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Abstract—The Fast Multipole Method (FMM) is considered
as one of the top ten algorithms of the 20th century. The FMM
can speed up solving of electromagnetic scattering problems.
With N being the number of unknowns, the complexity usually
O(N2) becomes O(N logN) allowing a problem with hundreds
of millions of complex unknowns to be solved. The FMM
applied in our context has a serious drawback: the parallel
version is not very scalable. In this paper, we present a new
approach in order to overcome this limit. We use StarPU,
a runtime system for heterogeneous multicore architectures.
Thus, our aim is to have good efficiency on a cluster with
hundreds of CPUs, and GPUs. Much work have been done on
parallelization with advanced distribution techniques but never
with such a runtime system. StarPU is very useful, especially for
the multi-level algorithm on a hybrid machine. At present, we
have developed a multi-core and a GPU version. The techniques
for distributing and grouping the data are detailed in this paper.
The first results of the strategy used are promising.

Keywords-Fast multipole method (FMM); Helmholtz equation;
heterogeneous architecture; parallel algorithm.

I. INTRODUCTION

The main aim is the simulation of the electromagnetic
behavior of 3D complex objects in the frequency domain.
For that, we use standard numerical methods such as Bound-
ary Integral Equations [1], [2] based on a classical Finite
Element approximation of surface Integral Equations such
as EFIE and CFIE formulations [3].

These formulations lead to a linear system with a full
matrix, which is complex non Hermitian but symmetric. It
is solved by an iterative method, which has a complexity
of O(N2), with N being the number of unknowns The
complexity comes from the matrix-vector products com-
puted at each iteration. The Fast Multipole Method (FMM)
[4] is able to reduce the complexity of these matrix-vector
products, and so of the global problem, to O(N log(N)) [5].
In this paper, we will study the FMM only in the context of
electromagnetic scattering problems, with the kernel from
the Helmholtz equation.

With modern parallel architectures, the parallelization of
the FMM is essential, if we want to solve very large prob-
lems, which need a lot of memory. The different paralleliza-
tions are not efficient on distributed memory architectures

and unfortunately, architectures nowadays are becoming
more complex, by integrating accelerators like GPUs. With
these new architectures, load balancing is more complicated
and calculations have to be fitted.

This paper is organized as follows. In Section II, we
outline the FMM. In Section III, we briefly describe the
different strategies in the parallelization for distributing
the computations. Our approach and its justification are
explained in Section IV. Finally, in Section V, we present
some results.

II. THE FMM

The FMM was introduced by Greengard and Rokhlin in
1987 [4]. In the 90s, the method was applied to electromag-
netism by Rokhlin [6] and Chew [5] in its diagonal version.
We will present briefly the FMM algebraically from [7],[8].
A good analytic presentation can be found in [9] or [10].

A. Principle

The FMM computes the matrix-vector product:

~v = G.~u (1)

with: Gi,j = G(|xi − xj |).
In our context, the Helmholtz equation, the Green function

G, is defined by:

G(|xi − xj |) =
eik|xi−xj |

4π|xi − xj |

The FMM is based on a space partitioning. First, a par-
titioning P of the points is created, based on a geometrical
criterion. The partitioning is made up of boxes. If B is a
box of the partition, we define:

{
~uB = (ui)xi∈B
GBt,Bs = (Gxi,xj

)(xi,xj)∈(Bt×Bs)
(2)

With the Gegenbauer theorem [11], we have an approxi-
mate factorization of GBt,Bs if Bt and Bs are not neighbours,
which means that they do not share any vertex.
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GBt,Bs '
(
ABt

)?
TBt,Bs ABs , with Bs 6∈ V(Bt) (3)

where:

• V(Bt), the set of the neighbours of Bt.
• AB is a P ×NB matrix, called the aggregation matrix.
• TBt,Bs is a diagonal P×P matrix, called the translation

matrix.
• A? is the conjugate transposition of A.
• NB is the number of elements in B
• P is inversely proportional to the squared number of

boxes, called the number of directions.

