
Trading Redundant Work Against Atomic Operations
On Large Shared Memory Parallel Systems

Rudolf Berrendorf
Computer Science Department

Bonn-Rhein-Sieg University
Sankt Augustin, Germany

e-mail: rudolf.berrendorf@h-brs.de

Abstract—Updating a shared data structure in a parallel pro-
gram is usually done with some sort of high-level synchronization
operation to ensure correctness and consistency. However, under-
lying synchronization instructions in a processor architecture are
costly and rather limited in their scalability on larger multi-
core/multi-processors systems. In this paper, we examine work
queue operations where such costly atomic update operations
are replaced with non-atomic modifiers (simple read+write). In
this approach, we trade the exact amount of work with atomic
operations against doing more and redundant work but without
atomic operations and without violating the correctness of the
algorithm. We show results for the application of this idea to
the concrete scenario of parallel Breadth First Search (BFS)
algorithms for undirected graphs on two large NUMA shared
memory system with up to 64 cores.

Keywords—atomic instructions, redundant work, parallel BFS

I. I NTRODUCTION

Updating a shared data structure in a parallel program as
for example an insert operation on a work queue is usually
done on an application level with some sort of high-level
atomic update operation (e.g., in OpenMP [1] lock-protected,
atomic operation, etc.; see [2] [3] for a general discussion). The
implementation of such a high-level synchronization operation
itself is done by the compiler or inside a runtime system
with one or even more atomic instructions (atomic-add, test-
and−Φ, compare-and-swap, etc.) of the underlaying processor
architecture. The general problem with such atomic instruc-
tions is that they are rather costly compared to an ordninary
memory access and not really scalable on larger systems [4]
[5] (see also section IV for our own investigations on that).
The time forone such atomic instruction increases significantly
under contention as the number of cores in a multi-core/multi-
processor system gets larger.

As the use of such synchronized updates on shared data
guarantees correct operations on that data, this strict en-
forcement is often not really necessary. An example is a
work queue, where working threads insert new items and
idle threads remove items to be worked on. But for certain
algorithmic scenarios (e.g., within a certain program phase),
a work item may be inserted even multiple times without
violating the correctness of the algorithm, but only causing
additional redundant work to be done. In such cases, the costly
synchronized access can be completely removed for the cost
of eventually additional work to be done.

An example for such a scenario is a Breadth First Search
(BFS) for undirected graphs (see section III for details).
Most of the published parallel BFS algorithms iterate over a

vertex frontier where the vertices of the current vertex frontier
insert new unvisited vertices to the following vertex frontier.
In this scenario, adding a vertex twice in such a frontier
generates more work to be done in the next level iteration but
does not influence the correctness of the algorithm. Another,
more general scenario is the development of asynchronous
algorithms [6].

In this paper, we examine such a general strategy for a
concrete parallel BFS algorithm on large shared memory multi-
core multi-processor systems with up to 64 cores. We examine,
what the factors are that influence the amount of additional
work, what the amount of additional work is, and whether this
additional work without any synchronized access to the work
queue trades off against the traditional sychronized access to a
work queue doing exactly the amount of work that is necessary.

The paper is organized as follows. After this introduction,
we start with an overview of related work, followed by a brief
overview on parallel BFS algorithms. After that, we present
our new approach, describe our experimental setup, and then
evaluate the new approach against the traditional way.

II. RELATED WORK

There are several papers on certain aspects on the opti-
mization of synchronization constructs in a wider sense. This
includes, amongst others, reducing the number of consecuting
mutex lock/unlocks [7] in a program and compiler optimiza-
tions for read/write barriers [8]. Furtheron, there are advanced
synchronization techniques trying to minimize synchroniza-
tion costs including RCU (Read-Copy-Update) [9], special
monitors [10], read-writer optimizations [11], and specialized
lock-free data structures (e.g., [12]). [2] gives an overview of
different aspects on related topics. [13] shows a similar benign
race as ours in a parallel BFS algorithm, but without analyzing
the influence of that.

An interesting general approach to handle possible con-
current accesses to shared data structures is the concept of
transactional memory (original paper [14]). This approachhas
some similarities with our approach as both are optimistic:
do a read-modify-write operation without a critical section
and react only is something went wrong. The idea with
transactional memory as well as in our approach is that the bad
thing happens rather seldom. Transactional memory detects
the problem and (depending on the API in use) rolls back
the whole transaction and restarts the operation. We instead
ignore the problem (and do not even detect the problem) and
have more work to do in the future.

61Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

III. PARALLEL ALGORITHMS FORBFS

In our application scenario for the examination, we are
interested in undirected graphsG = (V,E) whereV is a set of
verticesv1, ...,vn andE is a set of edgese1, ...,em. An edgee
is given by an unordered paire = (vi,v j) with vi,v j ∈V . The
number of vertices of a graph will be denoted by|V | = n and
the number of edges is|E| = m.

Assume a connected graph and a source vertexv0 ∈V . For
each vertexu ∈V definedepth(u) as the number of edges on
the shortest path fromv0 to u, i.e., the edge distance fromv0.
With depth(G) we denote the depth of a graphG defined as
the maximum depth of any vertex in the graph relative to the
source vertex.

The problem of Breadth First Search (BFS) for a given
graphG = (V,E) and a source vertexv0 ∈ V is to visit each
vertex in a way such that a vertexv1 must be visited before
any vertexv2 with depth(v1) < depth(v2). As a result of a
BFS traversal, either the level of each vertex is determined
or a (non-unique) BFS spanning tree with a father-linkage
of each vertex is created. Both variants can be handled by
BFS algorithms with small modifications and without extra
computational effort. The problem can be easily extended and
handled with directed or unconnected graphs. A sequential
solution to the problem can be found in textbooks, based on a
queue where all non-visited adjacent vertices of a visited vertex
are enqueued. The computational complexity isO(|V + |E|).

If one tries to design a parallel BFS algorithm, different
challenges might be encountered. As the computational density
of BFS is rather low, BFS is bandwidth limited for large graphs
and therefore memory bandwidth has to be handled with care.
For a similar reason in ccNUMA systems, data layout and
memory access should respect processor locality. In multicore
multiprocessor systems, things get even more complicated,
as several cores share higher level caches and NUMA-node
memory, but have private lower-level caches.

1: function BFS(graph g, vertex source)
2: var
3: d, distance vector of size|V |. Initial values:∞
4: current,next, vertex container. Initially empty
5: end var
6: d[source] ← 0
7: current.insert(source)
8: while current is not emptydo
9: for all v in current do

10: for all neighboursw of v do
11: old = CompareAndSwap(d[w],∞,d[v]+1)
12: if old = ∞ then
13: next.insert(w)
14: end if
15: end for
16: end for
17: Barrier
18: swapcurrent with next
19: end while
20: returnd
21: end function

Fig. 1: Parallel BFS with an atomic CAS-operation

In BFS algorithms housekeeping has to be done on visited
/ unvisited vertices with several possibilities how to do that.
Some of them are based on special container structures for ver-
tex frontiers where information has to be inserted and deleted.
Scalability and administrative overhead of these containers are
of interest. Generally speaking, these approaches deploy two
identical containers (current frontier, next frontier) whose roles
are swapped at the end of each level iteration. Fig. 1 shows this
in a rather straightforward version with an atomic Compare-
And-Swap (CAS) operation in an inner loop (line 11) to detect
and update unvisited vertex neighbors. In this atomic operation,
a vertex is checked wether it is visited already (d[w] 6= ∞), and
if not, marks the vertex as visited. Based on this knowledge,
only an unvisited vertex gets inserted into the next vertex
frontier. After all vertices in the current container are visited,
all threads wait at a barrier before work on the next container
/ frontier gets started (level iteration). This version canbe
further optimized using chunked lists for every thread. The
insert operation of a new vertex into a thread-local chunk can
be done in a non-atomic way. But the construction of a global
list from thread-local chunks (i.e., the insertion of each chunk
into a global list) must still be done in a synchronized way. But
as this is done only if a chunk gets full, this is not the critical
operation of this algorithm but the detection of visitedness in
line 11. Container centric approaches are eligible for dynamic
load balancing but are sensible to data locality on ccNUMA
systems. Container centric approaches for BFS can be found
in some parallel graph libraries [15] [16]. [17] contains an
overview and evaluation of several parallel BFS algorithms.

