
GraphTool - a new System of Graph Generation

Iwona Ryszka, Ewa Grabska
Faculty of Physics, Astronomy and Computer Science

Jagiellonian Universisty
Krakow, Poland

e-mail: iwona.ryszka@uj.edu.pl, ewa.grabska@uj.edu.pl

Abstract—The purpose of this paper is to present a new
software tool for graph edition and generation. The project
focuses on providing a graphical editor for defining different
types of graphs and rules describing their transformation. The
idea of graph grammar systems has been adopted to extend
graph derivation functionality. The system architecture with
implementation details is described. To illustrate the features of
the tool the examples of a graph building and generation are
attached.

Keywords—graph, graph grammar, graph grammar system, tool
for graph generation

I. INTRODUCTION

The concepts of a graph and graph transformations are
applied to model structures and also to simulate flows or
behaviours. The base definition presents a graph as a set
of nodes and a binary relation defined on this set. Each
element of the relation being a pair of nodes defines an
edge that can be directed or undirected. A graph grammar
enables the application of local transformations by means of
rules called productions to subgraphs of derived graphs. An
order of productions application is determined by so called
control diagram. A process of graph generation by means of
productions is called a derivation. The possibility of attributes
assignment extends the graph model by defining an additional
semantic layer.

The basic representation of the graph that includes nodes
and edges does not require any dedicated graphical software
product. However, taking into consideration the requirements
for graph grammars and the process of graph derivation, a
new application GraphTool [1] has been proposed in order
to provide an unified graphical environment supporting graph
operations. The motivation for implementing a new tool is
to provide the editor for custom types such as composite
graphs or layered graphs. Additionally, the new approach for
defining a grammar system as a grouping mechanism for graph
grammars has been addressed within the project. Furthermore,
the GraphTool application deals with the area of attributes
operations.

Section II provides the overview of existing applications
supporting graph defining and automatic rewriting. The pur-
pose of Section III is to present the functionality of the
GraphTool and it is followed by the Section IV that provides
example usage of the application for different types of graphs.
The Section V describes the implementation details.

II. RELATED WORKS

There exist a number of tools for generating graphs but
they are usually specialized for experts of a particular subject
and focus on different areas.

PROgrammed Graph REwrting Systems (PROGRES) [2]
offers a visual and operational specification language for
defining graphs, transformation rules that is combined with the
environment for executing specifications in this language. A
transformation rule can be formatted as a simple one when only
left-hand and right-hand sides are defined. There is an option
to define a combined rule that describe several rules by textual
control structures, e.g., loops. Additionally, the framework
UPGRADE is available and its purpose is to display the flow of
applying graph transformations with some formatting options.

A custom graphical language is also introduced by the
Graph Rewriting and Transformation (GReAT) and is dedi-
cated for graph transformations in the area of domain-specific
modelling languages (DSMLs). The rules specify rewriting
operations in the form of a matching pattern (closely related
to UML class diagram). The application focuses on model
transformations, but there is no verification if the generated
graph is correct according to target language.

The area of attributed graphs with the theory on confluence
and termination properties is investigated by the Attributed
Graph Grammar System (AGG) [3]. The application supports
attributes of algebraic data types, including Java expressions.
The graph derivation process can be both manual and auto-
matic, the intermediate steps are not stored. The GTXL format
based on XML is used to export generated graphs.

GRaphs for Object-Oriented VErification (GROOVE) [4]
project focuses on the verification of object-oriented systems
by means of a graph transformation tool set that uses labelled
graphs and single push-out (SPO) transformation rules. There
is a component for graphical editing of rules and graphs, a
generator responsible for creating temporary graphs during
the derivation. Additionally, the Model Checker component is
available for verification whether the derived system satisfies
specific properties.

III.APPLICATION OVERVIEW

GraphTool is a What You See Is What You Get (WYSIWYG)
editor. The functional areas that are addressed by the tool cover
support for creating different types of graphs, building graph
grammars by defining productions and a control diagram.
Additionally, the process of graph derivation can be simulated
and controlled by the user. As an extension the functionality
of building grammar systems is offered.