The factorization is valid only if Bt and Bs are not
neighbours. So, we have to split the computation of ~vBt

in two parts:

~vBt = ~vBt

far + ~vBt
near (4)

~vBt
near is computed directly, but for vBt

far, the factorization
yields:

~vBt

far '
(
ABt

)? ∑
Bs 6∈V(Bt)

TBt,Bs ABs~uBs (5)

ABs~uBs is computed once by Bs, for every Bt. This is
the key point of the FMM.

With all these elements, we have a method to quickly
compute the product.

B. Single-Level Multipole Method

First, we have to split our object in boxes. Then, the
algorithm requires three steps:

1) Aggregation:

~FBs = ABs~uBs , ∀Bs ∈ P (6)

~FBs is a P vector, called the vector associated with
box Bs.

2) Translation:

~NBt =
∑

Bs 6∈V(Bt)

TBs,Bt ~FBs (7)

~NBt is a P vector, it represents the contribution on
Bt from its non neighbours.

3) Disaggregation:

~vBt

far =
(
ABt

)? ~NBt (8)

Finally, from (2) and (4, we obtain v:

~v =
∑
Bs∈P

~vBs (9)

Fine Medium Coarse

Figure 1. Translations to the gray boxes, of the box with the black point,
depending on three partitionings. White boxes are direct calculations.

Level L Level L-1 Level L-2

Figure 2. The translations in the ML-FMM.

C. Multi-Level Multipole Method

The most time consuming step in the FMM is the trans-
lation step. Indeed, there are many translations, their total
amount being equal to the squared number of boxes. By
increasing the size of the boxes, the amount of translations
is decreased, but at the same time, the amount of direct
computations is increased, Figure 1.

In order to reduce the total amount of translations, the
Multi-Level Multipole Method (ML-FMM) uses several
levels of interleaved partitions. The first level, called highest
level is a partition of just one box. The next level is built
by splitting the partition of the upper level. The last level
is called the lowest one. We call the parent of a box, the
box in the previous level, including this box. We define the
children of a box reciprocally.

In the ML-FMM, the translation between two points is
done in the lowest level, in which the boxes containing
the points are not neighbours. Thus, the translations are
carried out where they involve the smallest number of boxes.
In Figure 2, the translations of the black point are done
in three levels depending on the targets. The boxes are
translated only to their non neighbour boxes that is to say the
children of the neighbours of their parent. The explanation
is simple: the non neighbour boxes of the father, and so their
children too, are processed by the parent. We call these boxes
far neighbours. Finally, the point is translated to each box
besides the neighbours of the box, as in the SL-FMM.

The multilevel method involves knowing the vectors in the
boxes at each level. A box can be computed by aggregating
its child. That corresponds to the sum of all the child vectors
multiplied with a shifting matrix E. We remind that P , the
size of the aggregated vector ~F , depends on the number
of boxes and so, on the level. Therefore, the size P l of a
child vector is lower than P l−1, the size of its parent vector.
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The father vector has to be interpolated, it is done by the
multiplication with the interpolation matrix I. These two
operations are merged in the downward pass.

We also have to fetch the values from the higher levels for
the disaggregation step. This operation is the upward pass.

In conclusion, the algorithm differs from the SL-FMM
in the translation step, which is replaced by a loop on the
levels of 3 steps: the downward pass, the translation and the
upward pass. We define Bl, a box on the level l, and P l, the
partition of the level l. The highest level is level 1 and the
lowest, level L. The algorithm has five types of operations:

1) Aggregation:

~FB
L
s = AB

L
s ~uB

L
s , ∀BLs ∈ PL (10)

2) Upward pass: ∀Bls ∈ P l, L− 1 ≤ l ≤ 3,

~FB
l
s = Il,l+1

∑
Bl+1

s ⊂Bl
s

EB
l
s,B

l+1
s ~FB

l+1
s (11)

where:
• EB

l,Bl+1

is a diagonal P l+1 × P l+1 matrix.
• Il,l+1 is a P l × P l+1 matrix.