For level synchronized approaches, a simple list is a suf-
ficient container. There are approaches, in which each thread
manages two private lists to store the vertex frontiers and uses
additional lists as buffers for communication [18] [19]. This
approach deploys a static one dimensional partitioning of the
graph’s vertices and therefore supports data locality.

IV. A LTERNATIVE TO ATOMIC ACCESSES

Atomic operations in a higher level parallel API for
shared memory systems as mutual exclusion, atomic update,
locks, compare-and-swap etc. are usually mapped on shared
memory systems to atomic instructions that the underly-
ing processor architecture provides. These atomic instruc-
tions are by itself rather costly if no contention exists. But
if multiple threads concurrently access a shared state with
such instructions, the costper operation increases signifi-
cantly. Fig. 2 shows the cost for one lock/unlock-operation
(omp_set_lock/omp_unset_lock) in OpenMP on a shared
memory system dependend on the number of processor cores
utilised. In this test,p processors do in a loopn lock/unlock-
operation with an empty function call between that. The test
was executed on a large 64 core AMD based system. Other
systems show a similar behaviour.

Looking at the formulation of the parallel BFS algorithm
in Fig.1, an atomic CAS-Operation is used in line 11 to check
whether the child vertexw is unvisited (d[w] = ∞), and if so,
replace the depth-value ofw with the depth value of the current
vertex v incremented by one. And if the neighbour vertex
w was unvisited, additionally insertw into the next vertex
frontier. The CAS operation guarantees, that every vertex is
inserted exactly once into a vertex frontier (detection andmark

62Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 0

 2000

 4000

 6000

 8000

 10000

 12000

12 4 8 16 24 32 40 48 56 64

ns
ec

number of threads

Fig. 2: Cost per lock/unlock on a large AMD-based system.

of visitedness). Without the atomic operation, a race condition
exists ond[w]. Replacing the critical operation with a non-
atomic code results in Fig. 3 (only relevant parts are shown).

1: for all neighboursw of v do
2: if d[w] = ∞ then
3: d[w] = d[v]+1
4: next.insert(w)
5: end if
6: end for

Fig. 3: Parallel non-atomic BFS (relevant part)

The code of interest is in line 2 and 3 that was previously
guarded by the CAS-operation. There are two possibilities
when executing this code in parallel:

1) Between the read accessd[w] in line 2 and the
completion of the write acces in line 3 no other
thread accessesd[w]. In this case (and an appropriate
memory model discussed above) there isno problem
with this version, the vertexw is inserted exactly once
in a vertex frontier as before.

2) More than one thread detects for a certain vertexwx
thatwx is unvisited (i.e.,d[wx] = ∞) before any of the
other threads can change thed[wx] to some visited
value. In this case, the vertexwx gets inserted twice
or even more into the next vertex frontier.

It is important to state that even the second case produces
no wrong results as any thread that detects thatd[wx] is
unvisited, writes intod[wx] in the next step the valued[v]+1
that is equal for all threads in one level iteration. Therefore,
correctness is guaranteed in our scenario. But, as stated above,
in such a case the vertexwx is inserted twice or even more
into the next vertex frontier and due to that, generates more
and redundant work in the next level iteration.

Looking at the generated assembler code (and this is more
or less invariant of the compiler used), the read access tod[w]
in line 2 (i.e., a load instruction) and the write access tod[w]
in line 3 (i.e., a store instruction) are nearby instructions in
the code sequence. With an assumption, that a thread is not
suspended during execution, the time window between the two
instructions is therefore rather small (few cycles in practice).
This assumption will be mostly true for many real scenarios,
e.g., running OpenMP programs on a dedicated system with
not more threads than processor cores available.

Another aspect in this discussion is the memory consis-
tency model in use. In a strict memory consistency model, it
is guaranteed, that the write operation is visible to other threads
immediately after this operation. But todays, all memory
consistency models in practical use (e.g., [20] [1]) are rather
relaxed and the compiler may buffer the value ofd[w] in
a register, a processor core may buffer that value in write
buffers, or the new value is not propagated between different
processors soon etc. This can enlarge the time window for
problems substantially even under the assumption made above
that a thread is not suspended. A programmer may insert an
appropriate flush operation of the used parallel API before line
2 and after line 3 such that all threads / processors are forced to
read / writed[w] to / from main memory in the corresponding
operation. But dependend on the implementation of such
a flush-operation, this could lead to substantial additional
overhead as this is done inside an inner loop iteration.

