ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

Proactive Automated Dependable Resource
Management in Cloud Environments

Anna Schwanengel and Gerald Kaefer
Siemens AG

Corporate Technologies / Industry Sector

Munich / Nuremberg, Bavaria, Germany

Email: {anna.schwanengel.ext, gerald.kaefer} @siemens.com

Abstract—Cloud Computing comes along with easy and self-
managed resource provisioning and releasing. However, booting
and shutting down of instances still means dealing with laten-
cies, administrative efforts and supplementary costs. Considering
that, scaling of required resources needs to be well-scheduled,
especially, as resources in Clouds are often highly and complexly
dependent among each other. The challenge, thereby, is to manage
Cloud services with less overhead while fulfilling negotiated SLAs.
To automatically provide the exact amount of required instances,
our approach enables the detection of resource dependencies and
the automated scaling of them without the need for observing the
utilization of every single instance. For that reason, we introduce
a model addressing resource dependencies and a self-calibration
process of the dependency graph used by a regulation method
for the dynamic management of dependent resources.

Keywords—Resource Management, Dependencies, Cloud.

I. INTRODUCTION

Although Cloud Computing has set new standards regard-
ing redistribution of virtual machines [1], especially dynamic
integration of physical resources, some challenges remain
[2], [3]. In particular, the allocation and shut down of these
resources as well as their distribution on the same hardware
requires a minimum of time [4]. Since a Cloud service does
not know in advance when a client plans its usage, an efficient
resource planning is not fully automated until now [5] and rule-
based mechanisms need to be conducted by the Cloud user [6].
However, in industrial environments, deterministic behaviour is
a fundamental requirement and resource availability should be
guaranteed for every service, even though they share a pool
of physical hardware. Negotiated Service Level Agreements
(SLAs) have to be fulfilled and high quality of service should
be ensured to satisfy Cloud user interests in time. There is
still an enormous need of automated and efficient reaction upon
variable resource demands to reduce the amount of precaution-
ary allocated machines, which may then be underutilized most
of the time in normal operation causing unnecessary costs.

In this context, resources of Cloud service deployments
often show high complex dependencies among each other, as
they have a multi-layer structure [7] and avail themselves of
other services on the same layer (i.e., composite services).
Thereby, a service normally consists of external facing nodes
(e.g., Web servers) and internal dependent resources which
are required to provide the service. Additionally, resources
are shared between the single services, for the purpose of

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

Claudia Linnhoff-Popien
Ludwig-Maximilians-University Munich
Institute for Informatics
Munich, Bavaria, Germany
Email: linnhoff @ifi.lmu.de

an optimized service-oriented architecture. These dependencies
are essential to be considered in service offerings.

Consequently, the question raises how to manage these
services while causing less administrative overhead in complex
Cloud environments. The goal is to offer a proactive automatic
instance management of dependable resources. To achieve
this, we enable the automated detection of resource capacity
dependencies for supplying the requesting clients with an
exact amount of resources required during operation. Then, the
scaling process can be done based on the dependency model
without having to observe the utilization of each instance.

The paper is organized as follows: Section II gives an
overview about research on load management and depen-
dencies in Clouds. The fundamental developed protocol for
reservation and feedback based load management through a
Service Load Manager (SLM) is pointed out in Section III.
The construction of the treated environment and its dependency
model is described in Section IV. Section V explains our
approach for deducting the capacity demands for dependable
resources with the self-calibration and resource regulation
methods. Section VI outlines the implementation and results
and Section VII concludes and demonstrates future work.

II. RELATED WORK

Load management is important in Clouds and studied by
many researchers. The ‘SigLM’ system, e.g., concentrates
on exact resource allocation in shared Cloud environments
through fine-grain signatures [8] and Chen et al. use patterns
to forecast load (not automated by now), which means trusting
historical data and predicting the future [9]. However, without
considering dependencies of resources which cover emerging
loads on service usage, they waste potential for cost savings.

