
Supporting Coding Activity by

Associating Web Bookmarks With Source Code Features

Ken Nakayama
Institute for Mathematics and

Computer Science
Tsuda College

2-1-1 Tsuda-machi, Kodaira-shi
Tokyo, Japan

e-mail: ken@tsuda.ac.jp

Eko Sakai
Department of Humane Informatics

Faculty of Letters
Otani University

Koyama-Kamifusacho, Kita-ku
Kyoto, Japan

e-mail: echo@res.otani.ac.jp

Yoshihisa Nitta
Department of Computer Science

Faculty of Liberal Arts
Tsuda College

2-1-1 Tsuda-machi, Kodaira-shi
Tokyo, Japan

e-mail: nitta@tsuda.ac.jp

Abstract— Computing tools are often provided as various
kinds of software libraries. To enjoy the benefit of the latest
technologies, a user has to continuously learn their usage. During
such learning activity, referring to various web articles is
a common practice for programmers. Although a variety of
information can be found on the web, specific information of
interest tends to exist fragmented and scattered on many web
pages. Therefore, bookmarking them in a well-organized way
is inevitable for later use. However, manually organizing
bookmarks requires extra effort for a user. To overcome the
problem, a semi-automatic bookmark manager for coding related
web pages is presented. A prototype system is implemented as a
plug-in of an integrated development environment. The system
observes bookmarking activity by a user on a web browser,
and associates each bookmark with (1) features of the source
code being edited, and (2) features of the source code editing in
current session. The target language of prototype system is Java.
User experience of the prototype is presented as preliminary
evaluation.

Keywords—programming; web bookmark; source code feature

I. I NTRODUCTION

For programmers, user-contributed contents on the web,
such as blogs, are major source of information about coding.
It is common to use an Integrated Development Environment
(IDE) and a web browser together. The coding and web ref-
erencing activities are indivisible. There exists various useful
knowledge which is not included in reference manuals. For
example, early adopters of some software library may report
bugs on the latest version, or senior programmers may post
programming tips for beginners, and so on. The fact that a
large number of users continue to contribute a wide variety
of articles at all times, is the source of the strength of those
articles. As a result, user-contributed contents cover wide range
of topics as a whole.

The fact, however, is also the cause of drawbacks. Since
such articles tend to be short, unorganized, and possibly in-
correct, almost all of them are not suitable for a programmer’s
specific situation and purpose. Therefore, the programmer has
to search and gather useful web pages with effort from his
own viewpoint.

As web pages that have been judged valuable are likely to
be viewed again by the programmer in the future, they should
be bookmarked to reduce efforts of searching them again. But

in practice, coding-related bookmarking is not so easy for
a programmer. Commonly used conventional tree-structured
bookmarking seems to be too simple to express semantically
mutually related pages. Moreover, a programmer may want to
classify web pages from a viewpoint of a specific problem
solved. This makes the semantic structure more complex. In
other words, the semantic relation and the viewpoint of the
problem solved are not necessarily orthogonal.

Although more sophisticated bookmarking methods such as
the use of tags, for example [1], (this is equivalent to putting
one bookmark into two or more folders) may be able to express
the structure, they often need a cumbersome operation to use
in practical programming. There is an attempt [2] to integrate
Stack Overflow (via [3]) crowd knowledge in the IDE, but
it is desirable that arbitrary web pages can be registered to
bookmark.

In this paper, semi-automatic tag-based bookmarking sys-
tem for coding activity is presented. Observing both an IDE
and a web browser, the system extracts features (tags) from the
source code being edited when a new bookmark is registered.
There are some literatures, for example [4], that attempt to
analyze programmer’s action on IDE, but still little is known.
Thus, the prototype system presented here adopted a simple
static method. The bookmark is added to the bookmark table
in the system together with features. Later, a programmer can
retrieve recommended bookmarks from the tagged bookmarks
using another source code as a query.

A prototype system has been implemented as a plug-in
of IDE eclipse (via [5]). The target language is Java. The
primary user interface consists of three extra buttons (start ,
end , and search) added to the IDE. The feature used in
current prototype system is identifier (e.g. class name, method
name) which appears in the source code.