The question we are interested in is now, whether the
relaxation using non-atomic modifications tod[w] as given
in Fig. 3 (which surely is faster than a CAS-operation) pays
off as we might increase the work to be done substantially.
The amount of additional work to be done will be influenced
generally speaking mainly by:

1) problem time window (influenced by the generated
code sequence and implemented consistency model)
in relation to the time threads spend in non-critical
code

2) the number of threads in use (number of concurrent
parties)

3) the problem data influencing access collisions, i.e., in
our case the topology of the graph (vertex degrees,
shared neighbours)

The larger the time window is that another thread may
see the vertex in question as unvisited, and the more threads
are participating, and the more vertices have connections to
the unvisited vertex, the higher the probability that additional
work is generated.

Although we state this here in the context of a parallel
BFS algorithm, the discussion is a general discussion on
the technique itself and not specific to BFS. We propose
to replace costly atomic operations with probably redundant
work but with cheaper simple load/store operations without
modifying the correctness of the algorithm. The hypothesisis,
that especially on large shared memory systems with many
concurrent threads this technique pays off.

V. EXPERIMENTAL SETUP

In this section, we describe the test setup to systematically
compare the two alternatives (atomic accesses vs. redundant
work) in the concrete scenario of a parallel BFS. The general
algorithmic approach for parallel BFS chosen for this discus-
sion was already given in Fig.1. We optimized this algorithm
to work on chunked array based lists where each thread inserts
a new vertex into a thread-private chunk. If such a chunk gets
filled, the chunk is inserted into a global list. The insertion of
a chunk into the global list is done in all algorithm versions
with one atomic operation. But the influence of that atomic
operation is neglectible.

63Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

TABLE I: CHARACTERISTICS FOR USED GRAPHS

degree graph
graph name |V | |E| avg. max. depth
RMAT-1M-1G 106 109 1,000 599,399 8
RMAT-1M-10M 106 107 10 4,726 16
Streets-Europe 50,912,018 108,109,320 2.123 13 17,345

In the first version namedatomicBFS1, every thread uses
a CAS operation as described in Fig.1 to detect unvisited
vertices and updates them accordingly. This guarantees, that
every vertex is inserted exactly once in a vertex frontier. But on
the other side,every check is done atomically even on vertices
that were visited already, even in a previous level iteration.

This last aspect can be optimized easily with a standard op-
timization technique in prefixing the expensive CAS-operation
with a normal read operation followed by the CAS-operation
only, if the test was sucessful (i.e., a test-and-test-and-set op-
eration). This technique is also done in the OpenMP reference
implementation of the Graph500 benchmark [15] for BFS. We
name this versionatomicBFS2. In this version, all vertices
already visited are no longer handled with a CAS operation.
We discuss the performance effect of this optimization later.

The third approach (namednonatomicBFS) does not use
atomic operations for the unvisited-detection, but ratherthe
code shown in Fig. 3. Therefore, a vertex may be inserted more
than once in the next vertex frontier. The main difference to
the other versions is therefore that the detection of an unvisited
vertex and the subsequent update to a visited state is no longer
done atomically but rather with simple read/write accesses
including the possibility of multiple insertions of a vertex as
multiple threads may see a vertex as unvisited concurrently.
Further algorithmic optimizations different to that discussed
here and a general overview of parallel BFS algorithms can
be found in another paper [17]. There is also shown, that
there are better but more complex algorithms for the parallel
BFS problem. But as we are only interested in this paper
in the discussion of atomic operations vs. redundant work,
the relative comparism of the introduced three versions is
sufficient for that.

As we discussed already in section IV, the first factor
influencing the probability of multiple insertions is the time
window related to the time spent in non-critical code. Although
the BFS algorithm has only few instructions between the read
and write operation on the critical data, there is not much work
to do in the non-critical part. Therefore, BFS is an example
for a rather problematic algorithm in this sense.

The second factor influencing the probability of double
insertion is the degree of parallelism. We used in our tests
different parallel systems. The largest one is a 64 core AMD-
6272 Interlagos based system with 128 GB shared memory
organised in 4 NUMA nodes, each with 16 cores (1.9 GHz).
Another system is a 2-way Intel E5-2670 system with 128
GB main memory and 16-way parallelism (including 2-way
Hyperthreading).

