

Engineering Adaptation: A Component-based Model

Nikola Šerbedžija
Fraunhofer FIRST
Berlin, Germany

nikola.serbedzija@first.fraunhofer.de

Abstract—The novel concept of user-centric pervasive adaptive
systems has been designed to deliver services adapted to our
needs and wishes according to the context of use. Engineering
adaptation is a cross disciplinary endeavour requiring synergy
of computer and human sciences as well as the practice. This
work describes a novel reflective approach for development
and deployment of pervasive adaptive systems. Special focus is
on reflective architecture which uses component and service
based programming model for developing the reflective
framework as a generic support for the pervasive adaptive
systems. A strong pragmatic orientation of the component-
based approach is illustrated by a prototype named affective
music player.

Keywords–Adaptive Systems; Autonomous Behaviour;
Component-based Systems.

I. INTRODUCTION

Seamless and implicit human-computer interaction is an
important characteristic of smart technology [1]. The
‘smart’ attribute is achieved by intuitive system control,
based on the context assessment. This allows the system to
function autonomously, without the requirement for explicit
user intervention. In other words, the user becomes a part of
the control loop, making system reaction adaptive and
appropriate to users’ behaviour.

Most of the present systems that deal with personal
human experience are poorly engineered [1]. As a
consequence, maintenance and modification of smart
applications are very difficult. Furthermore, re-usability as
capability of re-deploying the same software structures in
different application domains is not possible. The presented
reflective approach adds complexity to the current pervasive
adaptive[2] systems by introducing seamless and implicit
man-machine interaction based on emotional, cognitive and
physical experience. At the same time it strives at generic,
flexible and re-usable solutions that should overcome the
poor engineering problems.

In effort to mimic the adaptation process, as it appears in
the nature, and to apply it within man-machine interaction,
reflective approach deploys the biocybernetic loop to make
users’ psychophysiological data a part of computer control
logic [2][3]. The function of the loop is to monitor changes
in user’s state in order to initiate an appropriate computer
response. This approach also takes results of
affective/physiological computing [3] and combines it with
high level understanding of social and goal–oriented

situations. Biocybernetic loop [4] is implemented with the
help of sense-analyze-react control troika. Firstly, reflective
ontology [5] classifies numerous factors that determine
user’s states, social situation and application goals, defining
elements for decision making. The ontology is then
expressed in a number of XML-based taxonomies that allow
for a uniform deployment in data acquisition, user’s state
diagnoses and activation of corrective actions. Finally the
component based framework is developed with a goal to
support adaptation process and deployment of adaptive
applications [6].

The rest of the paper focuses on software engineering
strategies of reflective approach. Firstly, the adaptation
concept is presented, followed by technical blueprints of the
component based architecture for adaptive man-machine
interaction. Finally, the application of this approach is
illustrated by the prototype music player, a system that
controls the player according to the listener emotional state.
The conclusion summarizes the work described and
indicates further challenges and research topics in the
domain of adaptive systems.

II. ADAPTATION STRATEGY

The overall goal of reflective systems [7] is to create a

software framework that controls and adapts the
environment (a home, an office or an automotive
environment) according to the users’ situation. To be able to
perform this task, a system must be able to perceive its
environment through sensors and influence it through
actuators. Therefore, a reflective application always consists
of hardware (sensors and actuators) and software (reading
sensor values, controlling the application and operating
actuators) that together with users build the application
context.

Controlling the environment through software can be
done in two different ways: as feed-forward system (Figure
1a, also called open control loop), or as feedback system
(Figure 1b, also called closed control loop).

A feed-forward system does not take into account the
reactions of the system under control, but only the
environment under which it operates: in the reflective
domain, this would amount to the control of the
environment without observing the reactions of the user.

102Copyright (c) IARIA, 2012. ISBN: 978-1-61208-237-0

ADVCOMP 2012 : The Sixth International Conference on Advanced Engineering Computing and Applications in Sciences

Figure 1. User centric system

Feed-forward systems offer quick response and high
performance with few needed sensors – if they can be
implemented. The main difficulty in creating feed-forward
systems is that the impact and effects of the environment
and the controlled actuators must be precisely known, as
they are not measured. E,g. the effects of changing the
lighting in a room must be completely known under all
conditions – obviously, a task too challenging and far-
fetched for now. Instead, this approach focuses on creating
feedback control systems, measuring and reasoning on its
effects and the current behaviour of the user. By doing this,
a reflective system may also become able to counter the
effects of unknown factors influencing the users’ well-
being.

