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Abstract—We present an analysis design of how to incorpo-
rate a transparent fault tolerance system at socket level for
message passing applications. The novel design changes the
default socket model avoiding being unexpectedly closed due
to a remote node failure. Moreover, a pessimistic log-based
rollback recovery protocol added to this level makes possible
restarting and re-executing a failed parallel process until the
point of failure independently of the rest of the processes. This
paper explains and analyzes the design time decisions. We
tested and assessed them executing a master-worker (M/W)
and Single Program Multiple Data (SPMD) applications which
follow different communication patterns. Promising results of
robustness in interprocess communication were obtained.

Keywords-Fault-tolerance; High-Availability; RADIC; message
passing; socket.

I. INTRODUCTION

Fault tolerance (FT) solutions are regarded as a mandatory
requirement for parallel applications since the probability of
failure is higher in increasingly complex High Performance
Computing (HPC) systems and with more components.
There is a high risk of suffering an execution stop due to a
node failure when the parallel application lasts more than the
Mean Time Between Failures (MTBF) of the host system.

When a message passing application is executing in a
cluster and suddenly one of the node fails, the communi-
cations established with the parallel processes in it also fall
down. These communication errors would propagate causing
fatal errors to the rest of the parallel processes.

The Figure 1 shows a typical communication level dia-
gram of a message passing application. A failure at physical
o networking levels usually spreads up errors to higher levels
causing an undesirable execution stop of the application.

Socket [1] is a de facto standard application interface
(API) of Portable Operating System Interface (POSIX) to
use the transport level protocols like TCP or UDP [2].
This API is normally used for interchanging data packages
between two executing processes in a cluster. The socket
model is intended to do that, but a remote failure is treated
by this API as a fatal error. However, controlling socket
errors caused by a fall of remote peer would prevent the
propagation of them to the upper levels of the message
passing communication library and application.

The research work Reliable Network Connections [3]
describes rocks, an approach which changes the normal
behaviour of the diagram state of socket API by automati-
cally detecting network connection failures, including those

caused by link failures, extended periods of disconnection,
and process migration, within seconds of their occurrence.
When this kind of communication error happens, instead of
closing unexpectedly the socket, the IP address is replaced
by the new location of remote peer and the broken connec-
tion is recovered without loss of in-flight data as connectivity
is restored.

Clearly, establishing reliable network connections instead
of normal ones would contribute to provide a FT solution
for message passing application avoiding unexpected fatal
errors.

Message passing applications usually rely on rollback-
recovery protocols to recover from failures. Most of these
protocols were explained and classified by E.N. Elnozahazy
[4]. RADIC Redundant Array of Distributed Independent
Controllers [5] is a Fault Tolerance architecture for message
passing applications that defines a proper model to apply a
rollback recovery protocol using uncoordinated checkpoint
and pessimistic log-based on receiver.

The approach of FT of this research work basically
consist in modifying the socket model used by the upper
levels indicated in Figure 1. The new model combines the
use of reliable network connections with the models of
RADIC architecture in order to provide a FT system for
parallel application that would be used independently of
what message passing library is in use. This independence
let the FT be seen as an additional optional infrastructure
service without requirements for the application.

Figure 1. Socket Level

This paper is specially focused on explaining the require-
ments of the system, the problems that have fulfilled each of
them and the corresponding solutions adopted in the design
of a RADIC-based fault tolerance system at socket level.

A RADIC-based FT system inherits its properties of dis-
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tributed and decentralized, which would facilitate to develop
a scalable solution.

The content of this paper is organized as follows. In
Section II we mention the related works. Section III defines
the requirements to take into account in the design of this
solution. The Section IV explains the problems and the
solutions adopted to fulfill the requirements at socket level.
The experimental evaluation is presented in Section V, and
lastly, we state the conclusions and the future work in
Section VI.

