ADVCOMP 2012 : The Sixth International Conference on Advanced Engineering Computing and Applications in Sciences

The use of Bioinformatics Techniques for
Time-Series Motif-Matching: A Case Study

Mark Transell and Carl Sandrock
Department of Chemical Engineering
University of Pretoria
Pretoria
marktransell @ gmail.com

Abstract—Process engineers have more access to historical
plant data than ever before. Finding recurring patterns in process
data, also referred to as motif-matching, may reveal diagnostic
information to engineers and operators. Dynamic Time Warping
(DTW) is one of the most widely used techniques for performing
these motif matches. Sequence matching is also an important
part of bioinformatics; a field which has received a marked
increase in research funding and attention in recent times.
Therefore, the techniques developed in bioinformatics may be
beneficial to the field of time-series motif matching. In this
study, a combination of the Symbolic Aggregate Approximation
(SAX) algorithm and the PSI-BLAST bioinformatics algorithm is
compared to DTW as a potential method to perform time-series
matches. Preliminary results suggest that this combination may
be faster than global DTW techniques for large datasets. Details
of the implementation are given, along with preliminary results
confirming that this method is feasible. Due to implementation
difficulties, accuracy and robustness remain uninvestigated. More
research is recommended into the potential for this technique as
an alternative to Dynamic Time Warping techniques.

Index Terms—Dynamic Time Warping; BLAST; motif-matching;
time series; PAA

I. INTRODUCTION

It is often necessary for chemical and control engineers
to diagnose a recurring plant behaviour, and for operators
to receive alerts when undesirable plant behaviour is oc-
curing. Dynamic Time Warping (DTW) was first applied to
speech-recognition [1], but has since been applied to many
fields [2] [3].

Sequence matching is also an important part of bioinformat-
ics; a field which has received a marked increase in research
funding and attention in recent times, helped in part by the
publicity received by the Human Genome Project. This has
led to the development of highly efficient algorithms and
automated software implementations.

These freely avalable algorithms promise easier implemen-
tation, benefits to computational load and improved matching
accuracy than DTW and similar methods. Particular attention
is paid to the applicability of the PSI-BLAST algorithm
combined with Symbolic Aggregate Approximation (SAX) to
match process data. Time series need to be converted into char-
acter strings before Bioinformatics techniques can be applied
to them. In this work, Symbolic Aggregate Approximation is
used to convert the time series into strings, and PSI-BLAST
is used to match these sequences.

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-237-0

II. THEORY
A. Piecewise Aggregate Approximation (PAA)

In order to reduce the search space, it is often required
to resample an original time series of length n to a reduced
length w. A simple approach, known as Piecewise Aggregate
Approximation (PAA), is to divide the entire time range into
blocks and average over the blocks, as in Equation 1 [4].

n.;
(2
w

== Y g (1)

j=2(i—1)+1
B. Symbolic Aggregate Approximation (SAX)

These continuous values need be quantized into charac-
ter strings. The Symbolic Aggregate Approximation (SAX)
method [4] uses breakpoints which will result in an equal
probability of letters if the data were normally distributed.
This is a highly desirable characteristic for sequence-matching
algorithms as it makes the scoring matrices easy to calculate.
Although the full procedure is outlined in [4] and [5], Figure 1
illustrates the basic concept of SAX: using the average value
for a window of time series data to allocate a specific character.

PAA may acheive similar results to the more complex and
computationally demanding methods [5], so it and SAX are
used as the baseline technique for converting time-series data
into character strings.

C. Wavelets

It has been shown that Haar Wavelet Transforms (HWT) can
outperform discrete fourier transforms (DFTs) when reducing
dimensionality in time series [6]. Although wavelets have the
helpful multiresolution property, they are only defined for time
series which are an integer power of two in length [4].

One important feature of wavelets and DFTs is that they
are real valued. This limits the algorithms, data structures and
definitions available for them. In anomaly detection, we cannot
meaningfully define the probability of observing any particular
set of wavelet coefficients, since the probability of observing
any real number is zero [4].

