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Abstract—This paper gives a survey of the principles and 

the state-of-the-art of engineering optimization techniques. Both 
the classic and emerging approaches to nonlinear optimization 
problems are reviewed and analyzed. All the techniques are 
discussed in two basic types: point-based transition and 
population-based transition, depending on whether a single 
point or multiple points are generated as new approximate 
solution(s) in each step. We also consider multi-objective tasks 
as new application trend and point out the strong potential of 
population-based methods to tackle multiple objectives 
simultaneously. 

Keywords-optimization techniques; point-based optimization; 

population-based optimization 

I. INTRODUCTION  

Nowadays, optimization has become an important issue 
in industrial design and product development [1]. It is 
necessary to enhance system performance whereas reduce 
product cost to meet challenges in the competitive market. 
From engineering perspective, optimization means adjusting 
or fine tuning system designs in terms of one or more 
performance factors. This is not a trivial task, in particular 
when the problem space is complex and of high-
dimensionality. Application of suitable optimization 
techniques has shown its benefit in supporting human 
designers to acquire optimal or near optimal solutions within 
a short design time. 

Generally, an engineering optimization problem can be 

formulated as: 

),,,()(minimize 21 nxxxfXf   

mixxxg ni  1,0),,(tosubject 21   

where (x1, x2, …xn) is the vector of design variables, 

gi(i=1…m) denote constraint functions that define the  

region of feasible solutions in the problem space, and 

function f(X) provides objective values for vectors of 

variables representing alternative designs. The set of design 

variables xi can take continuous or discrete values or a 

mixture of both depending on specific problems. Besides, 

the above statement is generic since maximization of a 

certain function is equivalent to minimization of the minus 

of it.  

   The optimization techniques can be divided into two basic 

categories: linear programming [2] and non-linear 

programming [3], [4]. The former is applied to optimization 

problems that have linear objective and constraint functions. 

Important progresses in this area include the polynomial-

time ellipsoid algorithm [5] and the interior point algorithm 

[6], both were proposed to reduce time complexity and to 

allow for extremely efficient problem handling in the 

optimization procedure. At present, linear programming has 

been advanced to a soundly founded discipline and widely 

used technology for linear optimization problems. The 

second category of optimization is called nonlinear 

programming, which refers to the consortium of methods 

and approaches that are designed to deal with problems with 

nonlinear objective or constraint functions [7]. Nonlinearity 

is a very common property for many engineering 

optimization problems, and solving such problems often 

presents a challenge due to the high complexity, high 

dimensionality and multi-modality of the problem space. 

Although many techniques for nonlinear programming have 

been developed, there are always pros and cons for them 

and no single method can more competently solve all kinds 

of problems than others. 
This paper focuses on the study of nonlinear optimization 

techniques. Special emphasis is made on presenting the 
general principle and ideas of how to reach the optimum 
rather than the details of computational procedures. Both the 
classic and emerging approaches to nonlinear optimization 
problems are reviewed and analyzed. We also consider 
multi-objective tasks as new application trend when 
discussing the potential capability of optimization methods. 

The organization of this paper is as follows. Section II 
highlights the basic idea and principle for general nonlinear 
optimization problems. The review of concrete approaches 
for optimization is given in Sections III and IV, respectively. 
The type of approaches called point-based transition is 
discussed in Section III, and the type of approaches called 
population-based transition is addressed in Section IV. 
Finally, Section V provides concluding remarks and 
discussion.   

II. GENERAL PRINCIPLE OF OPTIMIZATION 

Mathematically, it is well known that an optimum of a 

nonlinear function f(x1,x2,…xn) must be some point at which 

the partial derivatives of the function with respect to all 

variables are equal to zero, i.e., 

                        
ni
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                         (1) 

A solution satisfying all the equations in (1) is called a 

stationary point of function f. Further, the stationary point is 
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a minimum solution if the Hessian matrix of the second-

order derivatives, as defined in (2), is positive definite. 
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                      (2) 

 The above principle suggests a simple procedure to 

obtain exact solution of an optimization problem. It is done 

by finding all stationary points of the objective function and 

then examining the property of the Hessian matrices of these 

points. The global optimum solution is selected from those 

stationary points for which the Hessian matrices are positive 

definite. 

Unfortunately, the approach to exact solutions of 

optimization is rarely applicable in engineering practice. 