Brandic [10] wants to support applications according to
predefined schedules. While minimizing user interaction with
services, she focuses on failure minimization instead of effi-
ciency and performance — we intent to improve the latter. A
resource provisioning algorithm for the generation of reserva-
tion plans and for the reduction of total provisioning costs is
formulated by Chaisiri et al. [11] However, cost factors are here
the driving force and again performance issues are disregarded.

Takahashi et al. [7] identify issues emerging under the
multi-layered resource environment of Clouds, while concen-
trating on problems caused by the damage of a single resource

67

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

N | T
S

a... max. possible load with resource level a
b... max. possible load with resource level b
withb>a

Execution possible with
established resource pool

Time

Fig. 1: Load progress of aggregated client requests without delay

affecting other resources, which (in-)directly use the faulty one.
While creating a dependency graph, as we do, they focus on
the aspect of failure tolerance when parts of the system break
down. Furthermore, Takahashi et al. build on a very inflexible
basis that requires an administrator to monitor all resources and
their dependencies. In contrast, we implement active booting
and shut down by automatic processes to save these efforts.

The SWAP system, developed by Zheng and Nieh [12],
enables automatic dependency detection, too. They use system
operation histories to determine resource dependencies among
processes and consider them in scheduling. However, their
scheduler only has fixed resource pools and scaling processes,
which we are concentrating on, are not considered. Also the
analyzed algorithms in [13], which are implemented to support
optimal provisioning for multiple a priori known tasks, do not
consider that the resource pool is changed during operation.
In [6] auto-scaling scheduling is proposed, which finishes
submitted jobs within specified deadlines considering costs.
However, they need to constantly monitor workload changes
and, again, newly submitted jobs are ignored in their test
bed. Though an automated scheduling architecture managing
changes in the Cloud workflow, especially in peak-load situa-
tions, is presented by [14], this work lacks the scheduling of
tasks regarding their dependencies — unlike we do.

The optimization of scheduling mechanisms have been
studied for decades, as in [15]-[17], etc. However, on these
approaches, relatively static directed acyclic graphs [18] are
assumed, which are given by administrators and elasticity and
fast changing environments as common in Cloud Computing
are not supported. To sum it up, load management still lacks
of fully automated and highly efficient scaling processes, and
more studies are needed within this research field.

III. LOAD SMOOTHING BY THE PROTOCOL REFELOMAP

In the proposed solution for automatic scaling in Cloud
environments, we base on our developed environment already
described in [19] and [20], and extend this approach by
the possibility to deduct capacity demands for dependable
resources. In previous work, we created a technique to dynam-
ically manage the load of Cloud services based on resource
reservation and service feedback and a method to influence
the behaviour of service usage by the service itself. The
implemented light-weight protocol ReFeL.oMaP handles the
communication between the Cloud services and their clients
via a service load manager, which coordinates the actual

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

Amount of refused requests
1 in resource level a

Load smoothing by protocol ‘

Load [
od | Scaling needed

| _ -

T
‘w' | f’ \ Amount of unpostponable
[it _I- requests; refused within
l I resource level a

a I | | |

_) Execution possible with
. established resource pool by
delaying requests if possible
Fig. 2: Load progress with delay of client requests and scaling processes

LN
L J Time

Required time to provide more
resources within level b

resource demands and their availability. In the following, we
build on this procedure and define a self-calibration method
before the process as well as a resource regulation algorithm
of the SLM during active operation.

As outlined in [20], the mediating SLM initially aggregates
all incoming client requests, and in this way, the load process
can be depicted in a graph as shown in Figure 1. In highly
distributed systems, client requests which exceed the actually
provided resource capacity are normally refused in high load
peak times in order to remain operational until additional
resources are allocated. To avoid this ineffective manner of
operation our protocol ReFelL.oMaP delays specific requests
about a defined time interval as agreed upon with the corre-
sponding clients. After having delayed these client requests,
one can observe less underutilized machines. Respectively,
scaling processes are less frequent needed in order to cover
all clients’ demands. Consequently, we are enabled to smooth
load peaks, which leads to better instance utilization and less
frequent scaling demands, as illustrated in Figure 2.

