
Principles and State-of-the-Art of Engineering Optimization Techniques

Ning Xiong, Miguel León Ortiz

School of Innovation, Design and Engineering

Mälardalen University

Västerås, Sweden

E-mail: ning.xiong@mdh.se, miguel.leonortiz@mdh.se

Abstract—This paper gives a survey of the principles and

the state-of-the-art of engineering optimization techniques. Both
the classic and emerging approaches to nonlinear optimization
problems are reviewed and analyzed. All the techniques are
discussed in two basic types: point-based transition and
population-based transition, depending on whether a single
point or multiple points are generated as new approximate
solution(s) in each step. We also consider multi-objective tasks
as new application trend and point out the strong potential of
population-based methods to tackle multiple objectives
simultaneously.

Keywords-optimization techniques; point-based optimization;

population-based optimization

I. INTRODUCTION

Nowadays, optimization has become an important issue
in industrial design and product development [1]. It is
necessary to enhance system performance whereas reduce
product cost to meet challenges in the competitive market.
From engineering perspective, optimization means adjusting
or fine tuning system designs in terms of one or more
performance factors. This is not a trivial task, in particular
when the problem space is complex and of high-
dimensionality. Application of suitable optimization
techniques has shown its benefit in supporting human
designers to acquire optimal or near optimal solutions within
a short design time.

Generally, an engineering optimization problem can be

formulated as:

),,,()(minimize 21 nxxxfXf

mixxxg ni 1,0),,(tosubject 21

where (x1, x2, …xn) is the vector of design variables,

gi(i=1…m) denote constraint functions that define the

region of feasible solutions in the problem space, and

function f(X) provides objective values for vectors of

variables representing alternative designs. The set of design

variables xi can take continuous or discrete values or a

mixture of both depending on specific problems. Besides,

the above statement is generic since maximization of a

certain function is equivalent to minimization of the minus

of it.

 The optimization techniques can be divided into two basic

categories: linear programming [2] and non-linear

programming [3], [4]. The former is applied to optimization

problems that have linear objective and constraint functions.

Important progresses in this area include the polynomial-

time ellipsoid algorithm [5] and the interior point algorithm

[6], both were proposed to reduce time complexity and to

allow for extremely efficient problem handling in the

optimization procedure. At present, linear programming has

been advanced to a soundly founded discipline and widely

used technology for linear optimization problems. The

second category of optimization is called nonlinear

programming, which refers to the consortium of methods

and approaches that are designed to deal with problems with

nonlinear objective or constraint functions [7]. Nonlinearity

is a very common property for many engineering

optimization problems, and solving such problems often

presents a challenge due to the high complexity, high

dimensionality and multi-modality of the problem space.

Although many techniques for nonlinear programming have

been developed, there are always pros and cons for them

and no single method can more competently solve all kinds

of problems than others.
This paper focuses on the study of nonlinear optimization

techniques. Special emphasis is made on presenting the
general principle and ideas of how to reach the optimum
rather than the details of computational procedures. Both the
classic and emerging approaches to nonlinear optimization
problems are reviewed and analyzed. We also consider
multi-objective tasks as new application trend when
discussing the potential capability of optimization methods.

The organization of this paper is as follows. Section II
highlights the basic idea and principle for general nonlinear
optimization problems. The review of concrete approaches
for optimization is given in Sections III and IV, respectively.
The type of approaches called point-based transition is
discussed in Section III, and the type of approaches called
population-based transition is addressed in Section IV.
Finally, Section V provides concluding remarks and
discussion.

II. GENERAL PRINCIPLE OF OPTIMIZATION

Mathematically, it is well known that an optimum of a

nonlinear function f(x1,x2,…xn) must be some point at which

the partial derivatives of the function with respect to all

variables are equal to zero, i.e.,

ni

x

f

i

,,2,1,0

 (1)

A solution satisfying all the equations in (1) is called a

stationary point of function f. Further, the stationary point is

36Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

mailto:ning.xiong@mdh.se

a minimum solution if the Hessian matrix of the second-

order derivatives, as defined in (2), is positive definite.

2

2

1

2

2

2

1

2

21

2

2

1

2

n

n

nn x

f

xx

f

xx

f

xx

f

xx

f

x

f

H

 (2)

 The above principle suggests a simple procedure to

obtain exact solution of an optimization problem. It is done

by finding all stationary points of the objective function and

then examining the property of the Hessian matrices of these

points. The global optimum solution is selected from those

stationary points for which the Hessian matrices are positive

definite.