The main reason lies in the difficulty of acquiring the 

derivative information analytically. In many applications, 

only concrete objective values of individual designs are 

calculable through specific calculations such as simulation. 

But the explicit expression of the objective function is not 

available, not to mention the analytic formulation of the 

partial derivative functions. It follows that we are unable to 

construct the equations as formulated in (1) for determining 

the stationary points of the objective function.  

Numerical approaches present a pragmatic alternative to 

solve engineering optimization problems. The main idea is 

to create arbitrary initial approximate(s) to the problem and 

then improve them progressively. The whole procedure 

consists of a number of iterations. In each iteration, new 

approximate(s) are created from the old one(s) as more 

promising solution(s). Depending on the number of 

approximates generated at a single step, two types of 

numerical approaches (point-based and population-based 

transitions) can be defined and explained as follows. 

With point-based transitions, only one point as new 

approximate is generated and evaluated in each of the 

iterations. The new point is made as transition from an old 

one with expected better performance. The general form of 

such a transition can be expressed as 

                      
iiii ShXX 1
                                         (3) 

where Xi+1 and Xi denote the new and old approximates 
respectively, hi decides the length of transition, and Si is a 
vector determining the direction of the move from Xi. There 
are many different methods to determine the direction vector 
Si in the literature. Some use merely values of the objective 
function while others require partial derivative information 
in addition to the objective values.  

Sometimes, it is beneficial to apply point-based transition 
methods in combination with random sampling to increase 
their global search ability and thereby reducing the risk of 
getting stuck into local optima. For instance, the initial 
approximate for iteration can more favorably be decided by 

resorting to a random scheme [8], which generates a set of 
uniformly distributed points in the region of feasible 
solutions. We then select the sample solution that receives 
the best objective value as the starting point of search. The 
other possibility is to follow the multi-start strategy [9] when 
doing optimization with point-based transitions. This means 
that we run the optimization algorithm multiple times and 
every time a sample solution is selected randomly as the 
starting point. The best solution found from individual runs 
is treated as the final solution of the global optimum.  

Population-based transition starts from an initial 
population of feasible solutions. Then it undergoes an 
iterative procedure in which new populations are 
successively created from old populations to reach 
progressively refined approximates to the problem.  As many 
points in the space are explored simultaneously, population-
based transition is superior to point-based transition in the 
global search ability; hence it has less likelihood of ending 
with a local minimum. Many biologically inspired 
optimization techniques rely on transitions of populations, 
such as genetic algorithms, memetic algorithms, differential 
evolution, particle swarm optimization, as well as ant colony 
optimization, which will be reviewed in Section IV.  

III. OPTIMIZATION WITH POINT-BASED 

TRANSITION 

The approaches of this type explore the problem space 

via transition from one feasible solution to another. The 

transition procedure is controlled by either deterministic or 

probabilistic rules.  Six well known approaches in this 

category will be surveyed here. 

A. Hill-Climbing 

Hill-climbing [10] is the simplest numerical approach for 
optimization. It starts by creating an arbitrary solution 
(approximate) to the problem and then it evaluates all the 
neighbors of the current solution. If the best neighbor has a 
lower objective value than the current solution, the current 
one is replaced by that neighbor and the search moves on to 
the next iteration, otherwise the search is terminated. 

Hill-climbing is a local search and can only be applied in 
discrete spaces as it implicitly assumes a finite number of 
feasible neighbors at every point. The advantages of hill-
climbing lie in its simplicity and high efficiency. It has been 
widely used to solve many machine learning and technical 
optimization problems (e.g., [11], [12]). Hill-climbing is 
particularly recommended when there is limited time for 
search; for example, for real-time systems.  

B. Gradient Descent 

Gradient descent [13] aims to solve continuous 
optimization problems. It has very similar idea to that of hill-
climbing. The only difference between both methods lies in 
the way to determine the best successor solution from a 
current one. Since it is not possible to evaluate every 
successor in the continuous space, the gradient information is 
utilized to identify the direction of move to reduce the 
objective function most quickly. Hence, the normalized 
direction vector of the move can be written in (4). The length 
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of move along Si can be determined by solving a one-
dimensional optimization problem. The golden section 
method is often used in gradient descent to find the optimal 
size of transition at each step. 
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Gradient descent is simple and very useful in solving 
many optimization problems when partial derivatives of the 
object function are available. However, as local search 
scheme, this method cannot guarantee the global optimality 
of the solutions returned.  It should preferably be combined 
with the multi-start strategy to increase the chance of finding 
the global minimum. The other weakness with gradient 
descent is that, when the current solution gets close to a 
minimum solution, the search will become quite inefficient 
due to the decreasing lengths of the moves. 