The dependencies among every single resource need to be
well known in order to be capable of deciding automatically
which and how many virtual instances can be booted or shut
down on these resources. More precisely, the ratio of running
machines on each specific layer must be computable. That
way, it is possible to scale the instances of a service with
its respective dependable resources at once without having
to evaluate the utilization of each resource in case of load
variations and unpredicted load peaks.

IV. CONSTRUCTION OF SERVICE ENVIRONMENT
AND ITS DEPENDENCY MODEL

In order to get a better understanding of the typical multi-
layered composite service architecture of Clouds, imagine a
service environment consisting of several Web and Worker in-
stances as well as databases for storing persistent information.
Instances of the same type can be clustered to groups - called
roles. Such a system may look as depicted in Figure 3 (a),
wherein a shared database and a composite service are located
- the latter comprising one Web role, two Worker roles and
exactly that database. More abstractly, in this example, the
service environment exists of five different services S; to Ss.

At first, we define which services are related to which
others in order to build up a dependency graph for scaling
processes. For that purpose, every service indicates its relation-
ships to others on the initial registration at the SLM. The SLM

68

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

Exemplary Service Environment Abstract Environment
| Web Role | | Web Role |
Worker Role
« Min. # Instances
| Worker Role | | Database | + Max. # Instances
* Inst. Start Time
« Inst. Stop Time

(a) (®)

Fig. 3: Service environment (a) and its abstraction stored at the SLM (b)

stores these connections and sets up attributes about the passed
on minimal and maximal amount of instances per each scalable
resource (Min./Max. # Instances) and the time, a service needs
for starting and stopping of new instances (Inst. Start/Stop
Time). With reference to our example, on registration at the
SLM, the Web role (represented by service S7) indicates a
dependency to the Worker role (service S3), S2 a relation
to another Worker role (service S3) as well as to the shared
database (service S4). Another Web role (service Sy) states a
direct dependency to this database 54, too (see Fig. 3 (b)).

In order to organize the dependencies of all listed services
at the SLM, we start up from common Directed Acyclic
Graphs (DAG) G = (V, E), where V is a set of v; nodes and
FE is a set of e; directed edges. In [18], DAG-nodes represent
tasks and the weight w of a node n; is called the computation
cost w(n;). An edge is represented by (n;,n;) and its weight

(communication cost) is given by ¢(n;, n;) = ;’)’EZL; Based on
this, we apply the traditional DAG and modify its usage. In
our implementation the nodes are the different Web, Worker
or database roles registered at the SLM and their weight is
the number of running instances of a role. In our example,
we have a node set of V' = {51, ...,S5}. The weight of an
edge represents the ratio between the two associated roles. If
the Web Role S; has, e.g., four running instances and the
underlying Worker Role S> needs two instances, their ratio of
running instances is 4:2 with leads to a ratio of 2.

For the automated graph generation, shared resources must
not be influenced by other related ones, because the instances
can not be used simultaneously by different roles at the same
time. Therefore, in the detection process, resource S5 should
be inactive when defining the graph of S7, So, S3 and S4. Vice
versa the services S to Sy must be idle on the graph creation
of S5, because, with using the same instances, the different
sequence threads can not be parallelized. When defining the
capacity demands for the resources, we then can guarantee
always the same workload and no sum of load at each resource.

V. DEDUCTION OF CAPACITY DEMANDS FOR
DEPENDABLE RESOURCES

Having defined the essential fundamentals of the distributed
system, we got a starting point for the further solution. Our
following approach consists of two procedures to automate
the scaling of dependable resources in service provisioning
of Cloud Computing systems. First, we implemented a self-
calibration process at the SLM before productive operation.
This technique for generating the dependency graph as well
as setting up the initial amount of resources on each system
layer is explained in Subsection V-A. Secondly, we describe

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

Q Root
nodes
1 2"level

9 @ nodes
3devel

Q Q @ Q nodes

(@ (®)
Fig. 4: DAG of the service environment at the SLM

the resource regulation method of the SLM during the active
operation in Subsection V-B.

