
A MapReduce Implementation of the Genetic-Based ANN Classifier for Diagnosing

Students with Learning Disabilities

Tung-Kuang Wu
1
, Shian-Chang Huang

2
,

Hsiu-Ting Kao
3
, Hsu Chang

4

Dept. of Information Management, NCUE
Changhua City, Taiwan

1
tkwu@im.ncue.edu.tw,

2
shhuang@cc.ncue.edu.tw,

3
b9456005@gmail.com,

4
zx1986@gmail.com

Ying-Ru Meng

Dept. of Special Education, NHCUE
HsinChu City, Taiwan

myr321@mail.nhcue.edu.tw

Abstract—Diagnosis of students with learning disabilities (LD)

is a difficult procedure that requires extensive man power and

takes a long time. Fortunately, through genetic-based (GA)

parameters optimization, artificial neural network (ANN)

classifier may be a good alternative to the above procedure.

However, GA-based ANN model construction is computation-

intensive and may take quite a while to process. Accordingly,

parallel processing such as multi-core programming and grid

computing have been used to speedup the process. In this study,

we setup a Hadoop min-cloud environment with virtualized

hosts so that we may take full advantage of the current multi-

core CPU technology. The GA-based ANN LD classifier is then

re-programmed based on the MapReduce programming model

and ported to this mini-cloud environment. Some

implementation issues and considerations regarding the

process will be discussed in the paper. Although the

preliminary results may not show significant breakthrough

over our previous studies, yet we do gain some experience

through this process and see the potential of the MapReduce

model in our future applications.

Keywords-learning disabilities; MapReduce; neural network;

virtualization; cloud computing

I. INTRODUCTION

The term “learning disabilities” (LD) was first used in
1963 [1]. However, experts in this field have not yet
completely reach an agreement on the definition of LDs and
its exact meaning [2]. In fact, a person can be of average or
above average intelligence, without having any major
sensory problems (like blindness or hearing impairment),
and yet struggles to keep up with people of the same age in
learning and regular functioning. Due to such implicit
characteristics of learning disabilities, the identification of
students with LDs has long been a difficult and time-
consuming process. In the United States, the so called
“Discrepancy Model” [3], which states that a severe
discrepancy between intellectual ability and academic
achievement has to exist in one or more of these academic
areas: (1) oral expression, (2) listening comprehension (3)
written expression (4) basic reading skills (5) reading
comprehension (6) mathematics calculation, is one of the
commonly adopted criteria to evaluate whether a student is
eligible for special education services.

In Taiwan, the diagnosis procedure pretty much follows
the “Discrepancy Model”. The sources of input parameters
required in such prolonged process include information from
parents, general education teachers, students’ academic
performance and a number of standard achievement and IQ
tests. To guarantee collection of required information
regarding students suspected with LD, usually checklists of
some kind are developed to assist parents and regular
education teachers. The Learning Characteristics Checklists
(LCC), a Taiwan locally developed LD screening checklist
[4], is commonly used in most counties of Taiwan. Among
the standard tests, the Wechsler Intelligence Scale for
Children, Third or Fourth Edition (WISC III or IV) plays the
most important role in this LD diagnosis model. WISC-III
consists of 13 sub tests [5]. The scores of the sub-tests are
then used to derive 3 IQs, which include Full scale IQ (FIQ),
Verbal IQ (VIQ), Performance IQ (PIQ), and 4 indexes,
which include Verbal Comprehension Index (VCI),
Perceptual Organization Index (POI), Freedom from
Distractibility Index (FDI), Processing Speed Index (PSI).
There are also a number of locally developed standard
achievement tests (AT), which typical consist of reading,
math, and fields that are related to students’ academic
achievement.