Feed-forward systems are sufficient for a user-friendly
behaviour in situation where satisfying an average user
goals are needed (e.g., word processing systems, etc.).
However, as reflective systems should be sensitive to a
personal user state (emotional, cognitive and physical)
policy of “satisfying an average user” never works, as each
user is different and the behaviour of the single user often
differs in different circumstances. If a system is to meet
more personal user needs, a self-tuning and self-correcting
strategy is a conditio sine qua non.

Even if building of closed control loops instead of open
control loops seems to be a more promising approach, it
brings along additional challenges. First of all, in the setting
that is investigated, it is never guaranteed that an action
performed on the environment will show the desired effects
or any effects at all: preferences vary greatly over persons
and over time. The reactions to hard rock and rap music
differ between individuals, but also the reaction to a certain
lighting condition may differ depending on the user’s
context. Reflective systems will therefore have to self-assess
their effects on their environment, and hold several

alternative strategies ready to achieve their goal.
Furthermore, extracting the user’s conditions from low-level
psycho-physiological measures or computing it through
image processing is a challenging task with varying success
depending on the user’s context; detecting the facial
expression under bad lighting conditions for example is very
difficult, if not impossible.

These challenges call for a well-structured software
solution that allows for flexible response to the user’s
environment, and self-assessment of its performance. In any
case (both feed-forward and feed-back control), a troika
“sense-analyse-react” needs a special consideration. The
closed loop control for implicit human-machine interaction,
based on user psycho-physiological state is often denoted as
a biocybernetic loop [2][4]. The function of the loop is to
monitor changes in user state in order to initiate an
appropriate adaptive response. The biocybernetic loop is
designed according to a specific rationale, which serves a
number of specific meta-goals. For instance, the
biocybernetic loop may be designed to: (1) promote and
sustain a state of positive engagement with the software/task
and (2) minimise health or safety risks inherent within the
human-computer interaction.

Both biocybernetic loop deployment and reflective
ontology that supports high level reasoning have been
described elsewhere [4][5], as well as some of the reflective
applications which deploy this technology [6][7]. This paper
focuses on reflect component model and its organization.

III. REFLECTIVE COMPONENT ARCHITECTURE

 The programming paradigm for building reflective
applications is component-based [8]. Software components
are units of software that make their communication
capabilities and requirements explicit by means of ports:
provided ports describe what communication the component
can accept and process, while required ports describe the
communication the component requires to perform its work.
Ports are given types that describe the set of messages that
can be received or sent. A component based system is
comprised of a set of components and an assembly that
describes the way they are connected; required ports can be
connected to the provided ports with the same type by a
connector.

Having components that make all communication
requirements and capabilities explicit helps in several ways:
this provides a simple framework for reusability of
components. At the same time, components can be written
without considering one specific application. A component
is written with just its own communication in mind, and, at a
later point and possibly by a different person, it is made part
of an application. Hence, components are usually more
generic than special-purpose algorithms and can be
employed in different applications. Furthermore, a
component-based system can be reconfigured at run-time
[9].

103Copyright (c) IARIA, 2012. ISBN: 978-1-61208-237-0

ADVCOMP 2012 : The Sixth International Conference on Advanced Engineering Computing and Applications in Sciences

This reconfiguration can be parametric, i.e., the
reconfiguration is performed by changing parameters of
components that affect their behaviour. Reconfiguration can
be also structural, i.e. the change of behaviour is achieved
by removing components, adding components, or changing
the interconnections between components.

Both kinds of reconfiguration allow to realize short-,
mid-, and long-term adaptation of the system – as needed
for different biocybernetic loops (as described elsewhere)
[4][5]. Some components do not require communication
partners, but merely provide communication. This
especially holds true for wrappers of hardware devices like
sensors or actuators. In accordance with common
terminology, such components are called services.

Since services do not require communication partners,
suitable services can be chosen by considering only the
ports they provide. Especially for sensors and actuators, this
enables automated discovery as well as dynamic response to
the availability of new services on behalf of the architecture.

A. Reflective Framework

Reflective systems are structured as feedback loops that
sense the environment, analyse the gathered data, and react
according to the analysed results. Consequently,
applications are structured in three layers:

 The tangible layer,
 The reflective layer, and
 The application layer.

The detailed description of the reflective layered
architecture can be found in [7][10]. The focus here is on
reflective layer and its component-based organization. It
forms a pool of reusable software components that can be
used to analyse the set of features exposed by sensors, and
components to coordinate actuators well as a generic
reasoner and learning algorithm components. On the one
hand, reasoners are used to provide a mapping from the
current user and environmental state to plans. Learners on
the other hand are used to adjust component parameters to
the given user, and by this personalize the closed loop.