Unfortunately, the approach to exact solutions of

optimization is rarely applicable in engineering practice.

The main reason lies in the difficulty of acquiring the

derivative information analytically. In many applications,

only concrete objective values of individual designs are

calculable through specific calculations such as simulation.

But the explicit expression of the objective function is not

available, not to mention the analytic formulation of the

partial derivative functions. It follows that we are unable to

construct the equations as formulated in (1) for determining

the stationary points of the objective function.

Numerical approaches present a pragmatic alternative to

solve engineering optimization problems. The main idea is

to create arbitrary initial approximate(s) to the problem and

then improve them progressively. The whole procedure

consists of a number of iterations. In each iteration, new

approximate(s) are created from the old one(s) as more

promising solution(s). Depending on the number of

approximates generated at a single step, two types of

numerical approaches (point-based and population-based

transitions) can be defined and explained as follows.

With point-based transitions, only one point as new

approximate is generated and evaluated in each of the

iterations. The new point is made as transition from an old

one with expected better performance. The general form of

such a transition can be expressed as

iiii ShXX 1
 (3)

where Xi+1 and Xi denote the new and old approximates
respectively, hi decides the length of transition, and Si is a
vector determining the direction of the move from Xi. There
are many different methods to determine the direction vector
Si in the literature. Some use merely values of the objective
function while others require partial derivative information
in addition to the objective values.

Sometimes, it is beneficial to apply point-based transition
methods in combination with random sampling to increase
their global search ability and thereby reducing the risk of
getting stuck into local optima. For instance, the initial
approximate for iteration can more favorably be decided by

resorting to a random scheme [8], which generates a set of
uniformly distributed points in the region of feasible
solutions. We then select the sample solution that receives
the best objective value as the starting point of search. The
other possibility is to follow the multi-start strategy [9] when
doing optimization with point-based transitions. This means
that we run the optimization algorithm multiple times and
every time a sample solution is selected randomly as the
starting point. The best solution found from individual runs
is treated as the final solution of the global optimum.

Population-based transition starts from an initial
population of feasible solutions. Then it undergoes an
iterative procedure in which new populations are
successively created from old populations to reach
progressively refined approximates to the problem. As many
points in the space are explored simultaneously, population-
based transition is superior to point-based transition in the
global search ability; hence it has less likelihood of ending
with a local minimum. Many biologically inspired
optimization techniques rely on transitions of populations,
such as genetic algorithms, memetic algorithms, differential
evolution, particle swarm optimization, as well as ant colony
optimization, which will be reviewed in Section IV.

III. OPTIMIZATION WITH POINT-BASED

TRANSITION

The approaches of this type explore the problem space

via transition from one feasible solution to another. The

transition procedure is controlled by either deterministic or

probabilistic rules. Six well known approaches in this

category will be surveyed here.

A. Hill-Climbing

Hill-climbing [10] is the simplest numerical approach for
optimization. It starts by creating an arbitrary solution
(approximate) to the problem and then it evaluates all the
neighbors of the current solution. If the best neighbor has a
lower objective value than the current solution, the current
one is replaced by that neighbor and the search moves on to
the next iteration, otherwise the search is terminated.

Hill-climbing is a local search and can only be applied in
discrete spaces as it implicitly assumes a finite number of
feasible neighbors at every point. The advantages of hill-
climbing lie in its simplicity and high efficiency. It has been
widely used to solve many machine learning and technical
optimization problems (e.g., [11], [12]). Hill-climbing is
particularly recommended when there is limited time for
search; for example, for real-time systems.

B. Gradient Descent

Gradient descent [13] aims to solve continuous
optimization problems. It has very similar idea to that of hill-
climbing. The only difference between both methods lies in
the way to determine the best successor solution from a
current one. Since it is not possible to evaluate every
successor in the continuous space, the gradient information is
utilized to identify the direction of move to reduce the
objective function most quickly. Hence, the normalized
direction vector of the move can be written in (4). The length

37Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

of move along Si can be determined by solving a one-
dimensional optimization problem. The golden section
method is often used in gradient descent to find the optimal
size of transition at each step.

n

i i

n

i

x

f

x

f

x

f

x

f

S

1

2

21

,,,

Gradient descent is simple and very useful in solving
many optimization problems when partial derivatives of the
object function are available. However, as local search
scheme, this method cannot guarantee the global optimality
of the solutions returned. It should preferably be combined
with the multi-start strategy to increase the chance of finding
the global minimum. The other weakness with gradient
descent is that, when the current solution gets close to a
minimum solution, the search will become quite inefficient
due to the decreasing lengths of the moves.