C. Newton’s Method 

Newton’s method [14] attempts to improve the speed of 

convergence of gradient descent in the vicinity of a 

minimum solution. According to Taylor’s expansion, the 

objective function near a minimum X
* 

can be expressed by 

an approximate form as:  

       XHXgXXfXXfXf
TT


2

1
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where g is the vector of the first-order partial derivatives of 

the objective function and H is the Hessian matrix of the 

second-order partial derivatives of the objective function. For 

all the first-order derivatives at the optimum X
*
 are zero, 

Eq.(5) is simply rewritten as: 

                          XHXXfXf
T


2
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From (6), it can be seen that the objective function is 

approximately quadratic in the vicinity of  X
*
. A quadratic 

function has the following property: 

                         XHg                                               (7) 

where g is the vector of partial derivatives evaluated at the 

current point, and H is the Hessian matrix which is constant 

for a quadratic function. Using the property in (7) enables us 

to obtain the minimum solution X
*
 from a nearby point X in 

terms of the following transition rule: 

                           gHXX 1*                                              (8)                                  

This transition rule indicates that a single move suffices to 

reach the minimum X
*
 when the current solution is nearby. 

This shows a substantial improvement of the late 

convergence speed compared with that of gradient descent. 

Nevertheless, it has to be noticed that globally the 

objective function is not quadratic. Hence, an iterative 

procedure is needed to generate a sequence of moves for 

progressive refinement. At iteration i, we first calculate g and 

H at the current point Xi, and then, we use the Newton’s 

method to create the next refined solution as  

                       
iiii gHXX 1

1



                                          (9) 

Generally, the Newton’s method stated above is still a 

local approach and it has two drawbacks. Firstly, it requires 

heavy computation with the Hessian matrix of second-order 

derivatives and its inverse. Secondly, the method is only 

efficient in the neighborhood of an optimum, but away from 

the optimum it may progress very slowly and even diverge. 

So, our suggestion is not employing the Newton’s method 

alone, but in combination with some other optimization 

technique and using it at the final stage. 

D. Tabu Search 

Tabu search [15] [16] is a metaheuristic local search 

algorithm to solve discrete optimization problems. It can be 

considered as extension of the hill-climbing search in the two 

aspects as follows. Firstl, there is added driving force to 

enforce the local minimization procedure out of a local 

minimum. Secondly, various memory structures are used to 

store historical information which is then utilized to guide 

the further exploration of new solutions. For instance, the 

tabu list is introduced as short term memory to save recently 

visited solutions to prevent cyclic behaviors during the 

search. Intermediate and long term memory is used to 

intensify and diversify the search to ensure adequate 

exploration of the problem space. 

The search starts from an arbitrary point as the current 

solution. All the solutions in its neighborhood that are not in 

the tabu list or satisfy the aspiration level are successor 

solutions and their objective values are calculated. Then the 

move is made to the best successor according to the objective 

values, and the tabu list is updated accordingly. Both uphill 

and downhill moves are allowed here to give chance to 

escape from a local minimum. This process is repeated in a 

number of iterations until the termination condition is 

satisfied.  

It is useful to apply tabu search in many practical 

scenarios [17] [18], mainly in combinatorial problems. A 

main limitation with this technique is that it requires 

considerable memory resources to store historical 

information. Besides, domain specific knowledge is needed 

to design suitable aspiration criteria. 

E. Simulated Annealing 

Simulated annealing [19] [20] is a stochastic and meta-

heuristic algorithm for solving global optimization 

problems. It is inspired by the physical principle of 

annealing used in material engineering. In an annealing 

process, the solid is first heated to a high temperature, 

causing atoms to move away from their initial positions.  