Diagnosis of students with LDs then involves mainly
interpreting the standard test scores and comparing them to
the norms that are derived from statistical method. As an
example, in case the difference between VIQ and PIQ is
greater than 15, representing significant discrepancy between
a student’s cultural knowledge, verbal ability, etc, and
his/her ability in recognizing familiar items, interpreting
action as depicted by pictures, etc, is a strong indicator in
differentiating between students with or without LD [5]. A
number of similar indicators together with the students’
academic records and descriptive data (if there is any) are
then used as the basis for the final decision. Confirmed
possible LD students are then evaluated for one year before
admitting to special education. However, it is important to
note that a previous study reveals that the certainty in
predicting whether a student is having a LD using each one
of the currently available predictors is in fact less than 50%
[6].

The above identification procedure involves extensive
manpower and resources. Furthermore, a lack of nationally

30Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

regulated standard for the LD diagnosis procedure and
criteria result in possible variations on the outcomes of
diagnosis. In some cases, the difference can be quite
significant [7].

With the advance in artificial intelligence (AI) and its
successful applications to various classification problems, it
is interesting to investigate how these AI-based techniques
perform in identifying students with LDs. In our previous
study, we have shown that ANN classifier does well in
positively identifying students with LDs [7]. In subsequent
studies, we combined various feature selection techniques
and genetic-based parameters optimization with the ANN
classifier, which further improves the overall identification
accuracy [8]. However, although ANN-based classifier
performs well in LD diagnosis problem, the procedure is
computation-intensive and may take quite a while to process.
Accordingly, multi-threaded programming and grid-based
parallel computing (a parallel distributed genetic algorithm
based implementation, will be referred to as PDGA hereafter)
have been used to speedup the ANN model training and
validation [9, 10, 11].

In this paper, we still focus on the ANN classification
model and work on porting the GA-based ANN classifier to
the MapReduce programming model. To fit into the new
programming model, we have done a number of
modifications of the PDGA procedure. The rest of the paper
is organized as follows. Section 2 briefly describes the
history of applying AI techniques to special education and
gives a short introduction to Hadoop related terms that are
used in our implementation. Sections 3 and 4 present our
experiment settings, design and corresponding results.
Finally, Section 5 gives a brief summary of the paper and
lists issues that deserve further investigation.

II. RELATED WORK

Artificial intelligence techniques have long been applied
to special education. However, most attempts occurred more
than one or two decades ago and mainly focused on using the
expert systems to assist special education in various ways [7].
There were also numerous classification techniques other
than neural networks that were developed and widely used in
various applications [12]. Among all the classification
techniques, artificial neural networks (ANN) have received
lots of attentions due to their demonstrated performance and
have gained wide acceptance [13].

An artificial neural network is a mathematical
representation that is inspired by the way the brain processes
information. Many types of ANN models have been
suggested in literature, with the most popular one for
classification being the multilayer perceptron (MLP) with
back propagation. The goal of this type of network is to
create a model that correctly maps the input to the output
using historical data so that the model can then be used to
predict the outcome when the desired output is unknown.
MLP with back propagation is typically composed of an
input layer, one or more hidden layers and an output layer,
each consisting of several neurons. Each neuron processes its
inputs and generates one output value that is transmitted to
the neurons in the subsequent layer. Fig. 1 provides an

example of an MLP with one hidden layer and one output
neuron.

Input
Layer

Hidden
Layer

Output
Layer

x1

x2

xn

h1

h2

h
n

b1

b2

bn

b

y

w11

w21

wn1

wnn

w2n

w1n

w1

w2

wn

Input
Layer

Hidden
Layer

Output
Layer

x1

x2

xn

h1

h2

h
n

b1

b2

bn

b

y

w11

w21

wn1

wnn

w2n

w1n

w1

w2

wn

Figure 1. MLP with one hidden layer.