C. Newton’s Method

Newton’s method [14] attempts to improve the speed of

convergence of gradient descent in the vicinity of a

minimum solution. According to Taylor’s expansion, the

objective function near a minimum X
*

can be expressed by

an approximate form as:

 XHXgXXfXXfXf
TT

2

1
)()()(** (5)

where g is the vector of the first-order partial derivatives of

the objective function and H is the Hessian matrix of the

second-order partial derivatives of the objective function. For

all the first-order derivatives at the optimum X
*
 are zero,

Eq.(5) is simply rewritten as:

 XHXXfXf
T

2

1
)()(* (6)

From (6), it can be seen that the objective function is

approximately quadratic in the vicinity of X
*
. A quadratic

function has the following property:

 XHg (7)

where g is the vector of partial derivatives evaluated at the

current point, and H is the Hessian matrix which is constant

for a quadratic function. Using the property in (7) enables us

to obtain the minimum solution X
*
 from a nearby point X in

terms of the following transition rule:

 gHXX 1* (8)

This transition rule indicates that a single move suffices to

reach the minimum X
*
 when the current solution is nearby.

This shows a substantial improvement of the late

convergence speed compared with that of gradient descent.

Nevertheless, it has to be noticed that globally the

objective function is not quadratic. Hence, an iterative

procedure is needed to generate a sequence of moves for

progressive refinement. At iteration i, we first calculate g and

H at the current point Xi, and then, we use the Newton’s

method to create the next refined solution as

iiii gHXX 1

1

 (9)

Generally, the Newton’s method stated above is still a

local approach and it has two drawbacks. Firstly, it requires

heavy computation with the Hessian matrix of second-order

derivatives and its inverse. Secondly, the method is only

efficient in the neighborhood of an optimum, but away from

the optimum it may progress very slowly and even diverge.

So, our suggestion is not employing the Newton’s method

alone, but in combination with some other optimization

technique and using it at the final stage.

D. Tabu Search

Tabu search [15] [16] is a metaheuristic local search

algorithm to solve discrete optimization problems. It can be

considered as extension of the hill-climbing search in the two

aspects as follows. Firstl, there is added driving force to

enforce the local minimization procedure out of a local

minimum. Secondly, various memory structures are used to

store historical information which is then utilized to guide

the further exploration of new solutions. For instance, the

tabu list is introduced as short term memory to save recently

visited solutions to prevent cyclic behaviors during the

search. Intermediate and long term memory is used to

intensify and diversify the search to ensure adequate

exploration of the problem space.

The search starts from an arbitrary point as the current

solution. All the solutions in its neighborhood that are not in

the tabu list or satisfy the aspiration level are successor

solutions and their objective values are calculated. Then the

move is made to the best successor according to the objective

values, and the tabu list is updated accordingly. Both uphill

and downhill moves are allowed here to give chance to

escape from a local minimum. This process is repeated in a

number of iterations until the termination condition is

satisfied.

It is useful to apply tabu search in many practical

scenarios [17] [18], mainly in combinatorial problems. A

main limitation with this technique is that it requires

considerable memory resources to store historical

information. Besides, domain specific knowledge is needed

to design suitable aspiration criteria.

E. Simulated Annealing

Simulated annealing [19] [20] is a stochastic and meta-

heuristic algorithm for solving global optimization

problems. It is inspired by the physical principle of

annealing used in material engineering. In an annealing

process, the solid is first heated to a high temperature,

causing atoms to move away from their initial positions.

When the material cools down slowly, the atoms adjust

themselves into a new thermal equilibrium that corresponds

to a minimum energy state.

38Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

The algorithm is iterative and the main idea is to

randomly select a new solution in the neighborhood of the

current solution at every step. The difference of objective

values, ΔE, between the new and current solutions is

calculated as analogy to the change of energy. If the new

solution is better than the current one (ΔE<0), the current

solution is replaced by the new one. In case when the new

solution is worse (ΔE>0), there is still a chance to move to

it. The probability of this move is given by the Boltzmann

probability function:

T

E
EP exp)(

 (10)

The parameter T in (10) is the temperature used during the

search. In the early iterations, the temperature is high, which

results in high probability of moving into inferior points and

thereby avoiding local minima. Contrarily, during late

stages, the temperature is reduced to such a level that gives

little chance for accepting worse solutions and consequently

the search will finally converge.

The merit with simulated annealing is that it does not

require the objective function to be continuous and

differentiable, and it can handle both continuous and

discrete optimization problems. But, proper parameter

settings with this method are not difficult.

F. Simplex Method

A simplex is a geometric object consisting of n+1 points

(vertices) in the n-dimensional spaces. Every vertex of the

simplex corresponds to a feasible solution to the problem.

The initial simplex can be generated randomly. The main

idea is to move the simplex iteratively and every time

replacing the worst vertex of it with a new better point. The

search terminates when the standard deviation of the

objective values of the n+1 vertices of the simplex is lower

than a specified value.

According to the simplex method by Nelder and Mead

[21], the new better points for replacement are generated

through the operations such as reflection, expansion, and

contraction. The worst vertex is first reflected through the

centroid of the remaining points of the simplex. If the

reflection produces a better point, expansion is done to see

whether the objective function can be reduced further via

moving in the same direction. Otherwise, if the reflected

point is not satisfactory, contraction is performed via

generation of a point between the worst vertex and the

centroid for possible replacement.

The main advantage of the simplex method is that it is a

global optimization technique and it does not require any

derivative information of the objective function. The

method is robust and efficient with a small number of

design variables but it does not scale well up to high-

dimensional problems. As noted in [7], the efficiency of

simplex diminishes when the design variables are more than

five.

IV. OPTIMIZATION WITH POPULATION-BASED

 TRANSITION

The approaches of this type explore the problem space

via transition from one population of feasible solutions to

another. They are biologically inspired techniques and

probabilistic rules are used to create new solutions from old

ones. Five well known approaches in this category will be

reviewed here.

A. Genetic Algorithms

Genetic algorithms (GAs) are stochastic optimization

algorithms that emulate the mechanics of natural evolution

[22]. They are attractive to be applied in engineering

optimization tasks due to the two following reasons. First, a

GA evaluates many points in the search space

simultaneously, as opposed to a single point, thus reducing

the chance of converging to the local optimum. Second, a

GA uses only values of objective functions; therefore they

do not require the search space to be differentiable or

continuous.

 Essentially, a GA is an iterative procedure maintaining a

constant population size. An individual in the population

encodes a possible solution to the problem with a string

analogous to a chromosome in nature. At each step of

iteration, new individuals are created via applying genetic

operators on selected parents, and subsequently some of the

old, weak individuals are replaced by new strong ones. In

this manner, the performance of the population will be

gradually improved in the evolutionary process.

A classical GA works with binary code, i.e., individuals

in the population are represented by binary strings.

However, binary coding would not be the most appropriate

choice in applications to optimization problems with

continuous spaces. One reason lies in the matter of

resolution, i.e., a binary string is inherently related to some

loss of precision for representing the continuous value of a

variable. The other reason is the extra job of decoding that is

needed when doing fitness evaluation for a binary string in

the population.

The other alternative is to directly adopt arrays of real

numbers as population individuals. Real-coded GAs have

been studied by many researchers and nowadays become a

popular, extended version of GAs for solving real-valued

optimization problems. The interesting features of real-

coded GAs together with their used mechanisms and genetic

operators haven been carefully discussed in [23] and [24]. In

[25], real-coded GA was used to optimize similarity models

for case-based reasoning.

B. Memetic Algorithms

Memetic algorithms (MAs) [26] are population-based

metaheuristic search methods inspired by the principle of

natural evolution and Dawkin’s notion of memes capable of

local adaptation. MAs can be considered as enhancement of

GAs by embedding local search to allow for self-

refinements of individuals. According to the idea of

39Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

Lamarckian learning [27], local search can be done on all or

part of the population to reach a local optimum or improve

the current solution.