The third factor is the probability of a data collision,
i.e., two vertices having a common neighbor in the graph. Only
unvisited neighbours leed to an atomic operation in version
atomicBFS1. This factor is mainly influenced in our scenario

by the graph topology / degree distribution. We used several
large graphs from different application areas. Besides real
graphs we used also synthetically generated pseudo-random
graphs that guarantee certain topological properties. Dueto
the limited space in this paper, we will show only results for
a street graph (Streets-Europe) and two R-MAT graphs with
parametersa,b,c influencing the topology, degree distribution,
and clustering properties of the generated graph. See [21] for
details on RMAT-graphs and [22] for a general discussion on
degree distributions for R-MAT graphs. We used as RMAT
parameters in the results showna = 0.45,b = 0.25,c = 0.15.
After graph generation, we introduced artificial edges to get a
connected graph. Table I shows some important properties of
the graphs used.

VI. RESULTS

Fig. 4 and Fig. 5 show performance results for the three
versions of investigation on the two different parallel systems
using different data sets. The performance is given as a
rate Million Traversed Edges per Second (MTEPS), a usual
measure for BFS performance (the higher, the better). The
relative performance degradation Fig.4b and 4c in all versions
with higher thread numbers is caused by memory bandwidth
restrictions. Details on that can be found in [17].

The unoptimized atomic versionatomicBFS1 is in all tests
slower than the other two versions as withevery access tod[w]
in the relevant code section an atomic operation is executed.
The performance difference to the other versions is very high,
if many of the atomic operation were done unneccesarily, i.e., a
vertex of investigation was visited already before (e.g., Fig. 4a
and Fig.5a). For the two atomic versions, most times the
optimized second atomic versionatomicBFS2 is much better
due to the prefixed test done with a normal read operation.

But the best version out of the three is the version
nonatomicBFS using our proposed technique without any
atomic operation in the code section of investigation. The
difference to the better atomic versionatomicBFS2 is rather
small if there is a lot of vertex sharing (e.g., vertices have
high degrees). In that case, vertices may get visited very often
and only the first visit leads to a CAS operation in version
atomicBFS2 (see again Fig. 4a and Fig.5a). On the other side,
the difference between the non-atomic versionnonatomicBFS
and atomicBFS2 is quite high, if update operations are done
more frequently on vertex visits, as for example in sparse
graphs with small vertex degrees (Fig.4b, 4c, 5b, 5c).

To further examine these results, we determined frontier
sizes during each level iteration. Theedge frontier size gives
the number of outgoing edges from vertices in the current
frontier, i.e., the number of vertex candidates that have to
be checked for inclusion into the next frontier. On the other
side, the vertex frontier size gives the number of unique
vertices that get inserted into the next vertex frontier (i.e., the
vertex was checked, found unvisited, and then sucessfully
inserted). The edge frontier size is therefore the amount of
checks to be done (in algorithm versionatomicBFS1 with
a CAS operation, in the other versions by a simple read
operation), and the vertex frontier size is the amount of actual
insertions into the next frontier (in versionatomicBFS2 with
a CAS, in versionnonatomicBFS with a simple write). Fig. 6

64Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 0

 200

 400

 600

 800

 1000

 1200

 0 10 20 30 40 50 60 70

M
T

E
P

S

number of threads

atomicBFS1 atomicBFS2 nonatomicBFS

(a) Performance for RMAT-1M-1000M

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 10 20 30 40 50 60 70

M
T

E
P

S

number of threads

atomicBFS1 atomicBFS2 nonatomicBFS

(b) Performance for RMAT-1M-10M

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50 60 70

M
T

E
P

S

number of threads

atomicBFS1 atomicBFS2 nonatomicBFS

(c) Performance for Streets-Europe

Fig. 4: Performance data on AMD-based system with 64x parallelism.