The output of i-th hidden neuron is computed by
processing the weighted inputs and its bias term bi as follows:











+= ∑
=

j

n

j

iji

h

i xwbfh
1

 (2)

where wij denotes the weight connecting input xj to hidden
unit hi. Similarly, the output of the output layer is computed
as follows:











+= ∑
=

j

n

j

j

output xwbfy
1

 (3)

with n being the number of hidden neurons and wj represents
the weight connecting hidden unit j to the output neuron. A
threshold function is then applied to map the network output

y to a classification label. The transfer functions
hf and

outputf allow the network to model non-linear relationships

in the data. Also note that the number of hidden layer nodes
does not need to be the same as the number of input nodes.

The training of a neural network is the process of
presenting the network with sample data and modifying the
weights to approximate the desired function. In particular, an
epoch indicates one iteration through the process of
providing the network with a sample input and updating the
network’s weights. Let Ni, Nh and No respectively represent
input feature size, number of hidden and output nodes, the
total order of complexity is then O(Ni×Nh×No+Nh×No) for one

epoch [14]. Since a typical ANN training process usually
takes 500 epochs, the computation complexity for training
of an ANN model is roughly equal to 500×N×O(Ni×Nh×

No+Nh×No), where N represents the size of input samples for

training.
In the field of special education, ANN has been used in a

number of applications [7]. To improve the ANN
classification accuracy, genetic algorithms have been used in

31Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

the training and constructing of ANN model [15]. However,
the GA optimization procedure may require numerous
applications of the above ANN training process (depending
on the number of chromosomes and evolution generations),
and thus usually takes quite a long time to process [7].
Accordingly, researches have been applying parallel
processing, which may provide affordable computational
power, to speedup the time-consuming process [16]. For
network connected cluster or grid environment, message
passing interface (MPI) is usually used to coordinate
computing nodes for completing a common task. On the
other hand, to take full advantage of the currently available
multi-core processor technology, OpenMP may be used
explicitly to direct multi-threaded, shared memory
parallelism [9].

With the advance of the cloud computing, a number of
distributed computational models have also been developed.
Among them, the MapReduce, together with GFS and
GigTable were developed by Google in 2003. MapReduce is
a programming model for large-scale data processing
problems, which may separate the original problem from the
details of parallelization. However, other than the related
documents and algorithms, Google did not release their
source codes. Fortunately, Hadoop, developed by Apache
foundation that originally includes HDFS, HBase and
MapReduce, is an open-source alternative for Google’s
implementation [17].

HDFS (Hadoop Distributed File System) is designed to
operate upon low-cost hardware with high fault-tolerance
and provide high throughput access to applications that have
massive data sets. An HDFS cluster operates in a master-
slave setup consisting of a name-node (master) and a
varying number of data-nodes (slaves). The name-node
maintains the metadata for all the files and directories in the
file system. It also knows the data-nodes on which all the
blocks for a given file are located [17].

MapReduce, operating upon the HDFS, is a distributed
programming model that may work on a cluster of
tremendous computational nodes and is suitable for
processing problems with massive data sets. In MapReduce
programming model, a computation is specified by two
functions: Map and Reduce. The underlying MapReduce
library then proceeds to parallelize the computation, while
hiding issues such as data distribution, load balancing and
fault tolerance from the programmers. Accordingly,
MapReduce programmers may thus be able to concentrate
on the programming logic in solving the problems.

A MapReduce job, which consists of input data,
MapReduce program, and configuration information, is
divided into map and reduce tasks. The job-tracker and a
varying number of task-trackers control the job execution
process, with the job-tracker coordinating all the jobs on the
system and the task-trackers running tasks and sends job
progress to the job-tracker [17]. The configuration of
various roles in a Hadoop cluster environment can be shown
in Fig. 2. As can be seen, the master can be a job-tracker /
name-node and a task-tracker / data-node at the same time,
while a slave can only be a task-tracker and a data-node.

Figure 2. Various roles of Hadoop cluster nodes (revised from [18]).

In this study, we will work on porting the GA-based
ANN classifier for LD identification [9] to the emerging
cloud computing paradigm.