Considering the abstraction level hierarchy, the
reflective layer consists of analysis and coordination
components providing abstractions from sensor data (i.e.,
features), and coordinating the operation of multiple
actuators. Analysis components create abstract
representation of the user’s state and his context from
available data: among others the user’s current mood,
cognitive workload, and physical conditions. In the opposite
direction, coordination components map high-level plans to
operations of – possibly several – actuators. In the
abstraction level hierarchy, the application layer consists of
components reasoning only on the abstract representation of
the user and his context created by the reflective layer
components, and sends abstract plans to coordinators in the
reflective layer.

In a perfect reflective application, the two hierarchies
(reuse and abstraction) will coincide: the analysing and

coordinating components will be reusable among several
applications, while application-specific components will
solely define high-level goals using high-level
representations of state. For some reflective applications,
however, there is still a gap between both hierarchies. This
gap is due to the fact that it is yet not always possible to
create a common high-level abstraction of the user state and
environment on which application components can reason,
while still yielding a satisfactory behaviour [10]. Therefore,
the reuse hierarchy allows for separating reflective layer and
application layer where both hierarchies diverge.
Nevertheless, the ultimate goal to merge reuse and
abstraction hierarchy remains.

B. Reflective Component Model

Components are the major building elements of the
reflective layered middleware. They are used to implement
reflective system functionality at any level of abstraction
and complexity (e.g., sensor input services, higher level
diagnoses, and goal-based reasoning components are all
represented by the same structural elements). In order to
make a uniform and versatile component-based support, a
comprehensive meta model has been designed, programmed
in Java language and deployed in practice.

 The structure of the reflective component is
depicted in Figure 2. The class is declared to be a
component by extending the "AComponent" class, and
declaring a dependency through required ports. In order to
satisfy those dependencies components have to be
instantiated and connected with each other. In the configure
method (in BundleContainer class), which is called on
system start up, the developer can specify creation and
connection rules. Connection rules may be either very
precise or loose, as required by the system design. The
functionality of a reflect entity is encapsulated within the
component and function groups are placed within
component containers. In order to communicate components
can offer or require functionality, depending on whether a
component sends or receives data (e.g., sensor services are
modeled with components that only provide functionality,
i.e., sensors’ measurements). A same component may
provide multiple functionality, in which case multiple ports
are to be used (either different in case of different
functionalities or instantiated, in the case of the same
functionality). Required functionalities are obtained by
connecting to the ports of other components that provide
them. Connectors are responsible for tracking and binding
the components. Component and bus manager represent
core functions of the model, providing the access to other
components, connectors and containers. With such a model,
encapsulation, clear inter-component communication and a
sound software composition are ensured. All these features
contribute to faster development, testing and deployment of
reflective software. Reflective framework offers all the
needed functionality for this component model and serves as
its run-time environment.

104Copyright (c) IARIA, 2012. ISBN: 978-1-61208-237-0

ADVCOMP 2012 : The Sixth International Conference on Advanced Engineering Computing and Applications in Sciences

Figure 2. Reflective component model

C. Implementation Details

The reflect component model is a Java-based component
framework running on top of OSGi [11]. Using OSGi
allows to dynamically load and unload Java classes at run-
time, adding to the flexibility of the reflective approach.
One of the main features of OSGi is the registry mechanism
allowing to register objects as services based on interfaces
and properties, and performing query services in the same
way. In the reflect framework, these facilities are used to
add capabilities to the reflect core component framework:
user-level OSGi bundles can add component and connector
factories, thereby enabling the core framework to create
instances of these components and connectors.

Connectors are not predefined by the component
framework, but are “fat” user-level entities [12][13]. In this
way, a software developer has the flexibility to define the
communication patterns between components using the
user-defined connector, and the way the communication is
affected by reconfiguration (e.g., whether the state of
communication must be preserved under reconfiguration, or
whether a communication protocol must be ended before
reconfiguration may take place).

The reflective component framework defines three types
of components:

Passive components offer functionality to other
components by declaring one or more provided ports. They
might call other components via their required ports, but
only do so within the processing of communication received
from their own provided ports.

Active components may also provide ports towards
other components, but, unlike passive components, they also
implement autonomous behaviour. This behaviour is
realized by a thread running concurrently to the threads
processing the received communication, as well as the
threads of other components or the framework. An active
component may issue calls to required ports both during

processing of calls issued to its own provided ports and in
the course of the autonomous loop.

Composite components are containers for other
components. A composite component owns an assembly of
components and connectors and encloses them with a facade
that makes the composite component act like a normal
active component. Provided and required ports of the
composite component are delegated to compatible ports of
enclosed components.