3) Translation: ∀Bls ∈ P l, L ≤ l ≤ 3,

~N
Bl

t

T =
∑

Bl
s∈Vfar(Bl

t)

TB
l
t,B

l
s ~FB

l
s (12)

4) Downward pass: L− 1 ≤ l ≤ 3,

~NB
l+1
t =


~N
Bl+1

t

T if l = 3

~N
Bl+1

t

T +
(
EB

l
t,B

l+1
t

)? (
Il,l+1

)? ~NBl
t

if l ∈ J4, LK

(13)

5) Disaggregation: ∀BL ∈ PL,

~v
BL

t

far =
(
AB

L
t

)?
NB

L
t (14)

III. PARALLELIZATION OF THE FMM

The parallelization of the FMM depends on the context.
For example, for Laplace or Stokes kernels, good perfor-
mances have been achieved with hundreds of thousands
cores [12]. Unfortunately, in our context, the parallelization
of the FMM is not so efficient. The reason is the size of
vectors which increases when we go up in the tree. Thus,
the amount of computations is nearly the same at each level
unlike for Laplace.

That is why much work has been carried out on its
parallelization since the 90s. Research works has been
focused on the ML-FMM, but recent years, the SL-FMM
has drawn attention with a better scalability. In addition to
parallelization on many CPUs, there is a trend towards using
GPUs to carry out calculations.

A. The ML-FMM

The first parallelization is based on the distribution of the
boxes among the processors at each level .

Unfortunately, as we can see in [13], this parallelization
on 16 processors gives poor results in terms of scalability.
The reason is that at a given level, there are not enough
boxes to share between processors so a good load balancing
is impossible. It seems not to be important because it
concerns only the boxes on the levels, which have less
computations. But the problem is that, in the FMM applied
to electromagnetism, each level needs the same amount of
calculations, since Pl, the size of the vectors in (11) (12)
(13), is in inverse proportion to the squared number of boxes.
As a result, the bad parallelization of these levels has a great
negative impact on the global scalability.

Velamparambil and Chew discovered [13] another strategy
to overcome that. The previous distribution is kept for
the fine levels, called the distributed layer. For the coarse
levels, the vector attached to a box is split into blocks
and distributed among the processors. The computations are
carried out by block on each processor. In the levels with
the new distribution, called the shared layer, data have to be
replicated.

ErgÃ 1
4 l and GÃ 1

4 rel [14], presented another distribution
called the hierarchical distribution. It consists of distributing
the fields not only for the coarse levels but at each level .
With this distribution 60% of efficiency can be achieved with
128 processors, whereas we have only 40% with the hybrid
distribution and 20% with the simple distribution.

B. The SL-FMM

The ML-FMM has a better complexity but its paralleliza-
tion is not efficient enough and all the possible strategies
seem to have been considered. That is why Waltz et al.
[15] take an interest in the SL-FMM in the context of
the parallelization. Indeed, in the single-level method, the
block of the vector linked to the boxes, can be computed
independently. We just have to gather them at the end of the
algorithm. So, the parallelization over the samples of field
will be very efficient. It is not the same for the ML-FMM
where the blocks have to be gathered for downward pass.

Moreover, in [16], Wagner et al. proposed the FMM-FFT,
which reduces the complexity of the translation stage. The
complexity becomes O(N4/3 log2/3N), which represents an
important improvement compared to the O(N3/2) [15]. In
[17], we have a proof of the efficiency of the FMM-FFT,
with a perfect scalability up to 512 processors and a very
good one for 1024.