A. Self-calibration before Operation at the SLM

In order to be capable of scaling the whole composite
service without monitoring every single instance utilization,
the SLM sets up the dependencies between the resource-
instances on the different layers in a DAG (see Figure 4(a)).
The ratio between the instances of dependable resources can
be either defined manually by an administrator or, as in our
approach, automatically with boundary conditions. With this
management by the generated dependency graph, organiza-
tional efforts can be minimized, as we do not have to constantly
observe each resource utilization by an administrator. For
automatic ratio detection of the instance amount per each
dependable resource, the SLM specifies a target value for each
resource-instance regarding, e.g., the average CPU or RAM
utilization. For instance, it can be determined that the average
CPU load must not exceed 50%. Although, in real scenarios,
the server utilization in a datacenter is estimated to range only
from 5% to 20% [21], [22], we are able to offer a higher
utilization because of better knowledge of future resource
demands based on our developed protocol ReFeLoMaP [20].

In a second step, the SLM defines a default value in the
configuration file for each service and boots according to
that value the amount of resources. The minimal amount of
instances of service .S; (Min. # Instances .57) is, e.g., two
virtual machines: Wy, (S1) = 2. Then the regulation process
starts: a fictional load is generated on the first node of the
graph (root node), which is the external facing resource of
the service, and it passes, thereby, the depending load to
behind nodes. As stated before, the load of shared resources
is only generated at the first node in order to not falsify the
measurement, and then, passed on by the first service node.
So, we can exclude accumulated load values and guarantee
reproducible test scores. This implies that other services are
not active during the automated detection of the amount of
needed instances for achieving the target value.

Afterwards, the SLM allocates instances on the according
resource (role) until the previously set target value is reached
and stores the corresponding amount of running instances
(wqet(n;)) in the nodes as its weight (w(n;)). Analogous to
that, the SLM proceeds for all depending resources on lower
layers and adjusts the instance amount for each of them. In our
implemented test scenario (see section VI), the Web role S;
holds four instances and the underlying Worker role S, needs
two instances. This Worker role requires one active instance
at the lower Worker role S3 and two running machines at the
database service S4 in order to achieve the corresponding target

69

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

values regarding CPU utilization and storage occupancy. In a
second iteration, the required amount of instances in Web role
Sy can be set on two with an according process. By means
of the list of the instance amount of every single layer, the
role ratios can be defined. In our case, Web role S; holds four
instances (w(.S1) = 4) and the underlying Worker role required
two (w(S2) = 2). Consequently, their ratio is 2, which is also

the weight of the corresponding edge:
(S g = W) 4, (1

c(91, 02 w(Ss) 2

This Worker role has a weight of 2, similar to the other
Worker role Sz (¢(S2,S53) = 2 = 2) and a ratio of 1 to the

1
database (c¢(S3,S1) = % = 1). The ratio of the Web role S5
to the shared database Sy is 1, too (c¢(Ss,S4) = % =1). As
shown in Figure 4(b), the ratio and the amount of instances
are inscribed at the edges and in the nodes of the dependency
graph. Following this, the basic dependency graph is completed

with concrete values by the SLM after the registration period.

After this completion, the regulation process is stopped and
the required instances per each resource can be scaled during
operation based on the dependency graph. The self-calibration
procedure can be triggered periodically in order to correct the
specified dependency values as appropriate.

B. Resource Regulation Process of the SLM

With this dependency graph, the SLM is able to regulate
the resource amount during operation, described as follows.
First, all composite services (meaning all depending resources)
are reduced on one virtual resource. As a result, the cor-
responding limits regarding the minimum and maximum of
instance amount and their booting and shut down time are
well known for all composite services. In the case, there are
shared resources (as database S,), the maximum aggregated
limit between the dependable resources is additionally defined.

In every single regulation step, the SLM:

1) accumulates all of the client requests on each virtual
provided service, then,

2) controls the limit checks on basis of the external
facing node accessed by the client and

3) checks the aggregated limits of the dependable ser-
vices in case of shared resources.