III. ENVIRONMENT SETUP AND IMPLEMENTATION ISSUES

A virtualized 12-node mini-cloud environment,
established on top of 2 multi-cores PCs running Ubuntu
server, is set up for the experiment. The hardware details of
the PCs and the mini-cloud setup are shown in Table I and
Fig. 3. Note, virtualization (through kernel-based virtual
machine: KVM) is adopted in this study so that we may take
full advantage of the current multi-core CPU technology.

TABLE I. HARDWARE DETAILS OF THE PCS IN OUR STUDY

 CPU No. of cores Memory

PC 0 Intel (R) Core (TM) i7 (2.7 GHz)
4 physical cores

(8 logical cores)
12 GB

PC 1 AMD Phenom (TM) II (3.3 GHz) 6 physical cores 8 GB

Figure 3. The mini-cloud setup in our study.

To map the regular genetic algorithm to the MapReduce
model, we re-arrange the order of the GA procedure as
shown in Fig. 4. The most computation-intensive step,
which would be the fitness function calculation (ANN
model construction and validation), is implemented in the
Map stage, while the other GA processes such as selection,
cross-over, and mutation are organized in the Reduce stage.
Note there is only one Reducer in our implementation,
which means only the most computation-intensive fitness
function is parallelized while the GA processes are executed

32Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

sequentially. Although this may somewhat degrade the
overall performance (in terms of execution time), yet the
implementation is much simpler and we may also avoid the
GA procedure converging to some local maxima when each
reduce task is distributed with too few chromosomes in a
multiple Reducers setup [10]. Furthermore, as our input data
is much smaller than the HDFS block size (64 MB), we
manually split the input data for each map task to avoid
potential overhead in managing the splits and map task
creation when it is done by Hadoop [17].

(a) (b)

Figure 4. (a) a regular GA operation process that we adopted in our earlier

PDGA implementation [9, 10, 11], and (b) its mapping to the

corresponding MapReduce programming model.

In addition, as shown in Fig. 5, in each generation the
reduce task would preserve at most N best chromosomes in
the HDFS.

Figure 5. Elite chromosomes preservation and distribution.

Note, these N chromosomes also have to be better, in
terms of accuracy, than a threshold value (which would be
the average of all the elite chromosomes stored in HDFS) to
be preserved. Those accumulated elite chromosomes may
later be randomly selected to replace the N worst
chromosomes in consecutive generations. In all of our
experiments in this study, N is set to 5.

IV. EXPERIMENT DESIGNS AND RESULTS

Our objectives in this study are two-fold: (1) to gain
some experience in a mini-cloud environment, and hopefully
this may be extended to future application with more input
and in a larger scale cloud environment setup, (2) to evaluate
how the parallel genetic algorithm performs in constructing
the ANN-based LD identification model with the
MapReduce programming model as compared to
implementations using multi-threaded APIs (OpenMP) and
grid-based distributed computing.

The data sets used in this study are summarized in Table
II, which together with the corresponding pre-processing
(such as normalization and feature selection) are exactly the
same as those used in [9].

TABLE II. DATA SETS AND THEIR FEATURES USED IN THIS STUDY

 sample size number of features

data set 1 652 7

data set 2 125 7

data set 3 159 10

To fulfill the above mentioned objectives, we have
design and conducted three experiments. The ANN code
(fitness function computation, adopting five-fold cross
validation and 500 epochs in each ANN training) is exactly
the one used in [9] (in C language), and is invoked by the
Map tasks (implemented with Java language) through
external procedure call. Three parameters of the ANN
classifier (number of hidden nodes, learning rate and
momentum), together with random number seeds, which
might affect the initial weights and bias of neural network,
are encoded into the chromosomes. For genetic algorithm,
real-value encoding is adopted with the crossover rate,
mutation rate and number of generation set at 0.8, 0.1 and 50,
respectively. Furthermore, accuracy in classification is used
to evaluate the fitness of populations. A performance index:
correct identification rate (CIR) is defined to evaluate the
experiment outcomes, as listed in equation 1 below.