Last year, Taboada et al. [18] combined the FMM-FFT
and the ML-FMM. When the number of processors is bigger
than the number of nodes, they use the FMM-FFT. For the
next levels down, they use independent ML-FMM on each
node. With this new method, they have solved a problem
with 620 million unknowns.
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C. With GPUs

Work have been done in the FMM, but only for Laplace,
or other non oscillatory kernels. Good efficiencies have been
achieved on GPUs thanks to the BLAS [19].

The important points for using a GPU in scientific appli-
cations are the consistency of the computations and enough
computations compared to the data transfers. The data have
to be well-sorted to benefit from the coalescing accesses.

IV. OUR STRATEGY

Many efforts have been done on the distribution of the
computations in the last fifteen years. There has also been
research on computation scheduling with tasks queues [20].
We have chosen the hierarchical distribution, and for the top
level, a simple SLFFM, which can be upgraded in a FMM-
FFT. We have decided to focus on computation scheduling
because a good scheduling is the key in modern machines,
with heterogeneous processing units. A good scheduling
depends on the machine: speed of the processing units,
bus speed, network speed, etc. The schedule has to fit the
algorithm but also the machine, as the computations have
to be adapted to the processing units. Another important
point for a good scalability is to hide the communications
by computations.

A. The dynamic scheduling

Our aim is to compute the FMM on a supercomputer
with shared and distributed memory, thousands of CPUs
and GPUs. For that we use the same distribution between
the nodes as in the combination of the FMM-FFT and the
ML-FMM. In a node, we use the dynamic scheduler StarPU
[21]. It can handle the scheduling on CPUs and GPUs with
different strategies: greedy, work stealing, minimal termi-
nation time, priority, etc. It automates transfers throughout
heterogeneous machines and favours data locality. Tasks and
data dependencies must be declared and StarPU does the
rest.

The strategy, which has been considered, is the minimal
termination time. It takes a task execution model and data
transfer model into account to know where a task will end
the soonest. The models can be provided for StarPU or it
can build them.

B. Efficient operations

To be efficient, the tasks handled by the task scheduler
should imply enough computations to hide the costs of the
scheduling and of the data transfers. This is especially the
case for the GPUs where the data transfers are more costly
and because they can do simultaneous computations.

1) The data: Many computations have to be grouped in
a same task. For that, the same strategy as in parallelization
III-B is used: groups are made with many directions for
many boxes.

To avoid calculation starvation and deadlocks, the granu-
larity must be low. But high enough to permit the GPUs to
be efficient. The number and the size of the blocks should
be tuned depending on the machine and the input data. For
that, we can set the number of tasks by level, depending on
the numbers of computing workers.

2) Dependencies: All the operations except the transla-
tion and the upward pass can be done just by using the
data contained in one direction block. Thus, there is no
communication.

For the upward pass, the computation of a parent box
needs all the directions of all its children. Transposed to our
blocks, that becomes: a direction block needs all its child
box blocks with all their direction blocks. This can be done
by using one task for each direction block in the child level
but by reducing the out data. StarPU can deal with reduce
operations itself.

The translations to a box use all its far neighbours.
Consequently, for translating all the boxes in a block, the far
neighbours of all the boxes are needed. Although most of
the far neighbours are in the same block, some are external
to the block. Therefore, the translations in a block need data
from other blocks. To limit the memory accesses between
blocks, the data of the external far neighbours are copied
to the block; see Figure 3. Thus, all the translations will be
internal to the block. That adds synchronization because a
translation can occur in a block only if all its neighbours
have been computed. In fact, this is not a problem because
the translations are useful only for the downward pass.

Figure 3. The distribution of the data

3) With GPUs: All the operations in the FMM are simple
to implement on GPUs. There are mainly matrix vector
multiplications. This is relatively efficient on the GPUs when
the sizes of the matrix are not to small. We just have make
use of coalescent accesses and avoid bank conflicts.
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V. RESULTS

For the time being, the tests have only been done for the
shared memory and for the GPUs but not for the distributed
memory yet.