The SLM modulates the role instance counts according to
the relations between the roles and their defined weights of
nodes and edges, as long as the aggregated instance counts
stay within defined limits. Thereby, the SLM does not deceed
the minimal amount of resource-instances predefined by the
services themselves before their actual execution — nor exceed
their corresponding maximum. For instance, we define a mini-
mal amount of least two and maximal ten instances at resource
S1. Then S; will always run with at least two instances, even
though, one would be sufficient to cover the actual load. That
way, it is possible to react on unexpected load peaks if needed.
If anon in S> we have at least one and maximal four instances,
the maximum of four instances in S is not extended, even
though S is scaled up to five and higher instance amounts.

In the case, aggregated limits of shared resources would be
exceeded, a load release occurs according to the determined

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

Toad .
/Generation™,
//Conaralion\

| > L/
g Role 1 ™ Role X
h
=
i
-~ n Al " RAM
) ///\] H -
e L r
(
| (
N\ Log File;
et)
o

[Complex Event Lt
~ Processing Engine)

Fig. 5: Implementation of the Automated Scaling Process

service priority defined by the protocol ReFeLoMaP. On equal
priority the sharing is defrayed in equal proportions. Thereby,
we can additionally focus on maximization of throughput,
meaning the service delays specific client requests about a
defined interval. This is possible even then the client is running
in a higher priority class of the service level agreement as long
as the client allows its procrastination by the manipulation of
the service load manger. Thereby, also lower prioritized client
requests need not to be dropped. For further information about
the concrete implementation and the benefits of the protocol
ReFeLoMaP, see our paper [19].

If no aggregated limits are exceeded but particular service
limits of virtual external facing nodes, the client load manage-
ment feedback is generated on basis of this maximum load in
order to distribute the load in a way that load dropping through
request refusing can be avoided.

VI. IMPLEMENTATION AND RESULTS

Having defined the dependency graph and regulation
method, the SLM is now able to regard dependable resources
during the instance management process. Figure 5 provides an
implementation overview of this control algorithm. As shown,
an external server, which runs the SLM, generates a fictional
load on Role 1. Role 1 now boots new instances ([1, ..., 1I,)
until the target value of 50% CPU and RAM workload is
achieved and stores the number of running instances with
their average utilization in an internal log file. The load is
passed on to all subsequent roles (Role 2,..., Role X) and
they proceed accordingly. After having completed the log files,
they are transferred to a complex event processing engine,
which analyses the data streams from the resources about the
happening events, consolidates all values and passes it on to the
SLM. The SLM integrates this data in the dependency graph
and starts scaling corresponding to this. If an instance brakes
down, it is replaced by a self-healing routine of the roles.

In a first simulation for testing the time constraints about
the generation of a corresponding dependency graph, we could
make the following observations. We successively simulated
the registration of 5, 10, 20, 30 and 50 services at the SLM.
All of them indicated random dependencies to each other. As
shown in Figure 6, we took the measurements after which time
the complex event processing engine announces the completion
of the dependency graph generation. With an amount of 5
services it took 3 seconds until all dependencies were stored in
the graph with their corresponding weights regarding instance

70

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

~

M Time for
Graph Generation
inSeconds

Time for
Graph Generation
[T

=

5 10 20 30 50
Amount of Services

Fig. 6: Simulation of the Graph Generation Process

amount and ratios to each other. With 10 services, the time-
demand linearly rises to 4 seconds, and with 20 services, to
5 seconds. On the registration of 30 services at the SLM, we
measured 6 seconds and with 50 services we had 8 seconds for
the graph creation. On the first glance, these values increase
more and more. However, we assume that after the initial
graph generation the time demand for dependency detection
even with more services will not increase too extensively as
the values do only rise sparsely. Furthermore, since we are
concentrating on services with no real-time requirements, we
can hazard these consequences and accept this delay to benefit
from the more efficient service provisioning as a whole.