In the next section, to introduce our motivation, coding-
related bookmarks “badly” organized by a nonprofessional
programmer are reviewed. We believe that most of ordinary
programmers have the similar problem in handling book-
marks. Section III describes a prototype system [6] from
a programmer’s point of view. In Section IV, the model of
bookmark registration with source code feature and edit feature
is presented, then the mechanism of bookmark retrieval is
explained in Section V. There are some implementation issues

84Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

in Section VI. Since the evaluation of the system is still under
way, preliminary user experience and discussion is presented
in Section VII. Finally, Section VIII concludes this paper.

II. CODING-RELATED BOOKMARKS

A. Original Bookmark List

We interviewed one nonprofessional programmer and have
analyzed his bookmarks. The purpose is to grasp how the
bookmark of the Web page seen during coding is classified.
There were 870 programming-related unique bookmarks in the
bookmarks added during the period of about two years and
three months .

These were only saved in order of the addition. That is,
there was no subfolder. The programmer explained the reason
as follows.

• Most of these bookmarks were added during coding.
During coding, he had to be concentrated on the
coding activities itself. And he felt it troublesome to
classify bookmarks after coding. Anyway, the book-
mark was not classified.

• If bookmarks were arranged in the added order, he
thought that the relevance between bookmarks could
be guessed by the nearness of a time stamp. However,
when the bookmark list became larger than a screen,
manual search became difficult gradually. Since only
the title of the Web page was saved in the bookmark
list, word search was useless.

After all, he did not use the bookmark list effectively.

B. Session Segmetation

It can be considered that the bookmarks with near addition
time are for the same or similar purpose. In this analysis,
a series of bookmarks added within 3 hours after the last
registration were defined as one session. As a result, 870
bookmarks were divided into 332 sessions. That is, it is
assumed that these bookmarks were added for 332 individual
purposes. During one session, 2.6 bookmarks were added on
the average. The maximum was 24 bookmarks per session.

C. Free Tagging Experiment

Next, he was asked to give tags freely in order to know how
the programmer recognizes each bookmark. He was instructed
to give tags completely in order to make it easy to look for
a bookmark for himself in the future. He was allowed to
give two or more tags like ”Java / IDE / Eclipse/JDT” to the
single bookmark. As a result, 63 kinds of unique tags were
used. It means that 2.8 tags are contained on the average in
one session (this corresponds to one purpose). The maximum
was nine tags per session. Many of relations between tags
were a main classification / ”sub classification” types, such as
”programming language/Scala”, for example. However, there
were some relations between the tags which lack consistency.
For example, although ”Java” is programming language, ”pro-
gramming language” tag is omitted.

The following comments were obtained from the program-
mer through the interview.

• ”Java” appeared repeatedly and it was obvious that it
was ”programming language.”

• Based on the estimated number of the search results by
tags, he decided the criteria ”how detailed tags should
be given.” The number of the bookmarks which he
can look through easily is 20-30. He thought that the
number of search results should not exceed this.

• He wanted to search bookmarks, using an error mes-
sage, a method name, or a class name as a query.
However, it was difficult to realize this manually.

III. PROTOTYPESYSTEM

A. User Interface

From a programmer’s point of view, the system has two
phases:coding and bookmark addition and bookmark
reference.

The primary user interface is three extra buttons (start ,
end , and search) added to an IDE as shown in the left
window of Fig. 1 (buttons are shown together with a lot of
other buttons).Start andend buttons are used in the former
phase to let the system know when a bookmark session starts
and ends. On the other hand,search button is used to view
recommended bookmarks in the latter phase.

B. Coding and Bookmark Registration

This phase is the same with ordinary coding and bookmark-
ing activity except that the programmer explicitly indicates
the semantic sections of editing and bookmarking activities
using ”start ” and ”end ” buttons to the system. The system
assumes a source code is being opened on IDE. A programmer
is supposed to clickstart button before he starts editing
with some specific intention. Once it is done, he clicksend
button. Activities betweenstart and end is a bookmark
session. The granularity of a bookmark session is up to the
programmer.

When a programmer finds some Web pages useful, he
can add bookmarks to the web browser as usual. When
the bookmark session ends, all bookmarks added during the
session are associated with features of the source code and
editing activity during the bookmark session.

Current implementation of the system requires clicking
end button on completion of one bookmark session even
if there is no bookmark registered during the session. By
clicking start button again, the programmer may start the
next bookmark session.