CIR=
)cases ofnumber (total

)tionidentifica LD-non and LDcorrect of(number (1)

In the first experiment, we evaluate our MapReduce
implementation of the GA-based ANN classifier in terms of
CIR and execution time by fixing the population size
(number of chromosomes) assigned to each map task to 20
in the PDGA-based ANN classifier, while varying the
number of computing nodes (1, 2, 4, 8, and 12,
respectively). Accordingly, the overall population size also
varies between 20, 40, 80, 160, and 240, respectively. In
the second experiment, we fix the overall population size to
200, while varying the number of computing nodes (1, 2, 4,
8, and 12, respectively). In other words, the overall
population is evenly distributed to each map task (in case
of 12 nodes scenario, each node is assigned 17
chromosomes). The results of the two experiments are
shown in Tables III and IV, with all numbers as averaged
over twenty consecutive runs.

In general, according to Table III, the CIR improves as
the overall population size increases. From Table IV, when

33Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

adding more computing nodes (and thus reducing
population size assigned to each individual node), it is
possible to achieve higher CIR and lesser execution time at
the same time. The above two findings are reasonable and
consistent with our previous studies [9, 10].

TABLE III. PERFORMANCE COMPARISON BY FIXING POPULATION AT

EACH NODE TO 20 AND VARYING COMPUTATIONAL NODES (ALL TIME IN

SECONDS)

1 2 3
data set

slave node
CIR

execution

time
CIR

execution

time
CIR

execution

time

1 87.9% 4048 84.7% 2390 86.2% 3655

2 87.9% 3689 84.9% 1998 86.4% 3401

4 87.9% 3624 85.4% 2275 86.4% 3594

8 87.9% 4431 85.8% 2584 86.6% 4289

12 87.9% 5145 86.2% 3641 86.9% 4831

TABLE IV. PERFORMANCE COMPARISON BY FIXING THE TOTAL

POPULATION TO 200 AND VARYING THE COMPUTATIONAL NODES (ALL TIME

IN SECONDS)

1 2 3
data set

slave node
CIR

execution

time
CIR

execution

time
CIR

execution

time

1 88.0% 20368 85.9% 8170 86.3% 16521

2 88.0% 9781 85.8% 4116 86.8% 8807

4 88.0% 6456 85.6% 3046 86.9% 6545

8 88.1% 5293 85.8% 2977 86.5% 4386

12 88.0% 4378 85.7% 3407 86.9% 5035

However, in [10], we notice that in the later case
(experiment 2) there may be a limit on the trend. It appears
the sub-population assigned to each node has to be at least 20
to avoid the possibility that evolutionary process contains too
few chromosomes and potentially causes the GA
optimization process to be trapped into some local maximum.
But we do not see this obvious trend in Table IV. One
possible reason may be the sub-population size (17) in the
12-node scenario is very close to the above mentioned
threshold (20). However, it is more likely due to our non-
parallelized implementation of the Reduce stage where the
GA procedure proceeds. In other words, no matter how many
nodes are involved, all 200 chromosomes are taking part in
the evolutionary phase in one node. Furthermore, we need to
note that 88.1% (in Table IV) is the best (average) CIR we
have achieved so far with data set 1.

In the last experiment, we compare our MapReduce
implementation of the GA-based ANN classifier and the grid
and OpenMP implementations in terms of CIR and execution
time by varying the population size in a fixed 7-node mini-
cloud environment. By OpenMP, we mean OpenMP APIs
are used to multi-thread the most time-consuming ANN
model constructions and verifications in our case. A simple
static scheduling that evenly assigns population to the
available threads (cores) is adopted. The outcomes are shown
in Table V, again with all numbers as averaged over twenty
consecutive runs. Note that all three parallel computing

environments are built upon PC0 as listed in Table I so that
the performance comparison can be meaningful. In addition,
the outcomes of the sequential version (depicted as NA) of
our ANN classifier implementation are also shown and used
as the baseline for comparison.