As hybridization of GAs and local search, MAs aim to

exploit the best search regions gathered by global sampling

with GA. Hence, an important demand for MAs is the

synergy between the exploration abilities of the GA and the

exploitation abilities of the local search. In [28], a local

search scheme was combined with the global search

capability of evolutionary algorithms for rule extraction.

The simplex method by Nelder and Mead was adopted as

the local search mechanism in the memetic algorithm [29]

for optimal fuzzy controller design. The hierarchical

memetic algorithm was proposed in [30] for combined

feature selection and similarity modeling in case-based

reasoning.

C. Differential Evolution

Differential evolution (DE) [31] is a stochastic and

meta-heuristic technique that has been developed for solving

optimization problems with real parameters. It provides a

powerful tool for searching for optimal solutions in high-

dimensional spaces that are nonlinear, non-differentiable,

non-continuous, and containing multiple local optima. DE is

similar to GAs in the sense that both are evolutionary,

population-based algorithms. But DE algorithms differ from

GAs in the way evolutionary operators are manipulated to

produce new child solutions. The main loop of DE

algorithms is briefly explained in the following.

A DE algorithm maintains a population of real-valued

parameter vectors and works iteratively. Each iteration starts

with mutation, in which three distinct parameter vectors are

randomly selected for every population member. The

weighted differences between two parameter vectors are

added to the third parameter vector to get the perturbed

vector. Then, crossover is done to combine the population

member and the perturbed vector to yield a new trial vector.

Every parameter in the perturbed vector has a certain

probability to enter the trial vector. Finally, the trial vector

replaces the old population member if it has a lower

objective value. A comprehensive review of various DE

algorithms together with associated operators is given in

[32].

DE attains increasing popularity in engineering

applications due to its attractive features such as fewer

running parameters to specify, ease in programming, high

efficiency, as well as strong global search ability. In [31]

and [33], it was indicated that DE algorithms were more

efficient and more accurate than several other optimization

methods, including controlled random search, simulated

annealing and genetic algorithms. A weakness for DE is that

there is no theoretic proof for its convergence.

D. Particle Swarm Optimization

Particle swarm optimization (PSO) algorithms [34]

mimic the flocking behaviors of animals in their movement.

Similar to GAs, PSO algorithms work with a population of

particles which represent feasible solutions to the problem.

The particles move around in the search space to improve

their fitness (objective values), iteratively. The movement of

each particle is determined in terms of both its best position

in the history and also the best position known so far from

all particles. In view of this, the speed of a particle at

iteration k+1 is updated as:

)()(22111 k

k

gbk

k

pbkk XPrcXPrcvwv
 (11)

In (11), Ppb , and Pgb , denote, respectively, the best position

of the particle and the best known position from all particles,

w is the momentum, Xk is the position of the particle at

iteration k, r1 and r2 are two randomly generated positive

numbers, and c1 and c2 are the parameters used to balance

the individual and social influences.

PSO is simpler than GAs in its nature. Therefore, it

incurs lower computational cost in creating a new

population from the old one. But, the performance of PSO is

heavily dependent on the parameters w, c1, and c2 in (11),

and proper valuation of such parameters to ensure strong

search ability is a crucial task.

E. Ant Colony Optimization

Ant colony optimization (ACO) [35] [36] mimics the

behavior of a colony of ants in searching for food. It is a

population-based metaheuristic technique used to solve hard

combinatorial problems. Prior to applying ACO, the

optimization problem has to be transformed into the

problem of path finding on a graph. Then a group of ants

work collectively to find a shortest path on the graph by

pheromone communication during path formation [37].

An ant builds its path incrementally. It starts from a

randomly selected vertex and then chooses an edge to go to

the next vertex. The choice of an edge is stochastic yet its

probability is decided by the pheromone values and

heuristic information associated with the edge. The most

well known rule for determining the selection probability

for edge cij is given in (12)

fil Sc ilil

ijij

ijcP

)((12)

where Sf denotes the set of feasible edges immediately after

the current partial path, τij and ηij are the pheromone and

heuristic values respectively associated with edge cij, α and

β are the parameters controlling the relative importance of

pheromone versus heuristic information.

Further, when the ants completed their paths, the quality

of their solutions is used to update the pheromone values of

the edges. These updated values are then utilized by the ants

in the next iteration to build new paths. This procedure

continues until the maximum iteration number is reached or

all ants tend to produce a similar path.

40Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

F. Extension to Finding Multiple Solutions

As is seen in this section, the optimization techniques

with population-based transition are actually beam search,

they can handle a set of feasible solutions at the same time.

It follows that it would be relatively easy to modify or

extend these techniques such that a set of optimal solutions

rather than a single one will be returned from a single run of

the algorithm. For example, the niching genetic algorithms

were developed in [38] to find multiple interesting solutions

in the job shop scheduling.

Finding multiple solutions as interesting trade-offs is

also very important for multi-objective optimization tasks.

Traditional ways to cope with multiple objectives is to build

an overall objective function as weighted combination of

individual objective values. However it is very hard to

assign exact weights to reflect human preference, and

therefore the final solution obtained may not be most

preferred by human decision makers.

Multi-objective genetic algorithms have received

intensive research for more than one decade (see [39][40],

as examples). A nice feature of these algorithms is that a

diversity of Pareto-optimal solutions can be found and

presented to human decision makers, who then choose the

most preferred alternative according to their preference. The

Fast Non-dominated Sorting Genetic Algorithm (NSGA-II)

[41] is an improved version of the early algorithms, which

incorporates a fast non-dominated sorting algorithm and the

crowding-distance assignment to improve the efficiency and

effectiveness of the algorithm respectively.

More recently, multi-objective PSO algorithms were

developed as extension of the single-objective counterparts.

The key issue here is how to select global and local best

particles in terms of multiple criteria. Different selection

strategies have been proposed for this purpose. In [42] the

tournament niche method was used to decide the global best

particle, and the local best particle was identified according

to Pareto-dominance. The other interesting strategy is to

stochastically choose the global best particle from the non-

dominated solutions using density-based probabilities [43].

V. CONCLUSION

This paper provides a survey of the principles and the

state-of-the-art of numerical techniques for solving

nonlinear optimization problems. All the techniques

discussed are classified into two basic types: point-based

transition and population-based transition, depending on

whether a single point or multiple points are generated as

new approximate solution(s) in each step of the iterations.

Generally, the point-based approaches are simple and

effective for optimization problems with a low number of

parameters. However, when the dimension of the space

increases, they become less efficient and are more likely to

get stuck in a local optimum. In many practical applications,

a point-based search method is often combined with the

random sampling or multi-start strategy to increase the

chance to find a global optimum. The population-based

approaches are superior to the point-based ones in global

search capability; they seem to be more suitable to be

applied in high-dimensional search spaces. But, larger

memory requirements and more computational cost are

connected with them as side effects.

Most of the optimization approaches addressed here are

derivative-free. This is a very useful property to promote

wide applications in various situations without requiring the

problem space to be continuous and differentiable. On the

other side, some classical search methods such as gradient

descent and Newton’s method are also valuable and

recommended to use, as long as the derivative information

is available or achievable. The derivative-based methods are

theoretically well founded and can contribute to substantial

improvement of local search performance. The exploitation

of derivative-based local search in a global evolutionary

algorithm would be a promising direction of research for

building new memetic computing frameworks.

Both the point-based and population-based approaches

can be used to solve multi-objective optimization problems.

For point-based approaches, it is necessary to construct an

overall objective function as a weighted combination of

individual objective values, and a single solution will be

returned after the running of an algorithm. Since there is no

clear relation between the weighting and the solution

obtained, we cannot guarantee that the solution found is

really the one that is most preferred by human decision

makers. Comparatively, the population-based approaches

appear to be more appropriate or have more potential for

tackling problems with multiple objectives. As noted in

Section IV, the population-based methods like GAs can

easily be extended to deal with multiple objectives

simultaneously and thereby returning a set of Pareto-optimal

solutions rather than a single one. This enables human

decision makers (designers) to choose the most preferred

solution from a group of interesting trade-offs.

ACKNOWLEDGEMENT

The work is within the EMOPAC project granted by the

Swedish Knowledge Foundation. We are also grateful to

ABB FACTS, Prevas, and VG Power for co-financing the

research.

REFERENCES

[1] L. Shi, S. Olafsson, and Q. Chen “An optimization

framework for product design,” Management Science, vol.

47, 2001, pp. 1681-1692 .

[2] M. S. Bazaraa, J. J. Jarvis, and H. D. Sherali, Linear

Programming and Network Flows, 2nd Edtion, New York:

John Wiley & Sons, 1990.