In a further realized scenario, we simulated an rising load
requirement at the external facing node of the clients (i.e.,
Web service Sp), which results in a new demand of two
additional instances on the resource of S7 (weet(S1) = 6).
Consequently, an upregulation of the related services Sa, S3
and Sy (Worker roles and database service) is needed, too.
Following the regulation by the dependency graph, the SLM
initiates the booting of an additional instance in the Worker
role S on the second layer, because the initial defined weight
of their relation is 2 (see Formula 1) and the weight with the
additional two instances on service Sp is now 3:

Weet (S 6
Cact(Sl7S2) = M

wact(Sg) B 3 75 2 C(Sl, 52) (2)
That means the actual running virtual machines of the Worker
role S2 need support by a further resource-instance in order to
achieve the given weight of 2 (w(Sz2) = 3).

Since the load is passed on to the lower lying database
service Sy also in this resource a new instance is started
in order to fulfill the determined weights of the dependency
graph (w(S4) = 3). Although the load is also transferred
to the Worker role of layer three (S3), here no additional
instances are required: with three instances in Sy and one
already running instance in Ss the ratio is yet sufficient because
its weight is smaller then four (see Formula 3), on which
an up-scaling of the resource-instances would be necessary

(wact(S3) = w(Sg) =1).
cact(52a53) = wact(SS) = 1 =3 < 4 3)

With a second scenario, we covered the case that S5 is the
most stressed service in the system. The high load generated
on service S5 leads to an up-scaling of the database service Sy
through S5 and S according to the process described before.
After a specific time, the internal maximal limit of instances is

Wact (SQ) 3

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

reached. As a consequence, the maximal amount of instances
in the back-end reduces also directly the maximal instance
amount of the front-end, and additional instances in S; as well
as in S5 cannot be supported by the fully exhausted resource
pool of Sy. This situation is recognized by the complex event
processing engine with the aggregated information of the log
files from each resource and a corresponding warning is send
to the SLM in order to take countermeasures. The SLM is
now able to interrupt on its higher management level and
can counteract an inefficient service provisioning which only
supports one part of the composite service while neglecting the
majority of the entire resource environment. For that reason,
it throttles service S5 in order to keep the whole composite
service functional and reliable.

So, a predictive detection of resource bottlenecks can be
conducted. With the aid of the defined resource limit values,
the SLM is able to proactively respond to congestions by
delaying client requests in times of overload. This prescient
bottleneck identification is also possible with shared resources
by using the computation of the accumulated resource loads
of the composite service. On this basis the SLM can decide
which service is postponed according to the specified service
priority when exceeding the limit of the shared resource.

By means of the anticipatory recognition of the composite
resource limitations caused by dependencies, it is possible
to make an assumption of the limits for the virtual external
facing node directly accessed by the client. In our example, at
its registration, the external facing node S; in the root level
states that it needs at least two and maximal ten instances
(Wimin(S1) = 2 and Wy, (S1) = 10). This resource Sy has
anon at least one and maximal four instances (Wyin (S2) = 1
and Wiaz(S2) = 4). As calculated before, the dependency
ratio of S; to the hidden resource S5 is 6:3 (proved by Formula
2). So, with the defined dependency ratio ¢(S7,S2) = 2 (see
Formula 1), S; is allowed to double the instance amount of
So as long as it does not exceed its own maximum. Following
this reasoning, we can conduct these minimum evaluations:

MiIN{Wiin (S1), [2 * Wmin(S2)]} = min{2,[2x 1]} =2 4)
Min{Wmaz (S1), [2 % Winae (S2)]} = min{10, [2x4]} =8 (5)

Consequently, S; is restricted in its instance amount by
its dependency to service So which has less capacity. So,
the virtual resource S; has the actual instance limit range
of minimal two (see Formula 4) and maximal eight running
instances (see Formula 5). Thereby, it is recognizable that an
utilization of the technically possible amount of ten instances
in S; would not create added value.