TABLE V. PERFORMANCE COMPARISON ON VARYING THE

POPULATION IN THE 7-NODE SETUP (1 MASTER + 6 SLAVES, ALL TIME IN

SECONDS, NA, MR, GRID AND OMP REPRESENT SEQUENTIAL, MAPREDUCE,
GRID COMPUTING AND OPENMP IMPLEMENTATIONS, RESPECTIVELY)

1 2 3 data set

population
CIR

execution

time
CIR

execution

time
CIR

execution

time

NA 87.5% 6302 84.7% 1998 86.9% 4001

MR 87.9% 3935 85.3% 2225 86.6% 3581

Grid 87.4% 1991 85.7% 798 87.2% 1122
100

Omp 87.3% 1450 84.6% 435 86.7% 847

NA 87.6% 13460 84.8% 4545 87.0% 7450

MR 88.0% 5600 86.0% 2763 86.9% 4974

Grid 87.3% 3775 85.7% 1513 87.7% 2100
200

Omp 87.6% 2562 85.0% 908 86.8% 1544

300 MR 88.1% 6809 86.4% 3128 87.2% 5889

Only MapReduce implementation outcomes are available in the case of 300 population size.

According to Table V, it seems distributed
implementations (either MapReduce or grid computing)
perform somewhat better in terms of CIR. But when it comes
to execution time, the OpenMP version of the PDGA
performs the best (with speedup between 4.35 and 5.25), and
the grid implementation stands second (with speedup
between 2.50 and 3.57), and the MapReduce implementation
falls far behind (with speedup between 0.90 and 2.40). The
primary cause may be attributed to the sequential operation
in the Reduce stage (the GA procedure), which in our
measure may take between 25% (population=300) to 50%
(population=100) of the overall execution time. Accordingly,
the parallelization of the Reduce stage would be our first
priority in future research.

In addition, we also note that CPU usage jumps from
23% with sequential implementation to 92% with multi-
thread implementation using OpenMP APIs. In cases of
MapReduce and grid computing implementations, the CPU
usage can be as high as 100%. Apparently, the computing
power of the underlying multi-core CPUs has indeed been
fully utilized. However, considering the speedup depicted
above, there may be quite a lot of work to do in reducing
overhead associated with the MapReduce and grid
implementations (especially with the former one), which
would be another focus of our future study.

V. SUMMARY AND FUTURE WORK

In this study, we modify our grid-based PDGA
implementation of the ANN classifier for identifying
students with learning disabilities to the MapReduce
distributed programming model. Compared with the grid
computing model, MapReduce has the advantage of hiding

34Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

the underlying hardware details and thus allow the
programmers to be able to concentrate on the programming
logic in solving the problems. The preliminary results show
that in 50% of cases, the MapReduce implementation may
achieve the best CIR when compared to the other parallel
programming models. However, in terms of execution time,
the MapReduce model does not show significant
breakthrough. But we do see the potential of the MapReduce
model in our future applications. For example, increase the
population size, which may easily be extended by simply
adding more nodes to the Hadoop-based cloud environment,
seems to be a good direction to optimize the ANN LD
classification model. In addition, more diagnosis data for
students with LDs will be collected so that we may explore
the processing power of MapReduce upon massive data sets.
Finally, a more sophisticated parallelized GA procedure in
the Reduce stage is also under development.

ACKNOWLEDGMENT

This work was supported in part by the National Science
Council of Taiwan, R.O.C. under Grant NSC 100-2511-S-
018-011-MY2.

REFERENCES

[1] S. A. Kirk, “Behavioral diagnosis and remediation of learning

disabilities,” Proc. of the Conference on the Exploration into

the Problems of the Perceptually Handicapped Child, 1963,
pp.1-7.

[2] J. M. Fletcher, W. A. Coulter, D. J. Reschly, and S. Vaughn,

“Alternative approach to the definition and identification of

learning disabilities: some questions and answers,” Annals of

Dyslexia, vol. 54, no. 2, 2004, pp. 304-331.