II. RELATED WORKS

The approaches used to add FT in a message passing
application can be classified into three groups according to
[6]. First, the application can be changed adding the FT
mechanisms. In relation to this approach, we can mention
research works like [6] [7], which facilitate the programming
tasks either defining FT programming patterns or adding
new libraries to be called. Although this first group of FT
solutions is likely to reach the best fit, it is expensive and not
always applicable if the source code is not available. In the
second group we can categorize the research works which
locate FT algorithms in communication library. Most of the
used solutions belong to this group, because the application
does not need to be changed. We regard this kind of tools as
an extension of the MPI communication library. MPICH-V
Project [8] is an example of this case. Moreover, RADIC
was previously implemented using this kind of strategy.
[5]. Although the application is not changed it needs to be
compiled again with the modified communication library.
Furthermore, this could be a problem if we only have the
executable programs and we still need to assure an error-
free execution in spite of node-failures. Another drawback of
this group is the need of adapting each MPI implementation
to the specific FT strategy. Finally, available solutions at
system level are also transparent for the application, but,
most of them are very sensitive to changes in operative
system versions and they are not easily portable to other
architectures. An example using this last category is DMTCP
[9], a checkpoint and restart tool for distributed applications
which can be also used for message passing applications.
However, scripts for checkpoint and restarting must be
provided by the user. Our work fits in this last category
as it works at system level.

On the other hand, there are three requirements to be
covered by rollback recovery FT approaches. Firstly, Protec-
tion of information/state to continue computation. Secondly,
Detection of the failure and lastly, Restart the computation
reconfiguring the system to isolate the damage component
and mask the errors. Fault tolerance solutions are not fully
developed with all the requirements at system level.

For example, BLCR [10] is a well-known project of
kernel-level process checkpoint. It can be used with mul-
tithreading programs but it does not support distributed

or parallel process. This tool covers the protection and
restarting requirements. The detection has to be added by
the user.

DMTCP [9] (Distributed Multi-threaded Checkpointing)
does not provide the detection requirement to be considered
a FT solution.

DejaVu [11] is a transparent user-level FT system for
migration and recovery of parallel and distributed appli-
cations. It provides the three mentioned requirements and
implements a novel mechanism to capture the global state
named online logging protocol. Although uncoordinated
checkpoints are performed, it uses a coordinated mechanism
to assure the global consistent state of them. This property
can be a drawback to scale properly. In addition, DejaVu
does not implement any log message protocol, so all parallel
processes are forced to recover and restart in case of a node
failure.

RADIC [5] meets the requirements of detection, protec-
tion and recovery. These tasks are carried out without any
centralized element to keep the scalability of the running
application. Thus, the behavior is completely distributed on
the nodes of the clusters and the overhead added during
the protection phase and in recovery is independent from
the number of processes. We think this property is essential
nowadays when the numbers of processors in the clusters are
increasing so much. To protect it uses log message based
on receiver rollback recovery protocol which facilitates
the recovery tasks, but adding some overhead during the
protection phase. The middleware we are presenting is based
on RADIC and works at user level.

III. DESIGN REQUIREMENTS

This section defines the two basic requirements to take
into account during the design of the FT system. The first
is that the design has to be located at socket level in
order to achieve application and library independence. The
second requirement is having properties of transparency,
distribution, decentralization and scalability, which are going
to be inherited from RADIC. This section begins with a brief
explanation of RADIC architecture. Previous research papers
can be consulted for detailed information [5] [12]. Finally,
the concept of reliable sockets is defined, outlining how we
can include them and what is required to do it.

A. RADIC Architecture

RADIC architecture is based on uncoordinated check-
points combined with pessimistic log-based on receiver.
Critical data like checkpoints and message logs of each
parallel process are stored on a different node from the one
in which it is running. This selection assures application
completion if a minimum of three nodes are left operational
after n non-simultaneous faults. In short, RADIC defines the
following two components also depicted in Figure 2
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• Observer (Oi): this entity is responsible for monitoring
the application’s communications and masks possible
errors generated by communication failures. Therefore,
the observer performs message logs in a pessimistic
way as well as it saves periodically the parallel process
state by checkpointing. Message logs and checkpoints
are sent to protector Ti-1. There is an observer Oi
attached to each paralell process Pi.

• Protector: (Ti) There is one running on each node
which can protect more than one application process. In
order to protect the application’s critical data, protectors
store that on a non-volatile media. In case of failure, the
protector recovers the failed application process with
its attached observer. Protector detects node failure by
sending heartbeats to its neighbours.

Figure 2 shows the relationship between nodes running
an application with RADIC fault tolerance architecture.
Diagonal arrows represent critical data flow while horizontal
ones represent heartbeats.