[3] D. G. Luenberger, Linear and Non-linear Programming. New

York: Addison-Wesley, 1990.

[4] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear

Programming – Theory and Algorithms. New York: John

[5] L. G. Khachian, “A polynomial algorithm in linear

programming,” Soviet Mathematics Doklady, vol. 20, 1979,

pp. 1093-1096Wiley & Sons, 1993.

41Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

[6] N. Karmarkar, “A new polynomial algorithm for linear

programming,” Combinatorica, vol. 4, 1984, pp. 373-395.

[7] W. H. Swann, “A survey of non-linear optimization

techniques,” FEBS Letters, vol. 2, 1969, pp. 39-55.

[8] A. H. G, Rinnoy Kan, G. G. E. Boender, and G. T. Timmer,

“A stochastic approach to global optimization,” In: K.

Schnittkowski (Ed.) Computational mathematical

programming, 1985, pp. 281-308.

[9] J. S. Arora, O. A. Elwakeil, and A. I. Chahande, “Global

optimization method for engineering applications: a

review,”Structural Optimization, vol. 9, 1995, pp. 137-159.

[10] S. Russel and P. Norvig, Artificial Intelligence: A Modern

Approach (2nd ed.), New Jersey: Prentice Hall, pp. 111–114,

2003.

[11] N. Xiong and P. Funk, “Construction of fuzzy knowledge

bases incorporating feature selection,” Soft Computing, vol.

10, 2006, pp. 796 – 804.

[12] K. A. Sullivan and S. H. Jacobson, “Ordinal hill climbing

algorithms for discrete manufacturing process design

optimization problems,” Discrete Event Dynamic Systems,

vo1. 10, 2000, pp 307-324.

[13] M. Avriel, Nonlinear Programming: Analysis and Methods,

Dover Publishing, 2003.

[14] R. Battiti, “First- and second-order methods for learning:

Between steepest descent and Newton’s method,” Neural

Computation, vol. 4, 1992, pp. 141-166.

[15] F. Glover, “Tabu search – Part one,” ORSA Journal

Computing, vol. 1, 1989, pp. 190-206.

[16] J. A. Bland and G. P. Dawson, “Tabu search and design

optimization,” Computer Aided Design, vol. 23, 1991, pp.

195-201.

[17] J. A. Bland, “Structural design optimization with reliability

constraints using tabu search,”Engineering Optimization, vol.

30, 1998, pp. 55-74.

[18] J. M. Emmert, S. Lodha, and D. K. Bhatia, “On using tabu

search for design automation of VLSI systems,” Journal of

Heuristics, vol. 9, 2003, pp. 75-90.

[19] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization

by simulated annealing,” Science, vol. 220, 1983, pp. 671-680.

[20] R. W. Eglese, “Simulated annealing: a tool for operational

research.,” European Journal of Operational Research, vol. 46,

1990, pp. 271-281.

[21] J. A. Nelder and R. A. Mead, “A simplex for function

minimization,” Computer Journal, vol. 7, 1965, pp. 308-313.

[22] D. E. Goldberg, Genetic Algorithms in Search, Optimization

and Machine Learning, New York: Addison-Wesley, 1989.

[23] F. Herrera, M. Lozano, and J. L. Verdegay, “Tackling real-

coded genetic algorithms: Operators and tools for behavioural

analysis,” Artificial Intelligence Review, vol. 12, 1998, pp.

265-319.

[24] F. Herrera, M. Lozano, and A. M. Sánchez, “A taxonomy for

the crossover operator for real-coded genetic algorithms: An

experimental study,” International Journal of Intelligent

Systems, vol. 18, 2003, pp. 309-338.
[25] N. Xiong, “Fuzzy rule-based similarity model enables

learning from small case bases,” Applied Soft Computing,
vol. 13, 2013, pp. 2057-2064.

[26] N. Krasnogor and J. Smith, “A tutorial for competent memetic

algorithms: model, taxonomy, and design issues,” IEEE

Trans. Evolutionary Computation, vol. 9, no. 5, 2005, pp.

474-488.

[27] Y. S. Ong and A. J. Keane, “Meta-Lamarckian in memetic

algorithm,” IEEE Trans. Evolutionary Computation, vol. 8,

2004, pp. 99-110.