[3] J. Schrag, “Discrepancy approaches for identifying learning
disabilities,” http://www.specialed.us/discoveridea/topdocs/

nasdse/discld.pdf, retrieved: June, 2013.

[4] Y.-R. Meng and L.-R. Chen, “On discussing the differences

about the learning characteristics of LD,” Bulletin of Special

Education, vol. 233，2002，pp. 75-93. (in Chinese)

[5] C. L. Nicholson and C. L. Alcorn, “Interpretation of the
WISC-III and its subtests,” Paper presented at the 25th Annual

Meeting of the National Association of School Psychologists,

Washington, DC, 1993.

[6] T.-S. Huang, “A Study on the characteristics of WISC-III for
students with learning disabilities,” Master thesis, Graduate

Institute of Special Education, National HsinChu University

of Education, Hsinchu, Taiwan. (in Chinese)

[7] T.-K. Wu, S.-C. Huang, and Y.-R. Meng, “Evaluation of

ANN and SVM classifiers as predictors to the diagnosis of

students with learning disabilities,” Expert Systems with

Applications, vol. 34, no. 3, April 2008, pp. 1846-1856.

[8] T.-K. Wu, S.-C. Huang, and Y.-R. Meng, “Effects of feature

selection on the identification of students with learning

disabilities using ANN,” Lecture Notes in Computer Science,

Springer Berlin/Heidelberg, vol. 4221, 2006, pp. 565 – 574.

[9] T.-K. Wu, S.-C. Huang, Y.-R. Meng, Y.-L. Lin, and H. Chang,
“On the parallelization and optimization of the genetic-based

ANN classifier for the diagnosis of students with learning

disabilities,” Proc. 2010 IEEE Conference on Systems, Man

and Cybernetics, 2010, pp. 4263-4269.

[10] T.-K. Wu, S.-C. Huang, Y.-R. Meng, and T.-H. Wu,
“Experiences on constructing neural network based learning

disabilities identification model with the Amazon elastic

compute cloud,” Proc. 2012 International Conference on

Internet Study, 2012.

[11] K. Kazunori, M. Hiroshi, and I. Masaaki, “Asynchronous
Parallel Distributed GA using Elite Server,” Proc. 2003

congress on evolutionary computation, 2003, vol. 4, pp. 2603-

2610.

[12] B. Baesens, T. Van Gestel, S. Viaene, M. Stepanova, J.

Suykens, and J. Vanthienen, “Benchmarking state-of-the-art
classification algorithms for credit scoring,” Journal of the

Operational Research Society, vol. 54, 2003, pp. 627–635.

[13] C. M. Bishop, Neural Networks for Pattern Recognition,

Oxford University Press, Oxford, UK, 1995.

[14] E. Istook and T. Martinez, “Improved backpropagation

learning in neural networks with windowed momentum,
International journal of neural systems,” vol. 12, no.3 & 4,

2002, pp. 303-318.

[15] E. Cantú-Paz and C. Kamath, “An empirical comparison of

combinations of evolutionary algorithms and neural networks

for classification problems,” IEEE Transactions on Systems,
Man, and Cybernetics-Part B: Cybernetics, vol. 35, no. 5,

2005, pp. 915-927.

[16] N. Sakamoto, K. Ozawa, and T. Niimura, “Grid computing

solutions for artificial neural network-based electricity market

forecasts,” Proc. 2006 International Joint Conference on
Neural Networks, 2006, pp. 4382-4386.

[17] T. White, Hadoop: The Definitive Guide. O’ Reilly Media,

Inc.

[18] Y. Wang and W. Chen, “Introduction to the Hadoop

distributed file system,” http://trac.nchc.org.tw/cloud/raw-

attachment/wiki/NCHCCloudCourse090331/3.ppt, retrieved:
June, 2013.

35Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