Figure 2. RADIC diagram shows each observer Oi sends the critical data
to its protector Ti-1. Each protector Ti sends heartbeat signal to Ti-1

B. Reliable sockets
TCP is a reliable transport protocol between two peers in

a sense that every packet sent by one peer is assured to be
delivered and received by the other peer respecting the sent
order. Each peer uses send and receive buffers managed by
flow-control to accomplish this reliability.

However, the TCP model does not provide a mechanism
to recover the connection from a permanent failure of one of
the peers, because this kind of situation is out of the scope
of a transport protocol. Usually, the applications running on
POSIX Operative System use socket API as I/O network
interface to receive and send data through a TCP/IP connec-
tion. TCP connection failures occur when the kernel aborts a
connection. This could be caused by several situations such
data in the send buffer goes unacknowledged for a period
of time that exceeds the limits on retransmission defined by
TCP, or receiving a TCP reset packet as a consequence of
the other peer reboots or closes the socket unexpectedly.
Furthermore, when the kernel aborts the connection, the
socket becomes invalid for the application.

If the application does not have a proper functionality to
recover this invalid socket, usually the execution is aborted
due to the unexpected situation.

Rocks architecture proposed by [3] defines the operation
of a reliable socket by changing the default state socket

diagram by a new one. This new operation does not allow
the socket to be closed by such exceptional situation. Instead
of that, the socket remains in a suspended state while a
new address of the remote peer is got and the socket is
reconfigured. This new socket behavior affects the process,
not the internal TCP socket state maintained by the kernel.

This general idea is applicable to our design, but not
the detailed behavior and implementation, because they
considered only two peer applications and not parallel ones
composed by several processes.

Furthermore, we need to incorporate to this socket level
the functionality of the rollback recovery protocol defined
by RADIC. To accomplish this task, we designed a new
behavior of socket API considering reliable sockets and
pessimistic based on receiver rollback recovery protocol.

Following the basic idea of reliable network connections,
the FT logic needed for protection and for restarting a
process is added by interposing socket functions as socket,
bind, listen, connect, send and recv. The default diagram
state of socket API is changed in order to not allow the
socket to be closed when remote peer falls down. Next, the
socket does not become invalid for the upper level process.
RADIC recovery model determines that the failed processes
are restarted in the protector node. As a result, the observer
is able to re-configure the socket with this new address and
then, the lost connection with the restarted process is re-
established.

Taking into account that RADIC defines that the observer
component is that one attached at each parallel process, the
interposition library at socket level corresponds to this. Con-
sequently, the library has to accomplish all the functionality
of this component defined by RADIC. As we mentioned
before, this paper is specially focused on defining this entity,
because it is directly affected by the approach adopted.
In contrast, the protector can be seen as an independent
process that only interacts with other RADIC components
like observers and other protectors. The functionality of
protectors is completely defined, tested and explained in
previous research works.

IV. FAULT TOLERANCE USING SECURE SOCKETS

This section describes the three pieces of functionality
needed to be incorporated at reliable socket level to get
a RADIC observer. These three pieces are message log,
checkpointing and restarting. Each of them presents different
challenges to face, which are explained in the following
subsections including the way they are overcame.

A. Message Log

A pessimistic log-based on receiver rollback-recovery
protocol has to be designed at socket level in order to assure
that the state of each process is always recoverable. This
kind of procedure can add some overhead during the normal
execution (protection phase) but this way simplifies the
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recovery tasks because the effects of a failure are confined
only to the processes that need to be restarting.

Log-based rollback-recovery assumes that all nondeter-
ministic events can be identified and their corresponding
determinants can be logged to stable storage. Receiving a
packet is considered a nondeterministic event to log.

At first sight, it seems a simple challenge that can be
solved interposing recv function and sending the received
message to the protector afterwards.

But pessimistic logging protocols are designed under the
assumption that a failure can occur after any nondeterminis-
tic event in the computation. This assumption is pessimistic
since in reality, failures are rare. This property stipulates
that if an event has not been logged on stable storage, then
no process can depend on it. Because of that, a sender of
a message needs to wait until the complete sent message is
saved in stable storage before continuing its operation. Once
a received message is completely saved on stable storage,
an acknowledgment is sent to the sender.