In the reflect component framework, components may
additionally declare properties that can be used to query and
manipulate its configuration or its state. These properties
can be associated with constraints that are automatically
enforced by the framework when the property is
manipulated. Though it would also be possible to make the
component state accessible via provided ports, properties
offer a generic and very comfortable way for developing
components that offer means for monitoring and adaptation.

Furthermore, the framework offers a message bus
facility. Components can register to topics on the bus by
method annotations declaring to topic listened to. This
message bus facility can be used by components to listen to
system events or as a way to easily realize broadcast-style
communication between components.

The reflect architecture is realized with the help of OSGi
and the reflect component framework defined on top of it.
The reflect architecture therefore comes in a set of OSGi
bundles.

 A reflect core bundle defining the core concepts.
 A reflect generic bundle defining the generic

extensions of the core.
 A reflect ontology bundle containing standardized

interfaces and data types from the ontology.
 A set of reflective layer bundles containing

reusable components for analysis, coordination,
and other purposes.

105Copyright (c) IARIA, 2012. ISBN: 978-1-61208-237-0

ADVCOMP 2012 : The Sixth International Conference on Advanced Engineering Computing and Applications in Sciences

By registering the reusable components on bundle start-
up, they can be created by the reflect component framework.
Then, application-specific assemblies can instruct the reflect
component framework to create reusable components and
connect them with sensors, actuators, and application-
specific components.

IV. APPLICATION EXAMPLE

The reflect system has been tested on several prototype

demonstrations, home ambient [14], vehicular support [6]
and mood player [15].

Figure 3. PC as a mood player

The mood player, implemented on Samsung ultra PC as
shown on Figure 3, deploys so called “music directs your
mood” concept. The psychological background and the
control strategy of the music player are described elsewhere
[15]. A music player functions as a closed loop repeatedly
measuring the current mood state of a user and selecting
music from the user’s own music database depending on the
current mood and a predetermined target mood state. Since
a positive mood enhances several cognitive processes, the
ability to improve mood is particularly interesting in driving
or working situation [15], but also at home in a more
relaxed setting.

Figure 4. Component model of the mood player

Figure 4 illustrates the component model of the mood
player. It embraces eight major components that are
connected to each other. The horizontal layout indicates
major architectural abstractions: (1) tangible layer

(components controlling Nexus driver i.e., sensor devices,
database and the actuator i.e., music player); (2) reflective
layer (components performing song evaluation, rating and
selection) and application layer (components performing
user interface and the mood selection).

Table 1 illustrates some of the performance figures and
implementation details of the mood player prototype. It can
be seen that even on a low-performance computer, the
system runs effectively and is flexible for further extensions.
To our knowledge, there are no similar systems that could
be used for the performance comparison.

TABLE 1: MOOD PLAYER SYSTEM FIGURES
Mood Player Comment

Size (source
Java code)

8,6K lines Extra requirements:

1. Reflect Framework: 28,4K lines
and

2. Monitoring tools: 19,4K lines
Run time
memory use

30 MB Most of memory is used by OSGI and
external libraries

External
devices

Nexus 10 Used for physiological measurements

PU load at an
ultra PC

60% Min. Requirements:

Windows XP, 128 MB RAM, 60MB
hard disk, TCP/IP

Development
Environment

Java 1.6, Eclipse RCP Tool, Equinox OSGi,
MySQL, Reflect custom developers tool (for
interfacing external devices and rule engine)

V. CONCLUSION

Developing pervasive adaptive computing applications
is still a domain not well understood by classical software
engineers. This often leads to poorly engineered and not
well defined system structure. The inevitable result is
difficult maintenance and poor extensibility of present
systems.

To overcome these problems, reflective approach
investigates software infrastructures and patterns for
pervasive adaptive systems, characterised by seamless
integration in the everyday environments. Reflective
systems make use of available physical devices to sense and
derive the state of their environment and their user, infer the
user’s current context and conditions, and finally, try to
improve the overall users’ conditions accordingly.

The paper discussed the requirements and challenges
that software engineers have to deal with when
implementing the adaptation phenomenon. A generic
component framework has been introduced, geared towards
ease of use and flexibility. It consists of three layered
architecture. The goal of the three layered architecture is to

106Copyright (c) IARIA, 2012. ISBN: 978-1-61208-237-0

ADVCOMP 2012 : The Sixth International Conference on Advanced Engineering Computing and Applications in Sciences

provide the software engineer with prefabricated, generic
components for analysis, coordination and dynamic re-
configuration. It also encourages early prototyping as many
parts of the systems can be simulated [16] by dummy
services/components (having the same interface to the rest
of the system) and later on substituted by the real parts. The
reflect component framework offers an easy-to-use
development environment that can be picked up easily by
software engineers familiar with Java and OSGi. Reflective
approach has been successfully tested in home ambient
[7][14], public advertising [7] and vehicular domains [6,7].