A. On shared memory

The test was done on a 2 Hexa-core Westmere Intel Xeon
X5650 2.67 GHz (10.664 GFlops by core) with a sphere of
2 million points at 500 MHz. The results are presented in
the Table I. The scalability is strong with 12 processors but

# cores # blocks by level Time (s) Efficiency
1 1 80.1 100%
2 8 41.1 97%
4 8 21.4 94%
6 10 14.5 92%
8 10 10.9 92%

10 10 8.7 92%
12 10 7.3 91%

Table I
ON SHARED MEMORY WITH A 2 MILLION SPHERE

we have to do some tests on a machine with more CPUs.
When we look at the scheduling, Figure 4, we find that the
copies of the far neighbours (called block sharing) do not
represent much time. Therefore, the cost of the parallelism
is insignificant. The other important point is the waste time
of the processors (called blocked): instead of executing a
task, a processor is waiting for a new task.

Near interactions

Aggregation

Disaggregation

Translation

Up/Downward

Blocked

Fetching input

Fetching output

CPU 01

CPU 02

CPU 03

CPU 04

CPU 05

CPU 06

CPU 07

CPU 08

CPU 09

CPU 10

CPU 11

CPU 12

Figure 4. Gantt diagram for the execution on 12 cores

This is the result of an insufficient number of tasks, but
here, if we increase the number of tasks, the cost of the par-
allelism becomes significant and the global time increases.
Nevertheless, to avoid this kind of situation, we can favour
the tasks that create other tasks and so parallelism. These
tasks are the aggregations and the upward passes. In our
scheduler, favouring a task can be done easily by adding a
priority to this task.

B. With GPUs
The aim of our approach is to use GPUs. We have only

done preliminary tests on the same machine with 3 NVIDIA
Tesla M2070 (1 TFlops). 3 processors are dedicated to the
handling of the 3 GPUs by StarPU. The test case is a 10
meter sphere with 2 million points at 1 GHz. At present we
have only implemented the aggregation, the translations and
the near interactions.

The aggregation is computed at the same speed on the
GPUs, Figure 5. The near interactions are 7 times faster.
The translation is 50 times faster. This last result is very
good if we look at the flops of the processing units.

Translation

0.1

1

10

100

1000

106 107 108

Near interactions

1

10

100

1000

105 106 107
0.1

1

106 107 108

10

Aggregation

GPU 3

CPU

Figure 5. Execution time (µs) depending on the input size (B)

For having this efficiency, we must have enough directions
(at least 100). But we have planned to develop kernels for
small numbers of directions. StarPU will choose the better
kernel depending on the size of the inputs.

The scheduling, Figure 6, is good on the GPUs but poor
on CPUs. This is due to the fact that the blocks are too big
for the CPUs. But if we decrease the size, we will loose our
efficiency on the GPUs. That is why we want to create tasks
with different sizes.

CPU 1
CPU 2
CPU 3
CPU 4
CPU 5
CPU 6
CPU 7
CPU 8
CPU 9

GPU 1

GPU 2

GPU 3

Near interactions

Aggregation

Disaggregation

Translation

Up/Downward

Blocked

Fetching input

Fetching output

Figure 6. Gantt diagram for the execution on 9 cpu cores and 3 gpus

Without the GPUs, the global time of the computations is
4 times greater. It is not much as compared to the accelera-
tion of the tasks separately. We hope for better results with

94Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-237-0

ADVCOMP 2012 : The Sixth International Conference on Advanced Engineering Computing and Applications in Sciences



a better block creation and with the implementation of all
the tasks on GPUs.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have studied the parallelization of the
FMM, applied to scattering problems, with a dynamic sched-
uler. We have also seen how to arrange the computations
in order to permit an efficient scheduling. Thus, on shared
memory, the strong scalability is good. On GPUs,our first
tests encourage us to continue. Our work is promising; but,
to make conclusions we still have a lot of work to do: upward
pass on GPUs, improvement of the kernels, strategies for the
tasks, adaptive method, and MPI.
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