Another resulting benefit of our approach is the possibility
to make estimations, until when the additional capacity is
available at the highest level on booting new instances. How
long the entire starting time interval is, can be calculated
already before based on a maximum evaluation along the
dependency graph. In our scenario, booting new Web role
instances in S7 and S5 needs a time interval of three minutes.
An extra Worker role instance in Ss and Ss is available
after five minutes each and the start of an additional database
instance takes nine minutes for installing the base image and
the particular software of the tenants. Consequently, in our
scenario, it requires a start time consideration of nine minutes
for the up-scaling of the whole service, which is the maximum

71

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

of these parallel booting instances. Thereby, we are able to give
estimations about the time point when the required instances
are available earliest and the entire composite service is highly
functional, again. On the other hand, it is calculable how
long the release of redundant instances takes until unnecessary
expense decreases.

In summary, we could observe an enhanced pro-active
reaction of system resources upon proactively derived load
demands. This is achieved by deriving load for dependable
hidden resources from front-end resources instead of following
an approach where roles manage their instance counts on
local utilization monitoring. Hidden resources can be adjusted
directly based on the metrics of the front-end nodes (depen-
dency root nodes) and the dependency graph. This results in
a significant improvement of the overall system load reaction.

VII. CONCLUSION

Load management is a driving force for comprehensive
research in the area of Cloud Computing. Although this field
already has its roots in basic Utility Computing and ranges
from High Performance Computing (HPC) over Grid Com-
puting to the today’s era of Cloud Computing, there are still
unsolved problems showing space for improvements regarding
cost savings and resource efficiency. In Cloud Computing
environments, providers offer a theoretically unlimited pool
of resources, which Cloud services can benefit from. Thereby,
a lot of heterogeneous workloads emerge and one has to react
on enormous load variations in time in order to comply with
the SLAs concluded with the Cloud clients. For this reason,
Cloud systems provide elasticity meaning an easy booting and
release of instances while relaxing strong SLAsS.

On closer examination, in Clouds sophisticated and in-
tricate dependencies among the involved resources can be
observed while offering specific services both on its one and in
its entirety as a composition. This is because of the multi-layer
structure of Cloud services and leads to considerable efforts
regarding administration, costs and time. Within this approach,
we offer a management of Cloud services with less adminis-
trative overhead within complex Cloud environments. Thereby,
we want to offer a proactive automatic instance management
of dependable resources. For this purpose, we detect resource
dependencies automatically to supply requesting clients the
exact amount of required resources. The corresponding scaling
process is conducted on basis of the dependency model without
the need for observing each instance utilization.

While building on the previously developed protocol for
reservation and feedback based load management through
a SLM, we constructed a Cloud service environment and
described its dependency model. Our approach deducts the
capacity demands for dependable resources, while introducing
a self-calibration mechanism before the standard operation and
a resource regulation procedure by the SLM during operation.
We proof the concept by an implementation and simulation.
In future, we aim to expand the described load management
to offer a functional entity for adding and releasing instances
while guaranteeing low costs and SLA compliance by reliable
service provisioning. Furthermore, we will prove our approach
by additional evaluation with a practical use in Cloud Com-
puting environments. Afterwards, we will compare our results
with cloud scaling algorithms based on utilization values.

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

(1]

(2]

(3]

(4]

(31

(6]

(7]

(8]

(9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

REFERENCES

M. Assun¢do, A. Di Costanzo, and R. Buyya, “Evaluating the cost-
benefit of using cloud computing to extend the capacity of clusters,” in
18th ACM Int’l Symposium on High Performance Distributed Comput-
ing, 2009, pp. 141-150.

M. Armbrust and et al., “Above the clouds: A berkeley view of cloud
computing,” University Berkley, USA, pp. 141-150, 2009.

M. Armbrust, et al., “A view of cloud computing,” Commun. ACM,
vol. 53, pp. 50-58, 2010.

M. Mao and M. Humphrey, “A performance study on the VM startup
time in the cloud,” in 5th Int‘l Conference on Cloud Computing. 1EEE,
2012, pp. 423-430.