TABLE II: PERCENTAGE OF VERTICES THAT GET INSERTED MULTI-
PLE TIMES.

number of threads min. percentage median max. percentage
2 0.000012 0.000030 0.000049
4 0.000002 0.000014 0.000026
8 0.000004 0.000013 0.000027
16 0.000002 0.000018 0.000039
24 0.000006 0.000020 0.000037
32 0.000010 0.000022 0.000035
40 0.000010 0.000022 0.000037
48 0.000010 0.000026 0.000035
56 0.000012 0.000027 0.000055
64 0.000016 0.000029 0.000051

shows frontier sizes during each level iteration. Setting this
information in relation to the performance numbers, a large
difference between edge frontier size and vertex frontier size
in a level iteration means that many atomic checks were made
in versionatomicBFS1 that didn’t lead to an unvisited neighbor
vertex / insert operation. On the other side, if the difference
between vertex and edge frontier size is small, the difference
between the three versions is less, as the amount of critical
operations is rather small compared to all operations executed.

Furtheron, we measured how many vertices get inserted
multiple times in versionnonatomicBFS, i.e., the additional
and redundant work that is generated. The factors influencing

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 2 4 6 8 10 12 14 16

M
T

E
P

S

number of threads

atomicBFS1 atomicBFS2 nonatomicBFS

(a) Performance for RMAT-1M-1000M

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 2 4 6 8 10 12 14 16

M
T

E
P

S

number of threads

atomicBFS1 atomicBFS2 nonatomicBFS

(b) Performance for RMAT-1M-10M

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 2 4 6 8 10 12 14 16

M
T

E
P

S

number of threads

atomicBFS1 atomicBFS2 nonatomicBFS

(c) Performance for Streets-Europe

Fig. 5: Performance data on Intel-based system with 16x parallelism.

that were discussed already. We show results only for the
largest system and for the street-graph, this is the most prob-
lematic test instance where the probability for double insertion
is highest. In Tab. II we show the overhead in percentage of
vertices inserted more than once, i.e., leading to redundant and
more work. As can be seen, the probability increases slightly
with more threads, but still this overhead is for our scenario
negligible (also in all other tests with different data setsnot
shown here). Even with 64-fold concurrency, there are very
rare situations that lead to multiple insertions. The maximum
overhead value is 0.000055 percent or absolutely seen, instead
of 50,912,018 vertices to be inserted, withnonatomicBFS
50,912,046 vertices were inserted, the difference is 28.

VII. C ONCLUSIONS

We propose in parallel programs, and within certain scenar-
ios, to replace costly atomic update operations on shared data
structures with simple read-write updates. If the correctness of
the algorithm is not affected by this change, this leads to an
algorithm variant that does not need any atomic operations.
This algorithm variant still works correctly, but on the other
side, it may generate more and redundant work to be done.

As an example for such a scenario, we used a parallel
BFS algorithm where the atomic detection and update of

65Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1 2 3 4 5 6 7 8

si
ze

level iteration

vertex frontier edge frontier

(a) Frontiers for RMAT-1M-1000M

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0 2 4 6 8 10 12 14 16

si
ze

level iteration

vertex frontier edge frontier

(b) Frontiers for RMAT-1M-10M

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

si
ze

level iteration

vertex frontier edge frontier

(c) Frontiers for Streets-Europe

Fig. 6: Vertex and edge frontier sizes.

univisited neighbour vertices was replaced with simple non-
atomic read/write updates. The results show, that for this
scenario the non-atomic version has a huge performance
improvement in many situations compared to a straightforward
implementation with atomic accesses (atomicBFS1). And our
version has most times a performance improvement of up to
50% compared to an optimized atomic version (atomicBFS2)
that uses atomic accesses only if necessary. The higher the
frequency of atomic operations, the greater the advantage is.
Our proposed technique delivers inall tests equal or better
performance results within the error of measurement than any
of the versions with atomic operations.

The upcoming mainstream transactional memory hardware
implementations (e.g., Intel Haswell) use a different approach.
But similar to our approach, this is an optimistic approach,
too, as only the conflict case has to be handled, and not every
access. It would be rather interesting to compare these two
alternatives with relevant scenarios.

ACKNOWLEDGEMENTS

The system infrastructure was partially funded by an in-
frastructure grant of the Ministry for Innovation, Science, Re-
search, and Technology of the state North-Rhine-Westphalia.
Matthias Makulla did most of the implementation work on
several parallel graph algorithms including an initial version
of the ones used in this paper.

REFERENCES

[1] “OpenMP application program interface,” OpenMP Architecture Re-
view Board, http://www.openmp.org/, 2011, retrieved: 6,2013.