When the material cools down slowly, the atoms adjust 

themselves into a new thermal equilibrium that corresponds 

to a minimum energy state. 
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The algorithm is iterative and the main idea is to 

randomly select a new solution in the neighborhood of the 

current solution at every step. The difference of objective 

values, ΔE, between the new and current solutions is 

calculated as analogy to the change of energy. If the new 

solution is better than the current one (ΔE<0), the current 

solution is replaced by the new one. In case when the new 

solution is worse (ΔE>0), there is still a chance to move to 

it. The probability of this move is given by the Boltzmann 

probability function: 

                   







 


T

E
EP exp)(

                                      (10) 

The parameter T in (10) is the temperature used during the 

search. In the early iterations, the temperature is high, which 

results in high probability of moving into inferior points and 

thereby avoiding local minima. Contrarily, during late 

stages, the temperature is reduced to such a level that gives 

little chance for accepting worse solutions and consequently 

the search will finally converge.  

The merit with simulated annealing is that it does not 

require the objective function to be continuous and 

differentiable, and it can handle both continuous and 

discrete optimization problems. But, proper parameter 

settings with this method are not difficult. 

F. Simplex Method 

A simplex is a geometric object consisting of n+1 points 

(vertices) in the n-dimensional spaces. Every vertex of the 

simplex corresponds to a feasible solution to the problem. 

The initial simplex can be generated randomly. The main 

idea is to move the simplex iteratively and every time 

replacing the worst vertex of it with a new better point. The 

search terminates when the standard deviation of the 

objective values of the n+1 vertices of the simplex is lower 

than a specified value. 

According to the simplex method by Nelder and Mead 

[21], the new better points for replacement are generated 

through the operations such as reflection, expansion, and 

contraction.  The worst vertex is first reflected through the 

centroid of the remaining points of the simplex. If the 

reflection produces a better point, expansion is done to see 

whether the objective function can be reduced further via 

moving in the same direction. Otherwise, if the reflected 

point is not satisfactory, contraction is performed via 

generation of a point between the worst vertex and the 

centroid for possible replacement.   

The main advantage of the simplex method is that it is a 

global optimization technique and it does not require any 

derivative information of the objective function. The 

method is robust and efficient with a small number of 

design variables but it does not scale well up to high-

dimensional problems. As noted in [7], the efficiency of 

simplex diminishes when the design variables are more than 

five.    

IV. OPTIMIZATION WITH POPULATION-BASED  

                TRANSITION 

The approaches of this type explore the problem space 

via transition from one population of feasible solutions to 

another. They are biologically inspired techniques and 

probabilistic rules are used to create new solutions from old 

ones.  Five well known approaches in this category will be 

reviewed here. 

A. Genetic Algorithms 

Genetic algorithms (GAs) are stochastic optimization 

algorithms that emulate the mechanics of natural evolution 

[22]. They are attractive to be applied in engineering 

optimization tasks due to the two following reasons. First, a 

GA evaluates many points in the search space 

simultaneously, as opposed to a single point, thus reducing 

the chance of converging to the local optimum. Second, a 

GA uses only values of objective functions; therefore they 

do not require the search space to be differentiable or 

continuous. 

   Essentially, a GA is an iterative procedure maintaining a 

constant population size. An individual in the population 

encodes a possible solution to the problem with a string 

analogous to a chromosome in nature. At each step of 

iteration, new individuals are created via applying genetic 

operators on selected parents, and subsequently some of the 

old, weak individuals are replaced by new strong ones. In 

this manner, the performance of the population will be 

gradually improved in the evolutionary process. 

A classical GA works with binary code, i.e., individuals 

in the population are represented by binary strings. 

However, binary coding would not be the most appropriate 

choice in applications to optimization problems with 

continuous spaces. One reason lies in the matter of 

resolution, i.e., a binary string is inherently related to some 

loss of precision for representing the continuous value of a 

variable. The other reason is the extra job of decoding that is 

needed when doing fitness evaluation for a binary string in 

the population.  

The other alternative is to directly adopt arrays of real 

numbers as population individuals. Real-coded GAs have 

been studied by many researchers and nowadays become a 

popular, extended version of GAs for solving real-valued 

optimization problems. The interesting features of real-

coded GAs together with their used mechanisms and genetic 

operators haven been carefully discussed in [23] and [24]. In 

[25], real-coded GA was used to optimize similarity models 

for case-based reasoning.   

B. Memetic Algorithms 

Memetic algorithms (MAs) [26] are population-based 

metaheuristic search methods inspired by the principle of 

natural evolution and Dawkin’s notion of memes capable of 

local adaptation. MAs can be considered as enhancement of 

GAs by embedding local search to allow for self-

refinements of individuals. According to the idea of 
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Lamarckian learning [27], local search can be done on all or 

part of the population to reach a local optimum or improve 

the current solution. 