D. Triangular Episodic Representation

Complete, correct, robust and compact models can be con-
structed using a small base of primitive representations for

114

ADVCOMP 2012 : The Sixth International Conference on Advanced Engineering Computing and Applications in Sciences

—
C C c
T - ~
~ b 4
b b
P
a
_/
0 20 40 60 80 100 120

Fig. 1. An illustration of the SAX technique. The different colours are
added for clarity, and characters are assigned to each window in the time
series. Datapoints are numbered on the x-axis [5].

process behaviours [7]. The qualitative representations can be
defined by any time over which the qualitative state of the
process variable x is constant. This qualitative state is defined
as in Equations 2 to 5.

undefined if z is discontinuous at ¢
< [z(t)], [0x], [0%x] > elsewhere
Where:
+ifx >0
—ifz <0 3)
Oifx=0
+ if 0z >0
—if 0z <0 (G))
0if dx =0
+if 8%x >0
—if %x <0 (5)
0if 9%z =0
This triangular episodic representation gives seven basic
types of episodes that can describe an interval of process
behaviour [8].
This method is also currently being investigated, but pre-
liminary results show no improvement over SAX techniques.

E. Shapelets

Time series shapelets [9] are used in image recognition, and
rely on libraries of stored prominent motifs found within time-
series data. Matches are classified using decision trees which
compare subsequences that are maximally representative of a
class.

Shapelets are selected based either on learning sets, or by
using knowledge of the process in question to manually build
decision trees. Process data may not necessarily be classified
by this method appropriately; online chemical processes do
not always have large enough learning sets to ensure accurate
shapelet identification. Due to the unpredictable nature of
process disturbances, operator knowledge of which motif to
select as a relevant shapelet may be incomplete.

os(t) = { @

(0% (t)] =

FE. Dynamic Time Warping

Dynamic Time Warping [1] is often used as a faster and
more robust method than Euclidian Distance to quantify the

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-237-0

similarity of two time series [10]. It can also be used as a
method to match subsequences [11], as implemented in the
Machine Learning Python library (mlpy) [12].

It was selected as the baseline for time-series motif-
matching, since there is a large amount of literature which
employs this technique and it is popular in several applications,
including speech and image recognition [1].

This algorithm employs a lower bounding technique based
on a warping window or envelope. The most commonly used
warping constraints are the Sakoe-Chiba band [1] and the
Itakura parallelogram [13] [14].

G. BLAST (PSI-BLAST)

The BLAST algorithm [15] was developed to match strings
representing nucleotide or protein fragments to large databases
more efficiently than the FASTP [16] algorithm. The most
recent iteration of the BLAST library includes the PSI-BLAST
program [17], which matches queries in a gap-tolerant fashion.
This makes the matching process more robust, and therefore
better suited to finding similar strings as opposed to exact
matches.

The PSI-BLAST algorithm uses scoring matrices to deter-
mine the similarity of two strings, the most popular being the
BLOSUMG62 substitution matrix [18].

H. Scoring matrices

The BLOSUMG62 matrix [18] is based on amino-acid sub-
stitution; the probability that one amino-acid would replace
another in a particular protein string. This scoring matrix is
therefore not suitable for normally distributed time-series data.
However, a scoring matrix can be calculated directly during
the SAX procedure, based on the assumption that all characters
are equiprobable [5].

1. Performance Metrics

The metrics used to quantify the performance of the match-
ing algorithms compared are:

o Computing time taken to complete a search, and the
ability of the algorithm to scale with database size.

o The accuracy of the matches found, with respect to
Euclidean distance and DTW cost for the matches [10],
[11], [19].

o The ease by which each algorithm can be implemented.
(Does an algorithm require system file access? How many
hardware and software dependencies are there?)

o Tolerance to datasets with noise, time-axis shifting, ver-
tical shifting or time warping.

III. IMPLEMENTATION

Figure 2 shows how a library of time-series and query
data is processed by each algorithm to produce a match with
quantifiable accuracy.

The development framework necessitated the use of the
NCBI BLAST+ executable library, available on their web-
site [17]. The language selected for the coding framework was
Python 2.7, due to the availability of the Biopython library

115

ADVCOMP 2012 : The Sixth International Conference on Advanced Engineering Computing and Applications in Sciences

Query and
Historical Data
T

Match using

’ Filter Data ‘ ’ Segment Data ‘

DTW T I
Create Scoring Convert to
Matrix triangular
L representation
’ Perform SAX ‘
N
Convert to
FASTA file
T
Mask FASTA
file
N
Create Database
file
3
Perform
PSIBLAST
Cacluclate Calculate DTW
Euclidean cost
distance
\—){ Visualise results }<—
Fig. 2. A simplified overview of the data flow for testing

for use with bioinformatics programs such as BLAST [20].
Additional python libraries were used:

o numpy [21] for data handling

« matplotlib [22] for plotting purposes
o mlpy [12] for the DTW algorithm

o scipy [23] for data filtering.

