCLUSION 

This paper discussed about the random finite element 
method (RFEM) and applied in bearing capacity problem. 
Then, some probabilistic and statistical methods used to 
evaluate the effect of the variability of soil parameter on the 
probability of footing failure. The correlation length of soil 
parameter within neighbouring soil elements and its effect 
on the probability of failure is explored. The major findings 
of this study are- 

    The probability of failure for isotropic condition is 
different for different methods. This is not obvious, 
thus need further investigation. 

    The probability of failure for anisotropic 
conditions is higher than the isotropic conditions for 
the cases presented in the study. 

    A higher correlation length in horizontal direction 
is more favourable than a higher correlation length 
vertical direction. This is favourable to most of the 
general conditions. 

  The factor of safety is also considered in the 
calculation of the probability of failure. The suitable 
factor of safety for footing design is 3.0, when the 

probability of failure is significantly small, 
particularly at the small COV and correlation length. 

RFEM considers the variation of soil parameters within 
soil elements. It is more practical and realistic than 
deterministic approaches, which considers parameters are 
constant for all soil elements.  By using RFEM, the chance 
of failure of footing can be determined more realistically. 
The probability of failure will vary against different 
correlation length and coefficient of variation (COV). In this 
case, RFEM can improve the accuracy and efficiency in 
geotechnical analysis when dealing with a distribution of 
parameters. 
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