As hybridization of GAs and local search, MAs aim to 

exploit the best search regions gathered by global sampling 

with GA. Hence, an important demand for MAs is the 

synergy between the exploration abilities of the GA and the 

exploitation abilities of the local search. In [28], a local 

search scheme was combined with the global search 

capability of evolutionary algorithms for rule extraction. 

The simplex method by Nelder and Mead was adopted as 

the local search mechanism in the memetic algorithm [29] 

for optimal fuzzy controller design. The hierarchical 

memetic algorithm was proposed in [30] for combined 

feature selection and similarity modeling in case-based 

reasoning.  

C. Differential Evolution 

Differential evolution (DE) [31] is a stochastic and 

meta-heuristic technique that has been developed for solving 

optimization problems with real parameters. It provides a 

powerful tool for searching for optimal solutions in high-

dimensional spaces that are nonlinear, non-differentiable, 

non-continuous, and containing multiple local optima. DE is 

similar to GAs in the sense that both are evolutionary, 

population-based algorithms. But DE algorithms differ from 

GAs in the way evolutionary operators are manipulated to 

produce new child solutions. The main loop of DE 

algorithms is briefly explained in the following. 

A DE algorithm maintains a population of real-valued 

parameter vectors and works iteratively. Each iteration starts 

with mutation, in which three distinct parameter vectors are 

randomly selected for every population member. The 

weighted differences between two parameter vectors are 

added to the third parameter vector to get the perturbed 

vector. Then, crossover is done to combine the population 

member and the perturbed vector to yield a new trial vector. 

Every parameter in the perturbed vector has a certain 

probability to enter the trial vector. Finally, the trial vector 

replaces the old population member if it has a lower 

objective value. A comprehensive review of various DE 

algorithms together with associated operators is given in 

[32].  

DE attains increasing popularity in engineering 

applications due to its attractive features such as fewer 

running parameters to specify, ease in programming, high 

efficiency, as well as strong global search ability. In [31] 

and [33], it was indicated that DE algorithms were more 

efficient and more accurate than several other optimization 

methods, including controlled random search, simulated 

annealing and genetic algorithms. A weakness for DE is that 

there is no theoretic proof for its convergence.  

D. Particle Swarm Optimization 

Particle swarm optimization (PSO) algorithms [34] 

mimic the flocking behaviors of animals in their movement. 

Similar to GAs, PSO algorithms work with a population of 

particles which represent feasible solutions to the problem. 

The particles move around in the search space to improve 

their fitness (objective values), iteratively. The movement of 

each particle is determined in terms of both its best position 

in the history and also the best position known so far from 

all particles. In view of this, the speed of a particle at 

iteration k+1 is updated as: 

      )()( 22111 k

k

gbk

k

pbkk XPrcXPrcvwv 
     (11) 

In (11), Ppb , and Pgb , denote, respectively, the best position 

of the particle and the best known position from all particles, 

w is the momentum, Xk is the position of the particle at 

iteration k, r1 and r2 are two randomly generated positive 

numbers, and c1 and c2 are the parameters used to balance 

the individual and social influences.  

PSO is simpler than GAs in its nature. Therefore, it 

incurs lower computational cost in creating a new 

population from the old one. But, the performance of PSO is 

heavily dependent on the parameters w, c1, and c2 in (11), 

and proper valuation of such parameters to ensure strong 

search ability is a crucial task.  

E. Ant Colony Optimization 

Ant colony optimization (ACO) [35] [36] mimics the 

behavior of a colony of ants in searching for food. It is a 

population-based metaheuristic technique used to solve hard 

combinatorial problems. Prior to applying ACO, the 

optimization problem has to be transformed into the 

problem of path finding on a graph. Then a group of ants 

work collectively to find a shortest path on the graph by 

pheromone communication during path formation [37]. 

An ant builds its path incrementally. It starts from a 

randomly selected vertex and then chooses an edge to go to 

the next vertex. The choice of an edge is stochastic yet its 

probability is decided by the pheromone values and 

heuristic information associated with the edge. The most 

well known rule for determining the selection probability 

for edge cij is given in (12) 

                      

 



fil Sc ilil
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)(                             (12) 

where Sf denotes the set of feasible edges immediately after 

the current partial path, τij and ηij are the pheromone and 

heuristic values respectively associated with edge cij, α and 

β are the parameters controlling the relative importance of 

pheromone versus heuristic information.  