The breakpoints for SAX conversion are calculated based on
the cumulative distribution of the database data, thus ensuring
that every character in the database string is equiprobable. [5]
The implementation of BLAST matching requires the operat-
ing system used to be a Linux-based system, as it is necessary
to overwrite the BLOSUM scoring matrix directly with a
custom scoring matrix generated during the SAX process. [4]

The SAX-PSIBLAST method has four paramaters, namely
the size of time window and number of breakpoints used for
SAX, and the expected error value and search word size given
as inputs to PSI-BLAST. These parameters enable the user
to adjust the degree to which fuzzy matches can be found,
increase or decrease noise tolerance in the dataset, or to adjust
the number of potential matches listed for any given query.

The SAX-PSIBLAST procedure does not make use of
training sets to perform matches. This allows non-mutated test
data to be used for speed tests. In order to test whether a
matching algorithm is performing correctly, two base cases
are examined. These cases are:

1) A query time-series is matched to itself.
2) A query time-series is matched to a time-series which
includes, but is not restricted to the query itself.

IV. RESULTS AND DISCUSSION

The PSI-BLAST technique is faster than the global DTW
algorithm on the self-matching task for large datasets. Figure 3

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-237-0

A A B B A A
B
A
_/ N
A A B A A
Fig. 4. An illustration of how shifting a PAA time window can alter the

string sequence produced by SAX. The upper sequence output is AABBAA,
but the lower sequence is AABAA, even though they represent the same time
series. This can cause the PSI-BLAST algorithm not to match these series
correctly.

shows the processing times for global DTW and the SAX-
PSIBLAST method for different PAA average-value windows.
The mlpy DTW algorithm fails on the two largest test data
sets.

However, the PSI-BLAST algorithm does not reliably find
a full match for the second base case after dimensionality
reduction. In some cases a partial match is returned, or
the match is erroneously extended to include adjacent data.
Possible reasons for this failure include:

o The internal workings of the PSI-BLAST executable do
not use the modified scoring matrix correctly.

¢ The modified scoring matrix is in a form which, for
statistical reasons, does not fit the specifications for
PSI-BLAST scoring matrices. (This could possibly be
remedied by intelligent selection of the expected error
value and word-size)

o The queried data is shifted during the PAA step for any
time window, which may cause the string representation
of the query and dataset to be slightly different.

Figure 4 illustrates how the string representation may be
altered by shifts in the time-windows for PAA.

V. CONCLUSIONS AND RECOMMENDATIONS

Preliminary results suggest that a motif-matching algorithm
which employs a combination of Symbolic Aggregate Ap-
proximation (SAX) and the use of the PSI-BLAST algorithm
is faster than conventional Dynamic Time Warping (DTW)
techniques. Additional metrics remain to be compared.

It is currently not known whether the partial failure of the
SAX-PSIBLAST method to find embedded sequences when
large time windows are used is due to implementation error,
or to inherent limitations in the PSI-BLAST algorithm when
processing dimensionally reduced sequences.

REFERENCES

[1] H. Sakoe and S. Chiba, “Dynamic programming algorithm optimization
for spoken word recognition,” IEEE Transactions on Acoustics, Speech
and Signal Processing, vol. 26, pp. 43-49, 1978.

[2] T. M. Rath and R. Manmatha, “Word image matching using dynamic
time warping,” in [EEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR ’03), vol. 2, p. 521.

116

ADVCOMP 2012 : The Sixth International Conference on Advanced Engineering Computing and Applications in Sciences

[3]

[4]

[5]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

Copyright (c) IARIA, 2012.

100
ui

»
- &
o 10
E
= A
ERS o ¢
@ o
0 b4 © PAA-PSIBLAST (s = 1)
<] 0,17 @ o PAA-PSIBLAST (s = 10)
. 5 Global DTW

0,01 T T T 1

100 1000 10000 100000 1000000
Query size
Fig. 3. Base case processing time comparison on Intel Core i5 processor

K. Santosh, “Use of dynamic time warping for object shape classifi-
cation through signature,” Kathmandu University Journal of Science,
Engineering and Technology, vol. 6, pp. 33-49.