[2] M. Herlihy and N. Shavit, The Art of Multiprocessor Programming.
Burlington, MA: Morgan Kaufmann, 2008.

[3] M. Ben-Ari, Principles of Concurrent and Distributed Programming.
Harlow: Addison-Wesley, 2006.

[4] V. Agarwal, F. Petrini, D. Pasetto, and D. A. Bader, “Scalable graph
exploration on multicore processors,” in ACM/IEEE Intl.Conf. for High
Performance Computing, Networking, Storage and Analysis, 2010, pp.
1–11.

[5] P. E. McKenney, “Synchronization and scalability in themacho multi-
core era,” http://www2.rdrop.com/∼paulmck/scalability/paper/
MachoMulticore.2010.08.09a.pdf, 2010, retrieved: 6,2013.

[6] M. M. Wu, “Asynchronous algorithms for shared memory machines,”
Ph.D. dissertation, University of Illinois at Urbana-Champaign, 1992.

[7] P. Diniz and M. Rinard, “Synchronization transformations for parallel
computing,” in Proc. ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages (POPL), 1997, pp. 187–200.

[8] D. Novillo, R. C. Unrau, and J. Schaeffer, “Optimizing mutual exclusion
synchronization in explicitly parallel programs,” in Proc.5th Interna-
tional Workshop on Languages, Compilers, and Run-Time Systemsfor
Scalable Computers, 2000, pp. 128–142.

[9] M. Desnoyers, P. E. McKenney, A. S. Stern, M. R. Dagenais,and
J. Walpole, “User-level implementations of read-copy update,” IEEE
Transactions on Parallel and Distributed Systems, vol. 23, no. 2, 2012,
pp. 375– 382.

[10] D. Dice, “Implementing fast Java monitors with relaxed locks,” in
Proc. JavaTM Virtual Machine and Technology Symposium, Monterey,
2001, pp. 79–90.

[11] S. Haldar and K. Vidyasankar, “Constructing 1-writer multireader
multivalued atomic variables from regular variables,” Journal of the
ACM, vol. 42, no. 1, 1995, pp. 186–203.

[12] K. Fraser and T. Harris, “Concurrent programming withoutlocks,” IEEE
Transactions on Computers, vol. 25, no. 2, 2007, pp. 1 – 44.

[13] C. Leiserson and T. Schardl, “A work-efficient parallelbreadth-first
search algorithm (or how to cope with the nondeterminism of reducers),”
in 22nd ACM Symp. on Parallelism in Algorithms and Architectures,
2010, pp. 303–314.

[14] M. Herlihy and J. B. Moss, “Transactional memory: Architectural
support for lock-free data structures,” in Proc. 20th Intl.Symposium
on Computer Architecture, 1993, pp. 289–300.

[15] Graph 500 Comitee, “Graph 500 benchmark suite,”
http://www.graph500.org/, retrieved: 6, 2013.

[16] D. Bader and K. Madduri, “Snap, small-world network analysis and
partitioning: an open-source parallel graph framework for the explo-
ration of large-scale networks,” in 22nd IEEE Intl. Symp. on Parallel
and Distributed Processing, 2008, pp. 1–12.

[17] R. Berrendorf and M. Makulla, “Parallel breadth first search algorithms
for multicore- and multiprocessor systems,” in submitted for publica-
tion, 2013.

[18] A. Yoo, E. Chow, K. Henderson, W. McLendon, B. Hendrickson,
and U. Catalyurek, “A scalable distributed parallel breadth-first search
algorithm on BlueGene/L,” in ACM/IEEE Conf. on Supercomputing,
2005, pp. 25–44.

[19] Y. Xia and V. Prasanna, “Topologically adaptive parallel breadth-first
search on multicore processors,” in 21st Intl. Conf. on Parallel and
Distributed Computing and Systems, 2009, pp. 1–10.

[20] ISO/IEC 14882:2011 Programming Languages – C++, ISO, Geneva,
Switzerland, 2011.

[21] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-MAT: A recursive model
for graph mining,” in SIAM Intl. Conf. on Data Mining, 2004, pp. 442
– 446.

[22] C. Gröer, B. D. Sullivan, and S. Poole, “A mathematical analysis of the
R-MAT random graph generator,” Networks, vol. 58, no. 3, 2011, pp.
159–170.

66Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