The base application view is presented in Figure 1.
Following working areas can be marked within the view:

1) GraphTool Navigator is a component responsible for
presenting the structure of grouped objects created by
the user. By means of the context menu, new elements
can be added.

79Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

Fig. 1: The main perspective of GraphTool application

2) Properties is a section providing the functionality
of editing properties selected objects in Graphical
editors area.

3) Graphical editors are areas used to build graphs,
productions and control diagrams. A dedicated palette
with context-specific elements is available.

4) Problems represents a supporting section that is used
to notify the user about existing issues or warn-
ings automatically detected inside the objects created
within graphs.

5) Outline is a view showing a hierarchy of objects
defined in active Graphical editiors area.

A. Graph building process

The compulsory action in the process of creating a graph
is to specify a project. This entity is used by the application to
define a context that will be common for all graphs attached
to the given project. Such a specification cover:

• the type of the graph: standard graph, hypergraph
(included also the option to create hierarchical graphs
[10]), composite graphs [5],

• the type of the edge: directed, undirected.
Building a graph is understood as creating nodes, edges and
assigning them labels and optionally attributes. In order to
simplify the construction process, a feature to add previously
defined graphs within the same project as a subgraph is also
available. The folder graphs is used to store defined objects.

Graph objects defined with GraphTool can be exported to
XML files using GraphML format [6]. It supports all types
of graphs covered by the tool. Using its flexible extension
mechanism to add application-specific data the information
about attributes and structure of the graph (sizes and locations
of nodes) are also optionally available in the exported file.

B. Attributes

GraphTool application offers the support for attributed
graphs. An attribute is defined as a function assigning the value
from its domain to an object. Within each project there is a file
called custom.attributes that is used for creating declaration of
attributes that can be later assigned to any object defined within
the project. The declaration of a new attribute is understood as
specification of an unique name and its domain (the available

types are integer numbers, float numbers, strings, enums and
arrays). Additionally, the user can specify the default value.

Having defined attributes, their instances can be assigned
with values to nodes, edges and graphs. There is a rule that
each element of given type and having the same label contains
the same attributes.

The application offers an additional functionality in the
area of attributes which is called a template attribute. During
assignment to an element such an attribute it receives a
template value (variable). It can be used within a production
to represent values which are not known at the moment of
creating the production and during the graph derivation they
are replaced with with the real one. The next usage of this type
of attributes is defining predicates for productions and similarly
they are replaced with the current values from a graph when a
production is to be applied to this graph. The template attribute
can be defined as an expression containing variables including
a conditional expression, for example having atti defined as
integer attribute following template attributes are valid:

• atti = var1 + var2 interpreted as a sum of values
represented by variables var1 and var2

• atti = (var1 > var2) ? var2 : var3 In case when the
value of variable var1 is greater than var2, the atti
gets the value of var2. Otherwise the value of variable
var3 is assigned to atti.

C. Graph grammars

The concept of the project in the GraphTool application is
additionally used in the process of defining a graph grammar
that is specified as a set of productions and a control diagram.

A production entity is represented by two graphs that are
called left and right side, respectively. The former describes
a subgraph of a derived graph that after application of the
production is transformed to the latter. In the GraphTool
application the user can build a production by defining both
sides from the beginning or using graphs available within the
project. A folder productions is designed to store user’s defined
productions within GraphTool project.

Fig. 2: An example production defined in GraphTool

The application offers the feature of an usability predicate
for a production. The predicate represents a logical expression
and its value is calculated just before application of the
production during a graph derivation process. The expression
can refer to values of attributes of objects available in the

80Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

context of the production: a graph currently derived, its nodes,
its edges and also a graph from left side of production.

Having defined transformations, the user builds a control
diagram that represents productions’ flow. The diagram is a di-
rected graph where nodes represent productions. Additionally,
there are two marked nodes called start and stop node that
point respectively to the node initializing derivation process
and the node completing this process. The diagram is valid
when at least one path exists from the start to the stop node. It
is stored in the file called grammar.diagram within the project.

D. Graph derivation process

In order to derive a new graph, a grammar with a control
diagram and an initial graph are needed. Therefore, in the
GraphTool application the user creates a configuration that
involves selecting a project and one of the graph available in its
graphs folder as an initial graph. The process of derivation can
be managed by the user by means of selecting next production
from the set of available productions according to the control
diagram.