C. Bookmark Retrieval

When a programmer clicks thesearch button with a
source code opened on the IDE, the system recommends
bookmarks as shown in Fig. 2, if any, based on the code.
Recommended bookmarks are listed together with “Changed
Methods” and “Changed Classes” that represent edit features.
The model for each phase is detailed in the following.

85Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

(1) Select A Source File
And Press “start” Button

(2) Edit The
Source Code ...

(2) Register Bookmarks ...

(3) Press “end”
Button

Fig. 1: Start , end , andsearch buttons on an IDE.

Changed Methods

Bookmarks

Changed Classes

Fig. 2: Recommended bookmarks (shown on the Web
browser).

IV. B OOKMARK REGISTRATION USING FEATURES OF
CODE AND CODING ACTIVITY

A. Bookmark Session

A programmer usually breaks down their task into seman-
tically coherent coding activities. “Coherent” in this context
means that each activity reflects programmer’s specific editing
intention. If a bookmark can be associated with a coding
activity, and if features of such activity are obtained, these

features can be used for bookmark classification.

To split a series of programmer’s coding interactions into
semantically coherent coding activities, we ask a programmer
explicitly indicate the beginning and the end of each activity.
We call the period between thembookmark session(regard-
less of whether any bookmark is registered or not during
the period). Bookmarks that are registered between them are
associate with the corresponding coding activity.

Fig. 3 illustrates the bookmark registration in coding and
bookmark addition phase. The horizontal right arrow depicts
the operation time flow. Interaction and bookmark of a Web
browser (Google Chrome) are shown above the arrow, while
interaction and stored features of an IDE are shown below.
The time period explicitly indicated by a programmer using
start andend buttons is a bookmark session.

B. Source Code Feature and Edit Feature

To make such classification useful, the followings are
essential: (a) the definition of features, (b) the method to infer
features from a coding activity, (c) the definition of query
types, and (d) the method to get matching bookmarks with
a query.

Since the source code being edited may erroneous, even
syntactically incomplete, features should be obtained without
requiring running it. Query should be as simple as possible for
a programmer in order not to disturb coding activity.

We first definesource code featurewhich reflects the
source code being edited or browsed. The source code feature
is not directly used when registering a bookmark. Rather, we
defineedit feature as the difference of source code features at

86Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

Chrome

“Start” Button

Operation Flow

“End” Button

Eclipse

Edit

1
2
1 1

2
3

Registering Bookmarks

Added Bookmarks

Web Browser

IDE
Source
Code

Source
Code

Source Code Feature

Difference=Edit Feature

1
2
3

Bookmark (and Difference) Table

Bookmark Session

Fig. 3: The overview of the propsed system (coding and bookmark addition).

the beginning and the end of a bookmark session. We expect
the edit feature reflects a programmer’s coding activity.

Inherently, the best way should be determined experimen-
tally. Various methods exist for this purpose. For example,
the system may be track the cursor position or the editing
point which a programmer operates. However, such real-time
tracking may be difficult to realize efficiently, and may also
have a problem of execution performance. Therefore, as a
starting point, we have chosen simplest way for the prototype
system.

C. Features Used in The Prototype

Examples of source code feature and edit feature are shown
in Fig. 4.

Source code featureFS(c) :
A set of the following names (identifiers of Java program-
ming language) of a Java source filec . (1) class names
and method names defined, (2) instanciated class names, and
(3) method names used. The occurrence frequency (the number
of appearance in the code) of each name is not used. The
system statically (syntactically) analyze the code to gather
these names.

Edit featureFE(c1, c2) :
Set difference of the source code features before and after a
bookmark session, that is the sum-set of both ”the added name”
and ”the deleted name”

FE(c1, c2) = (FS(c1) ∪ FS(c2))− (FS(c1) ∩ FS(c2)) (1)

where c1 and c2 are the content of the source file at the
begininng and the end of a bookmark session, respectively.

D. Registering Bookmarks With Features

At the end of a bookmark session, bookmarks registered
during the session are associated with edit feature, and this is
added to the bookmark table (Fig. 3).

E. Behavior of The Prototype

When thestart button is clicked, with the source code
contentc1 being opened, the system performs the followings:

1) The current source code featureFS(c1) is recorded.
2) In order to detect the bookmarks added during the

editing, the bookmark list of the time is recorded.
That is, already registered bookmarks are not taken
into account. Such bookmarks are not shown in Fig. 3
for simplicity.