Further, when the ants completed their paths, the quality 

of their solutions is used to update the pheromone values of 

the edges. These updated values are then utilized by the ants 

in the next iteration to build new paths. This procedure 

continues until the maximum iteration number is reached or 

all ants tend to produce a similar path. 
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F. Extension to Finding Multiple Solutions 

As is seen in this section, the optimization techniques 

with population-based transition are actually beam search, 

they can handle a set of feasible solutions at the same time. 

It follows that it would be relatively easy to modify or 

extend these techniques such that a set of optimal solutions 

rather than a single one will be returned from a single run of 

the algorithm. For example, the niching genetic algorithms 

were developed in [38] to find multiple interesting solutions 

in the job shop scheduling. 

Finding multiple solutions as interesting trade-offs is 

also very important for multi-objective optimization tasks. 

Traditional ways to cope with multiple objectives is to build 

an overall objective function as weighted combination of 

individual objective values. However it is very hard to 

assign exact weights to reflect human preference, and 

therefore the final solution obtained may not be most 

preferred by human decision makers.   

Multi-objective genetic algorithms have received 

intensive research for more than one decade (see [39][40], 

as examples). A nice feature of these algorithms is that a 

diversity of Pareto-optimal solutions can be found and 

presented to human decision makers, who then choose the 

most preferred alternative according to their preference. The 

Fast Non-dominated Sorting Genetic Algorithm (NSGA-II) 

[41] is an improved version of the early algorithms, which 

incorporates a fast non-dominated sorting algorithm and the 

crowding-distance assignment to improve the efficiency and 

effectiveness of the algorithm respectively. 

More recently, multi-objective PSO algorithms were 

developed as extension of the single-objective counterparts.  

The key issue here is how to select global and local best 

particles in terms of multiple criteria. Different selection 

strategies have been proposed for this purpose. In [42] the 

tournament niche method was used to decide the global best 

particle, and the local best particle was identified according 

to Pareto-dominance. The other interesting strategy is to 

stochastically choose the global best particle from the non-

dominated solutions using density-based probabilities [43].   

V. CONCLUSION 

This paper provides a survey of the principles and the 

state-of-the-art of numerical techniques for solving 

nonlinear optimization problems. All the techniques 

discussed are classified into two basic types: point-based 

transition and population-based transition, depending on 

whether a single point or multiple points are generated as 

new approximate solution(s) in each step of the iterations. 

Generally, the point-based approaches are simple and 

effective for optimization problems with a low number of 

parameters. However, when the dimension of the space 

increases, they become less efficient and are more likely to 

get stuck in a local optimum. In many practical applications, 

a point-based search method is often combined with the 

random sampling or multi-start strategy to increase the 

chance to find a global optimum. The population-based 

approaches are superior to the point-based ones in global 

search capability; they seem to be more suitable to be 

applied in high-dimensional search spaces. But, larger 

memory requirements and more computational cost are 

connected with them as side effects.  

Most of the optimization approaches addressed here are 

derivative-free. This is a very useful property to promote 

wide applications in various situations without requiring the 

problem space to be continuous and differentiable. On the 

other side, some classical search methods such as gradient 

descent and Newton’s method are also valuable and 

recommended to use, as long as the derivative information 

is available or achievable. The derivative-based methods are 

theoretically well founded and can contribute to substantial 

improvement of local search performance. The exploitation 

of derivative-based local search in a global evolutionary 

algorithm would be a promising direction of research for 

building new memetic computing frameworks.  

Both the point-based and population-based approaches 

can be used to solve multi-objective optimization problems. 

For point-based approaches, it is necessary to construct an 

overall objective function as a weighted combination of 

individual objective values, and a single solution will be 

returned after the running of an algorithm. Since there is no 

clear relation between the weighting and the solution 

obtained, we cannot guarantee that the solution found is 

really the one that is most preferred by human decision 

makers. Comparatively, the population-based approaches 

appear to be more appropriate or have more potential for 

tackling problems with multiple objectives. As noted in 

Section IV, the population-based methods like GAs can 

easily be extended to deal with multiple objectives 

simultaneously and thereby returning a set of Pareto-optimal 

solutions rather than a single one. This enables human 

decision makers (designers) to choose the most preferred 

solution from a group of interesting trade-offs. 
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