To accomplish this requirement of acknowledgment of
each received and saved package, we need to establish a
communication between the two observers involved in each
peer of a socket. We cannot use the application socket being
interposed to send and receive acknowledge data because we
can be interfering on the application protocol affecting the
integrity of their messages.

Therefore, for each socket established by the upper level,
the interposing library creates a new socket named control-
ft socket used to interchange control data between two
observers intercepting send and recv functions.

The Figure 3 shows how a message is treated since it is
generated from the sender process. The send operation is
interposed by sender observer Os which sends a numerated
acknowledgement requirement to the receiver observer using
the control-ft socket canal, represented by dotted lines.
The message is sent to the receiver using the real socket,
depicted as solid lines. The receiver observer Or interposes
the recv operation and receives the acknowledgement re-
quirement through the control-ft socket and the application
message through the real socket. Observer Or sends the
message to its protector. Once Or receives the ack of save
operation, sends the ack to sender and finishes the recv
interposed. Observer Os receives the ack indicating this
message is correctly saved and it is not necessary to be resent
anymore. Lastly, the send interposition is finished and the
process resumes the processing. The gray block represents
the tasks added by the logging message protocol during the
failure-free execution.

B. Checkpointing

Each parallel process has to be checkpointed periodically
in order to save its state. In a log-based protocol, check-
pointing is performed in order to limit the amount of work
that has to be repeated in execution replay during recovery.

Figure 3. Message log: Real sockets: Solid lines - Control-Ft socket:
dotted lines - RADIC sockets: dashed lines

This task is performed in an uncoordinated way, thus no
centralized or blocking mechanisms are needed in the sake
of scalability.

During the checkpoint, all the active communications of
the observed parallel process need to be closed. The BLCR
library being used to checkpoint processes recommends this
procedure for two reasons. First, to avoid loosing in transit
data, and second, because the socket and its corresponding
connections have to be established again from scratch during
the restarting in a new cluster node.

Therefore, all the opened sockets have to be closed before
checkpointing and re-opened and re-established after it. To
accomplish this task we need to keep the following data as
it is not provided by the operative system:

• Virtual socket: It is the socket number id known by the
parallel process achieved it during a socket or accept
function.

• Socket Type: This type can be connect, accept or
listen. It is used to identify which operation has to be
performed to re-establish the socket after checkpoint or
during restart.

• Re-establish parameters: The parameters used origi-
nally to execute the function connect, accept or listen
interposed in order to re-execute the command after
checkpointing or restarting.

• Real socket: Socket number id actually being in use to
intercommunicate with remote process, getting during a
re-open operation after checkpointing or restarting. The
operative system delivers different id socket handler
when a socket or accept function is re-executed. A one-
by-one relation between virtual and real socket number
is kept. During the interposition, the observer changes
the virtual socket id referenced by the application by
this real socket number. Therefore, the function is
performed using the current real opened socket.

There is a problem to be solved when an accept type
socket is re-established. During an accept re-execution,
multiple client observers can be trying to re-connect at the
same time. The server observer has to be able to recognize
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which is the other peer in order to continue the control
message logging of the broken socket. Using operative
system functions, the remote ip and port can be known but
this data is not enough to identify uniquely the observer
client process previously connected to this socket due to
more than a parallel process can be executing in one node.

To accomplish this identity validation task, each ob-
server sends a unique parallel process identification (pid)
trough the control-ft socket. Consequently, during the re-
establishment of an accept socket the former client con-
nected can be uniquely identified to continue the log
message associated to the virtual socket opened by the
application.

For instance, a master accepts connections coming from
two workers. They are connected using sockets 4 and 6
respectively. The socket 4 has socket 5 as control-ft and the
6 has the 7. The sockets are closed before checkpoint. After
finishing checkpointing, the accept functions are executed
to re-establish connections. But two observers associated to
the two workers are trying to re-connect the unexpectedly
closed socket at the same time. After connecting, the remote
observer sends its identification using the control-ft. In this
way, the server can determine which real socket corresponds
with virtual socket 4 and which with the 6.