The further work is oriented towards improving the
communication modules of the reflective framework that
should allow for the exchange of the information among
different reflective applications in a pervasive manner.
Other research topics cross the disciplines, as the techniques
for diagnosing different human psychophysiological states
need to be further improved, enlarging the application
spectrum.

ACKNOWLEDGEMENT

The author expresses his thanks to Dr. Andreas Schroeder
from LMU Munich, who read the previous versions of this
paper and plaid significant role in design and development
of the reflective component model. Most of the work
presented here has been done under the REFLECT project
[7] (project number FP7-215893) and ASCENS project [17]
(project number FP7- 257414), both funded by the
European Commission within the 7th Framework
Programme.

REFERENCES

[1] D.A. Norman. The Design of Future Things. 2007, New
York: Basic Books.

[2] A.T. Pope, E.H. Bogart and D.S. Bartolome. Biocybernetic
system evaluates indices of operator engagement in
automated task. Biological Psychology, 40, 1995, 187-195.

[3] S.H. Faircloug. Fundamentals of physiological computing.
Interacting with Computers, 21, 2009, pp. 133-145.

[4] N.S. Serbedzija and S. Fairclough. Reflective Pervasive
Systems. ACM Transactions on Autonomous and Adaptive
Systems (TAAS), Vol. 7 (1), April 2012.

[5] G. Kock, M. Ribaric and N. Serbedzija. Modelling User-
Centric Pervasive Adaptive Systems - the REFLECT
Ontology. In: Intelligent Systems for Knowledge
Management, Vol. 252. Nguyen, Ngoc Thanh; and
Szczerbicki, Edward Eds. Series: "Studies in Computational
Intelligence", Springer 2009, ISBN: 978-3-642-04169-3.

[6] N. Serbedzija, A. Calvosa and A. Ragnoni. Vehicle as a Co-
Driver, Proc. 1st Annual International Symposium on
Vehicular Computing Systems - ISVCS 2008, Dublin,
Ireland.

[7] REFLECT. REFLECT project - Responsive Flexible
Collaborating Ambient, available at,
http://reflect.first.fraunhofer.de (2012).

[8] C. Szyperski. Component Software: Beyond Object-Oriented
Programming. ACM Press and Addison-Wesley, 1998.

[9] J.B. Bradbury. Organizing definitions and formalisms of
dynamic software architectures. Technical Report 2004-477,
Queen’s University, 2004.

[10] A. Schroeder, M. Zwaag and M.A. Hammer. Middleware
Architecture for Human-Centred Pervasive Adaptive
Applications, Proc.1st PerAda Workshop at SASO 2008,
Venice, Italy, Oct. 21th 2008.

[11] OSGi Alliance. OSGi service platform release 4.
http://www.osgi.org/, 2005.

[12] K.K. Lau, P.V. Elizondo and Z. Wang. Exogenous
connectors for software components. 8th International
SIGSOFT Symposium on Component-based Software
Engineering, volume 3489 of Lecture Notes in Computer
Science, Springer, 2005, pp. 90–106.

[13] T. Bures, P. Hnetynka and F. Plasil. Runtime concepts of
hierarchical software components. International Journal of
Computer & Information Science, 2007, 8:454–463.

[14] N. Serbedzija, Reflective Assistance for Eldercare
Environments, SEHC’10, Proceedings of Second Workshop
on Software Engineering in Health Care, Cape Town, May
2010.

[15] J.H. Janssen, E.L. Broek, and J. Westerink. Personalized
affective music player. Proceedings of the 2009
International IEEE Conference on Affective Computing and
Intelligent Interaction (ACII), September 10-12, 2009,
Amsterdam, pp. 472-477.

[16] N.S. Serbedzija. MACS – Modular Affective Computing
Simulator, Proc. of Applied Simulation and Modelling, 2008,
June 23 - 25, 2008, Corfu, Greece.

[17] ASCENS. ASCENS project – Autonomic Service
Component Ensembles, available at, http://www.ascens-
ist.eu/, 2011.

107Copyright (c) IARIA, 2012. ISBN: 978-1-61208-237-0

ADVCOMP 2012 : The Sixth International Conference on Advanced Engineering Computing and Applications in Sciences