The current state of implementation covers the derivation
process only for the composite graphs.

E. Grammar systems

As an extension to a graph grammar, the concept of
grammar system can be introduced. The main purpose of the
system is to combine a set of graph grammars and introduce
an upper level control diagram that is responsible for switching
the context between graph grammars during a graph derivation
process. Therefore, the nodes in such a diagram represent
graph grammars. Thus, the derivation process is controlled by
two diagrams: the grammar system control diagram points to
a graph grammar that should be used and derivation follows
the control diagram associated with this grammar. When the
stop node is achieved, the control is returned to the grammar
system control diagram and next grammar can be used. An
example derivation within a grammar system is presented in
Figure 3.

In the GraphTool application the grammar systems can be
build from the beginning by defining all graph grammars or by
using existing one. The process of graph derivation includes
also defining a configuration like in a graph grammar case.

IV.EXAMPLES OF GRAPHTOOL USAGE

In this section, the examples of advantages of GraphTool
for solving computational issues or modeling the structure are
presented.

A. Graph grammar system for h-modeling finite element
method

There were several attempts to adopt graphs and graph
grammars to model h-finite element method [5]. GraphTool
application has been used as a support tool to construct a
grammar system for modeling three dimensional finite element
method (3D FEM) with tetrahedral finite elements [7]. Com-
posite, attributed and undirected graphs have been selected to
model a finite element mesh.

The system contains a grammar that is responsible for
generating the mesh. Its productions represent the mesh trans-
formation. One of them is shown in Figure 4.

The presented production is an example of usage tem-
plate attributes as the values of integer attribute fn can be

Fig. 3: An example of graph generation process using a
grammar system defined in GraphTool

Fig. 4: A mesh generation as a production defined for
h-modeling finite element method using GraphTool

incremented when the production is applied. By means of
the template attributes, the number of productions could be
reduced.

The next example of graph grammar within the system
contains productions that focus mainly on attributes operations.
By means of this process some logic operations such as
calculating a solution vector can be performed. Thus, array
attributes with variable lengths are useful to store information
about such a vector. An example of such a production is shown
in Figure 5.

The proposed system proves additionally the advantage of
introducing the support for graph attributes. Such objects are
used as a global memory in the given grammar system. The
memory is initialized during defining a graph that is used in

81Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

Fig. 5: A production for assigning values to array attributes
s, err for node with label I together with a predicate

specified using attributes

the derivation process as an initial one. During this process
the variables and their current values can be used to calculate
values of predicates for productions or values for template
attributes. For the grammar system for modeling 3D FEM the
memory is defined as two attributes: error max and accuracy.
For the production shown in Figure 6, the value of its predicate
depends on the current value of the attribute error max that is
assigned to the generated graph and the value of the attribute of
a node in the graph according to the left side of the production.

Fig. 6: A production for virtual h-refinement

B. Hierarchical graphs for generating virtual Grids

The Grid can be regarded as the implementation of the dis-
tributed computing concept. The structure of the environment
that contains grouped components can be modeled by means
of hierarchical graphs. The graph derivation process can be
used to simulate building the grid environment.

The approach proposed by Lu and Dinda [8] suggests sep-
arating topology generation from annotations. The application
of hierarchical graphs with attributes for the grid generation
was proposed in [9] and the concept has been enhanced with
the new structure including layers in [10].

GraphTool offers the environment to construct hierarchical
graphs. It can be used to create graphs representing the gird
structure together with attributes as presented in Figure 7. The
application is able to verify the correctness of hierarchical
graphs for example in the area of edges that cannot connect
a node with its internal nodes. Additionally, the hierarchy can
be built for hypergraphs where both nodes and hyperedges can
be nested.

Fig. 7: A hierarchical graph representing a grid

V. IMPLEMENTATION DETAILS

GraphTool is an application based on Java Platform SE
7. It has been created as a plugin for Eclipse Integrated
development environment. The required release is at least
Eclipse Helios version 3.6.1, available at [11]. The tool can be
also shipped as a standalone rich client application. Supported
operating systems are both Windows and Unix based and
the only additional requirement is an installed Java Runtime
Environment in 1.7 version, available at [12].