K. Alam, E. Keresteci, B. Nene, and T. Swanson, ‘“Multi-tenant appli-
cations on windows azure: Dokumentation,” http://cloudninja.codeplex.
com/releases/view/65798, 2011, last access 20.6.2013.

M. Mao and M. Humphrey, “Auto-scaling to minimize cost and meet
application deadlines in cloud workflows,” in Conference on High
Performance Computing, Networking, Storage and Analysis. 1EEE,
2011, pp. 1-12.

T. Takahashi, Y. Kadobayashi, and H. Fujiwara, “Ontological approach
toward cybersecurity in cloud computing,” in 3rd Int’l Conference on
Security of Information and Networks. ACM, 2010, pp. 100-109.

Z. Gong, P. Ramaswamy, X. Gu, and X. Ma, “Siglm: Signature-driven
load management for cloud computing infrastructures,” in 17th Int‘l
Workshop on Quality of Service. 1EEE, 2009, pp. 1-9.

J. Chen, W. Li, A. Lau, J. Cao, and K. Wang, “Automated load curve
data cleansing in power systems,” Transactions on Smart Grid, vol. 1,
no. 2, pp. 213-221, 2010.

1. Brandic, “Towards self-manageable cloud services,” in 33rd Software
and Applications Conference, vol. 2. 1EEE, 2009, pp. 128-133.

S. Chaisiri, B.-S. Lee, and D. Niyato, “Optimization of resource provi-
sioning cost in cloud computing,” Transactions on Services Computing,
vol. 5, no. 2, pp. 164-177, 2012.

H. Zheng and J. Nieh, “Swap: A scheduler with automatic process
dependency detection,” in 15t Symposium on Networked Systems Design
and Implementation. USENIX Association, 2004, pp. 145-158.

M. Malawski, G. Juve, E. Deelman, and J. Nabrzyski, “Cost-and
deadline-constrained provisioning for scientific workflow ensembles in
iaas clouds,” in Conference on High Performance Computing, Network-
ing, Storage and Analysis. 1EEE Computer Society, 2012, pp. 1-11.

T. Dornemann, E. Juhnke, and B. Freisleben, “On-demand resource
provisioning for BPEL workflows using amazon’s elastic compute
cloud,” in 9th Inte’l Symposium on Cluster Computing and the Grid.
IEEE, 2009, pp. 140-147.

D. C. Steere, A. Goel, J. Gruenberg, D. McNamee, C. Pu, and
J. Walpole, “A feedback-driven proportion allocator for real-rate
scheduling,” in 3rd Symposium on Operating Systems Design and
Implementation. USENIX Association, 1999, pp. 145-158.

F. Dong and S. Akl, “Scheduling algorithms for grid computing: State of
the art and open problems,” School of Computing, Queen’s University,
Kingston, Ontario, Tech. Rep., 2006.

M. Aggarwal, R. Kent, and A. Ngom, “Genetic algorithm based
scheduler for computational grids,” in /9th Int’l Symposium on High
Performance Computing Systems and Applications, 2005, pp. 209 — 215.

Y.-K. Kwok and I. Ahmad, “Static scheduling algorithms for allocating
directed task graphs to multiprocessors,” ACM Comput. Surv., vol. 31,
no. 4, pp. 406471, Dec. 1999.

A. Schwanengel and G. Kaefer, “Light-weight load management proto-
col based on reservation and feedback loops,” in 23rd Int’l Conference
on Parallel and Distributed Computing and Systems. ActaPress, 2011,
pp. 165-172.

A. Schwanengel, G. Kaefer, and C. Linnhoff-Popien, “Improved
throughput and response times by a light-weight load management
protocol,” Journal of Parallel and Cloud Computing, vol. 1, pp. 1-9,
2012.

K. Ragan, “The cloud wars: $100+ billion at stake,” Tech. Report,
Merrill Lynch, 2008.

L. Siegele, “Let it rise: A special report on corporate it,” The Economist,
vol. 389, pp. 3-14, 2008.

72