C. Restarting

When a node fails, the protector recovers the processes
which were being saved in it using the last checkpoint
received. The processes are recovered in a spare node if there
is one available or in the same protector node if there is not.
Each process is restarted with its corresponding observer.
This observer detects the restarting state and its behavior
is different until the process arrives to the point of failure.
This point is reached when the last received message in log
is consumed by the restarting parallel processes.

Two important design decisions were made in order to get
RADIC restart model at socket level. First of all, the sockets
type listen which were active on failed host, are launched on
this new host. These sockets are needed to be ready before
re-connecting the sockets type accept being re-executed. In
the second place, to re-execute the parallel process until the
point of failure, the observer in restarting mode, intercepts
the recv function and the contents is extracted from the log
message previously saved by the protector.

V. EXPERIMENTAL RESULTS

We test the fault tolerance system for validating the
functionality of RADIC and reliable connection at socket
level. The principal aim is to assure that the mechanisms
used to build the reliable tunnel connections and the log
message protocol are working correctly. Our second aim is
to know the overhead added in execution time by protection
and recovery processes. We take some measures to have
indicators for assessing how the system is working in terms

of overhead and bandwidth consumed by the protection
model.

The experiments were executed on a cluster formed by 4
nodes Intel R© CoreTM i5-650 Processor 6GB RAM, Network
Gigabit Ethernet. The OS used is Ubuntu 10.04 Kernel
2.6.32-33-server.

We use a sum of matrices Master/Worker and a heat-
transfer SPMD applications based on TCP sockets, which
follow different communication patterns in order to do a
better test of the reliable socket model performed after
checkpoints and in restart process.

We use three ways of execution. First, the normal without
FT No FT, second using FT but without any node failure
FT 0 and lastly, we inject a fail in the process executing on
the node N3 some events after the first checkpoint, 50 in
M/W FT 50 and 100 in SPMD FT 100.

The M/W was executed with 4 workers, one per node.
The first node executes the master and one worker. Master
performs 2 checkpoint of 450Kb(avg) and workers 3 of
425kb(avg). SPMD is executed with four processes, also one
per node. Each one executes 3 checkpoints of 1440kb(avg).
The fall is injected in N3 on both cases and the worker or
spmd process are recovered in N2.

Two selected experiments are shown in Figure 4(a) and in
Figure 4(b). The diagrams show the overhead time compar-
ing the three ways of execution. These times are measured in
the process executing in N3. The total execution is divided
into: the seconds used by interruptions to perform check-
points, time used for restarting and re-executing, seconds for
recovering from communication errors due to node failures
or remote checkpointing, time used by other reasons that are
not measure by now, like detection of errors, and finally the
base time that the application last without FT (No FT). The

(a) MW Time overhead (b) SPMD Time overhead

Figure 4. Experimental results time execution results.

Figure 5(a) graphs the traffic sent and received by process
master during the tree executions. and Figure 5(b) shows the
same for the worker executed in N3 that was directly affected
by the failure. Master sent two checkpoint to protector. As
the master receives very few data, the bytes sent to protector
to log message is few. The data transfered by control-ft
canal is proportionally low. On the other hand, the worker
receives much more data, therefore, more kbytes of log are
sent to protector.

Finally, in Figure 6, the traffic of the SPMD process
executing in N3 is shown. Similarly as it was observed
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(a) MW Master process

(b) MW Failed Worker process

Figure 5. Master/Worker traffic overhead analysis

in previous executions, the overhead added by control-ft
is low, and the log message is directly proportionated with
the amount of received data.

Figure 6. SPMD traffic overhead analysis

VI. CONCLUSIONS AND FUTURE WORK

The results show that the design made of a transparent and
distributed fault tolerance system is appropriate. Message
passing applications with different communication patterns
are able to end successfully performing periodic checkpoint-
ing and restart and re-execute in case of node failure.

Using this approach it is possible to build a transparent
fault tolerance middleware able to provide no fail stop to
message passing application independently from the com-
munication library in use. In that way, the user is not forced
to choose a specific communication library to get the fault
tolerance facilities. The library of preference can be chosen.

We are working on a set of experiments to prove we can
use this system to fault tolerance applications using either

MPICH or OPEN-MPI.
Future work will include as well an analysis of the

scalability of the middleware, testing if the speedup of
applications being protected can be kept in spite of using
fault tolerance.
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