The plugin uses several open sources libraries. The first is
Graphical Editing Framework technology [13] that is regarded
as a middleware for providing graphical layer within Eclipse
editors and views. For transforming objects between Java and
XML JAXB version 2.2.3 is used. Additionally, JUNG library
[14] in version 2.0.1 is used to model basic structure of graphs
and perform operations on them such as finding shortest path.

The current state of implementation covers the functionality
for deriving graphs using both graph grammars and graph
grammar systems for the composite graphs. This type of graph
uses a constant embedding transformation during a production
appliance. Therefore, there is no need to specify any additional
conditions for the production. The character of the composite
graphs add additional requirements for finding a subgraph
during applying a production when the bonds of the edge have
to be checked. Additionally, the parsing and calculating values
of the expression in attributes JavaScript engine is used.

VI. CONCLUSION

In this paper, a new software application for editing and
generating graphs has been presented. The design of the tool
with the focus on task-oriented modules results in the support
for creating different type of graphs, including attributed ones
and productions for their generation. The concept of template
attributes has been also described. By means of grammar
systems the process of creating new graphs has been enhanced.
The functionality of the GraphTool application has been il-
lustrated on the example concerning defining graph grammar
systems for modeling three dimensional finite element method
and the hierarchical graph representing the grid environment.

Further research in the application development can cover

82Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

support for grammar systems where particular grammars rep-
resent different types of graphs. Such a feature introduces a
possibility of exploration in the area graphs transformations
between specific representations. The idea of templates for
attributes can be a source for further investigation as it enables
to add logic to the graph structure and during the graph
derivation process some calculations can be performed.

REFERENCES

[1] I. Ryszka, “Implementation of graphs model generation and their appli-
ance”, PhD Thesis, Jagiellonian University, in press.

[2] A. Schürr, A. J. Winter and A. Zündorf, “Graph Grammar Engineering
with PROGRES”, ESEC 1995, pp. 219-234.

[3] G. Taentzer, C. Ermel, and M. Rudolf, “The AGG approach: Language
and tool environment” in “Handbook of Graph Grammars and Computing
by Graph Transformation”, volume Volume 2: “Applications, Languages
and Tools. World Scientific”, 1999, pp. 163–246.

[4] A. Rensink, “The GROOVE Simulator: A Tool for State Space Gener-
ation. In: Applications of Graph Transformations with Industrial Rele-
vance (AGTIVE)”, Lecture Notes in Computer Science 3062, Springer
2004, pp. 479-485.

[5] A. Paszyńska, E. Grabska and M. Paszyński, “A Graph Grammar Model
of the hp-adaptive Three Dimensional Finite Element Method. Part I”,
Fundamenta Informaticae, 114(2), 2012, pp. 149 – 182.

[6] GraphML, http://graphml.graphdrawing.org, September 2013
[7] I. Ryszka, A. Paszyńska, E. Grabska, M. Paszyński and M. Sieniek,

“Graph grammar systems for modeling three dimensional finite element
method”, in press

[8] D. Lu and P. A. Dinda, “GridG: Generating Realistic Computational
Grids”, SIGMETRICS Performance Evaluation Review, Volume 30, num
4, 2003, pp. 33-40.

[9] B. Strug, I. Ryszka, E. Grabska and G. Ślusarczyk, “Virtual ‘Computa-
tional Grid by Graph Transformations”, F. Davoli et al. (eds.), Remote
Instrumentation for eScience and Re-lated Aspects, Springer Science +
Business Media, LLC 2012.

[10] E. Grabska, W. Palacz, B. Strug and G. Ślusarczyk, “A Graph-Based
Generation of Virtual Grids, 9th International Conference on Parallel
Processing and Applied Mathematics (PPAM 2011)”, Lecture Notes in
Computer Science 7203, 2012, pp. 451 – 460.

[11] The Eclipse Foundation open source community, http://www.eclipse.
org, September 2013

[12] Java Technology, http://www.java.com, September, 2013
[13] GEF - Graphical Editing Framework for Eclipse, http://www.eclipse.

org/gef, September 2013
[14] JUNG - Java Universal Network/Graph Framework, http://jung.

sourceforge.net/, September 2013

83Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