After that, a programmer may edit the source code. When a
programmer thinks that he completed one semantic section
of an editing, he clicks theend button. Suppose that the
content of the source code is nowc2. Activities from start
throughend is a bookmark session. The system performs the
followings:

1) The current source code featureFS(c2) is recorded.
2) The edit featureFE(c1, c2) is calculated using

recordedFS(c1) andFS(c2).
3) LetB be a set of bookmarks that are registered during

this bookmark session. This set may be empty. The
pair

S = (FE(c1, c2), B) (2)

which represents bookmarks tagged with features,
whereS corresponds to a bookmark session, is added

87Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

class Hello {

 Set<String> ts = new TreeSet<String>();

 void test() {
 Set<String> hs = new HashSet<String>();
 hs.add("Hello");
 ts.add("Hello2");
 }

}

Source Code

Source Code Feature

Instanciation

Method Definition
Method Call

Instanciation

Method Definition

Method Call

TreeSet
HashSet

test()

add()

TreeSet
HashSet

test()

add()
clear()

Deleted

Added

Difference between Source Code Features = { TreeSet(), clear() }

Start End

Public class Hello{

 void test(){
 Set<String> hs=new HashSet<String>();
 hs.clear(0);
 }
}

Instanciation

Method Definition

Method Call Deleted

Fig. 4: Souce code feature and edit feature for the prototype.

to the bookmark table. Currently, the source code
features at the time of start and end are not recorded.

V. BOOKMARK RETRIEVAL USING FEATURES

Whensearch button is clicked, the recommended book-
marks are retrieved using a source code feature, not a edit
feature, as a query. This is a bookmark reference phase.
Suppose thatN bookmark sessions

Sr = (FE r, Br) (r ∈ 1, · · · , N) (3)

are stored in the bookmark table, and the current content of
the source code in IDE isc. The source code featureFS(c)
is compared to all stored edit featuresFE r (r ∈ 1, · · · , N) to
find the maximum matchSk = (FE k, Bk) (k ∈ 1, · · · , N) ,
then it is presented to a programmer through a web browser
(Fig. 2). This is illustrated in Fig. 5.

In the current prototype system, the similarity metric be-
tween featuresmatch is defined as the number of common
elements as follows:

match(F1, F2) = |F1 ∩ F2| (4)

whereF1 andF2 are both features.

VI. I MPLEMENTATION

This prototype system is implemented using Java as a plug-
in of Eclipse IDE (via [5]). SQLite relational database (via [7])

“search” button

1
2
3 Bookmarks Shown

Web Browser

Source
Code

Source Code Feature

1
2
3

Table of Relations between Difference And Bookmark

Select the Best Match Bookmark Session

Fig. 5: The overview of the propsed system (bookmark search
phase).

is used for the bookmark table. The system reads the bookmark
file of Chrome (via [8]) (web browser) directly from a file
system. The bookmark file is represented in JSON format
(via [9]). For presenting the recommended bookmarks to a
programmer, the system has a simple HTTP server as a part
of the IDE plug-in.

88Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

The source code feature is extracted from the abstract
syntax tree (AST) which represents the syntactic structure of
a source code. The node of AST recursively represents syntax
elements, such as method declaration or a method call.

The system uses AST generated by Java Development
Tools (via [10]) (JDT) in eclipse. In JDT, each AST node
is an instance of aASTNode class. By defining the subclass
of the ASTVisitor class, all theASTNode can be scanned
in order (or ”visited”). In the subclass,visit methods with
various AST node parameter types can be defined. A desired
process can be described to the AST node class by which a
visit method is defined.

VII. D ISCUSSION

A. Edit Feature and Source Code Feature

In the prototype system, a source code feature is used
as a query for bookmark reference, while an edit feature is
recorded on a bookmark addition. In this sense, the system is
asymmetric.

This reflects our naive intuition in the early stage of our
design. The edit feature is more specific than the source code
feature. At the time of the addition of a bookmark, the more
specific feature is desirable. On the other hand, to refer to
the bookmark, the more robust feature is desirable. By using
source code feature as a query, a programmer can query
bookmarks even before editing anything, for instance, just after
opening a souce file. This of course can be extended to use
edit feature as a query.