[28] J. H. Ang, K. C. Tan, and A. A. Mamun, “An evolutionary

memetic algorithm for rule extraction,” Expert Systems with

Applications, vol. 37, 2010, pp. 1302–1315.

[29] X. Zhang, A. Erdem, H. Shi, N. Xiong, D. Isovic, and M.

Bobesic, “A novel memetic algorithm incorporating Nelder-

Mead method in fuzzy controller design,” Proc. Int. Conf.

Computational Intelligence and Software Engineering, 2012,

pp. 55-59.

[30] N. Xiong and P. Funk, “Combined feature selection and

similarity modeling in case-based reasoning using hierarchical

memetic algorithm,” Proc. of the IEEE World Congress on

Computational Intelligence, 2010, pp. 1537–1542.

[31] R. Storn and K. Price, “Differential evolution - A simple and

efficient heuristic for global optimization over continuous

spaces,” Journal of Global Optimization, vol. 11, 1997, pp.

341–359.

[32] S. Das, “Differential evolution: A survey of the state-of-the-

art,” IEEE Trans. Evolutionary Computation, vol. 15, 2011,

pp. 4-31.

[33] M. M. Ali, and A. Torn, “Population set based global

optimization algorithms: Some modifications and numerical

studies,” Computers and Operations Research, vol. 31, 2004,

pp. 1703 – 1725.

[34] J. Kennedy and R. Eberhart “Particle swarm optimization,”

Proc. IEEE Int. Conf. Neural Networks, 1995, pp. 1942–1948.

[35] M. Dorigo, V. Maniezzo, and A. Colorni, “The ant system:

optimization by a colony of cooperating agents,” IEEE Trans.

Systems, Man, and Cybernetics – Part B, vol. 26, 1996, pp.

29-41.

[36] M. Dorigo, “Ant colony optimization,” Scholarpedia, vol. 2,

2007, pp. 1461.

[37] M. Dorigo and L.M. Gambardella, “Ant Colony System : A

cooperative learning approach to the traveling salesman

problem,” IEEE Trans. Evolutionary Computation, vol. 1,

1997, pp. 53-66.

[38] E. Perez, M. Posada, and F. Herrera, “Analysis of new

niching genetic algorithms for finding multiple solutions in

the job shop scheduling,” Journal of Intelligent Manufacturing,

2012, vol. 23, pp. 341-256.

[39] C. M. Fonseca and P. J. Fleming, “Multiobjective

optimization and multiple constraint handling with

evolutionary algorithms, part I: A unified formulation,” IEEE.

Trans. Systems, Man, & Cybernetics, Part A, vol. 28, 1998,

pp. 26-37.

[40] N. Srinivas and K. Deb, “Multiobjective function

optimization using nondominated sorting genetic algorithm,”

Evolutionary Computation, vol. 2, 1995, pp. 221-248.

[41] K. Deb, A. Pratap, S. Agrawal, and T. Meyarivan, “A fast and

elitist multiobjective genetic algorithm: NSGA-II,” IEEE

Trans. Evolutionary Computation, vol. 6, 2002, pp. 182-197.

[42] D. S. Liu, K. C. Tan, C. K. Huang, C. K. Goh, and W. K. Ho,

“On solving multiobjective bin packing problems using

evolutionary particle swarm optimization,” European Journal

of Operational Research, vol. 190, 2008, pp. 357-382.

[43] P. K. Tripathi, S. Bandyopadhyay, and S. K. Pal, “Multi-

objective particle swarm optimization with time variant

inertia and acceleration coefficients,” Information Sciences,

vol. 177, 2007, pp. 5033-5049.

42Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

http://aima.cs.berkeley.edu/
http://aima.cs.berkeley.edu/
http://link.springer.com/search?facet-author=%22Kelly+A.+Sullivan%22
http://link.springer.com/search?facet-author=%22Sheldon+H.+Jacobson%22
http://link.springer.com/journal/10626
http://link.springer.com/search?facet-author=%22John+M.+Emmert%22
http://link.springer.com/search?facet-author=%22Sandeep+Lodha%22
http://link.springer.com/search?facet-author=%22Dinesh+K.+Bhatia%22
http://www.mrtc.mdh.se/index.php?choice=publications&id=3231
http://www.mrtc.mdh.se/index.php?choice=publications&id=3231