J. Lin, E. Keogh, S. Lonardi, and B. Chiu, “A symbolic representation
of time series, with implications for streaming algorithms,” in
Proceedings of the 8th ACM SIGMOD workshop on Research
issues in data mining and knowledge discovery, ser. DMKD ’03.
New York, NY, USA: ACM, 2003, pp. 2-11. [Online]. Available:
http://doi.acm.org/10.1145/882082.882086

B. Chiu, E. Keogh, and S. Lonardi, “Probabilistic discovery of time
series motifs,” in The 9th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, vol. 1, 2003, pp. 493-498.

K. Chan and A. Fu, “Efficient time series matching by wavelets,”
in Proceedings of the 15th IEEE International Conference on Data
Engineering, Sydney, Australia, March 1999, pp. 126-133.

J.-Y. Cheung and G. Stephanopoulos, “Representation of process trends
part i. a formal representation framework,” Computers and Chemical
Engineering, vol. 14 (4/5), pp. 495-510, 1990.

S. Kivikunnas, “Overview of process trend analysis methods and appli-
cations,” in Proceedings of the ERUDIT Workshop on Applications in
Pulp and Paper Industry, University of Oulu, Finland, 1998.

L. Ye and E. Keogh, “Time series shapelets: A new primitive for
data mining,” in Proceedings of the 15th ACM SIGKDD international
conference on Knowledge discovery and data mining, ser. DMKD ’03.
New York, NY, USA: ACM, 2009.

E. J. Keogh and M. J. Pazzani, “Scaling up dynamic time warping for
datamining,” University of California, Tech. Rep., 2000.

D. J. Berndt and J. Clifford, “Using dynamic time warping to find
patterns in time series,” Stern School Of Business, New York University,
Tech. Rep., 1994.

D. Albanese, S. Merler, G. Jurman, R. Visintainer, and C. Furlanello,
“Mlpy machine learning py,” 2012, http://mloss.org/software/view/66/.

F. Itakura, “Minimum prediction residual principle applied to speech
recognition,” IEEE Trans. Acoustics, Speech, and Signal Processing,
vol. ASSP-23, pp. 52-72, 1975.

C. A. Ratanamahatana and E. Keogh, “Everything you know about
dynamic time warping is wrong,” in 3rd Workshop on Mining Temporal
and Sequential Data, in conjunction with 10th ACM SIGKDD Int. Conf.
Knowledge Discovery and Data Mining. New York, NY, USA: ACM,
2004.

S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman,
“Basic local alignment search tool,” Journal of Molecular Biology, vol.
215, pp. 403-410, 1990.

D. Lipman and W. Pearson, “Rapid and sensitive protein similarity
searches,” Science, New Series, vol. 227(4693), pp. 1435-1441, 1985.

S. Altschul, T. Madden, A. Schffer, J. Zhang, Z. Zhang, W. Miller, and
D. Lipman, “Gapped blast and psi-blast, a new generation of protein
database search programs,” Nucleic Acids Research, vol. 25(17), pp.
3389-3402, 1997.

J. Setubal and R. Braeuning, Similarity Search, A. Gruber, A. Durham,
and C. H. et al., Eds. National Center for Biotechnology Information
(US), 2006.

H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. Keogh,

ISBN: 978-1-61208-237-0

[20]

[21]
[22]

(23]

“Querying and mining of time series data: Experimental comparison
of representations and distance measures,” VLDB, 2008.

P. J. Cock, T. Antao, J. T. Chang, B. A. Chapman, C. J. Cox, A. Dalke,
I. Friedberg, T. Hamelryck, F. Kauff, B. Wilczynskil, and M. J. L.
de Hoon, “Biopython: freely available python tools for computational
molecular biology and bioinformatics,” Bioinformatics, vol. 25, pp.
1422-1423, 2009.

P. F. Dubois, K. Hinsen, and J. Hugunin, “Numerical python,” Computers
in Physics, vol. 10, no. 3, May/June 1996.

J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing In
Science & Engineering, vol. 9, no. 3, pp. 90-95, May-Jun 2007.

E. Jones, T. Oliphant, P. Peterson et al., “SciPy: Open source scientific
tools for Python,” 2001-. [Online]. Available: http://www.scipy.org/

117