Our experience shows that the definition of current edit
feature seems to be too specific, because only deleted or newly
created methods or classes are recognized as an edit feature.
That is, modifications within the definition of existing method
or class are not taken into account. The better source code
feature and edit feature should be explored.

B. When Should Start and End Be Clicked?

Ideally, the bookmark session should reflect a program-
mer’s subjective semantic chunk of an editing activity. Relying
on explicit clicks of start and end seems to be working
well to some degree. However, always forcing a programmer
to click these buttons is an extra burden. The means to infer
a bookmark session should be explored. At the same time,
some way to explicitly control the recognition of a bookmark
session should be provided.

C. Problems of Current Implementation

• The class name and method name used as the source
code feature are not always a fully-qualified name
(FQN) like java.util.String . If JDT provides
FQN, the system uses it. If FQN is not available, a
simple name (without qualification) is used. This may
introduce name confusion if the same name is used in
more than one context. For example, if the methods
of the same name are defined in two or more classes,
the system cannot distinguish them to each other.

• When extracting a feature, the order or the frequency
of occurrences of a class name or a method name are
not taken into consideration. This could be improved.

• In the current system, both the added method names
and the deleted method names are included in the edit
feature. Distinguishing these sets of names might be
informative.

VIII. C ONCLUSION AND FUTURE WORK

This paper has presented a semi-automatic tag-based book-
marking system for coding activity. A prototype system has
been implemented as a plug-in of Eclipse IDE. The target
language is Java. Used with a web browser, the system offers a
way to register and retrieve personal bookmarks of a program-
mer. Observing both an IDE and a web browser, the system
extracts features (tags) from the source code being edited when
a new bookmark is registered. The bookmark is added to the
bookmark table in the system together with features. Later, a
programmer can retrieve recommended bookmarks from the
tagged bookmarks using another source code as a query.

The problem of inferring programmer’s intention by ob-
serving coding activity is quite difficult. The current prototype
system can infer the intention very roughly using simple
definition of source code feature and edit feature. However,
experience with the system suggested that even such rough
intention might be useful for bookmarking. The better features
should be explored.

Another direction of improvement is multiuser collabo-
ration. The prototype system assumes the use of a single
programmer, but the bookmark table may be shared and col-
laboratively used by multiple users. For example, collaborative
code reading is a promising situation. Suitable method and
effectiveness evaluation should be further explored.

REFERENCES

[1] C. Marlow, M. Naaman, D. Boyd, and M. Davis, “HT06, tagging paper,
taxonomy, Flickr, academic article, to read,” inProceedings of the
seventeenth conference on Hypertext and hypermedia. ACM, 2006,
pp. 31–40.

[2] L. Ponzanelli, “Exploiting crowd knowledge in the IDE,” Ph.D. disser-
tation, Master’s thesis, University of Lugano, 2012.

[3] Stack Overflow, “Stack Overflow,” [retrieved: Jul 28, 2013]. [Online].
Available: http://stackoverflow.com/

[4] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung, “An exploratory
study of how developers seek, relate, and collect relevant information
during software maintenance tasks,”IEEE Transactions on Software
Engineering, vol. 32, no. 12, p. 971, 2006.

[5] The Eclipse Foundation, “Eclipse integrated development environment,”
[retrieved: Jul 04, 2013]. [Online]. Available: http://www.eclipse.org/

[6] C. Tanaka, K. Nakayama, Y. Nitta, and E. Sakai, “Programming assis-
tance by associating web bookmarks with source code difference,” vol.
111, no. 470, Mar. 8–9, 2012, Technical Report of IEICE LOIS2011-
111, pp. 231–235, (in Japanese).

[7] SQLite Consortium, “SQLite,” [retrieved: Jul 04, 2013]. [Online].
Available: http://www.sqlite.org/

[8] Google, “Chrome,” [retrieved: Jul 04, 2013]. [Online]. Available:
http://www.google.com/chrome/

[9] JSON.org, “Introducing JSON,” [retrieved: Jul 04, 2013]. [Online].
Available: http://www.json.org/

[10] The Eclipse Foundation, “Eclipse Java development tools (JDT),”
[retrieved: Jul 04, 2013]. [Online]. Available: http://eclipse.org/jdt/

89Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

