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Abstract—New applications of using bioluminescent proteins 
(BLPs) are constantly increasing in a variety of research fields 
such as protein engineering of using single-cell bioluminescent 
organisms to determine how animals move through water. In 
this study, we propose a knowledge acquisition method for 
characterizing BLPs and understanding their functions using a 
compact set of fuzzy rules. The rule set was obtained by 
designing an if-then fuzzy-rule-based bioluminescent protein 
classifier (named iFBPC) with physicochemical properties as 
input features. In designing iFBPC, feature selection, 
membership function design, and fuzzy rule base generation 
are all simultaneously optimized using an intelligent genetic 
algorithm (IGA). We used the same benchmark dataset for 
comparisons used in existing SVM-based prediction methods 
BLProt and PBLP using 100 and 15 features of 
physicochemical properties, respectively. The classifier iFBPC 
has two fuzzy rules (one for BLP and the other for non-BLP) 
and four physicochemical properties with test accuracy of 
74.82% where BLProt and PBLP have accuracies of 80.06% 
and 81.79%, respectively. The four physicochemical properties 
are structures, protein linkers, nucleation, and membrane 
proteins in the AAindex database. The analysis of 
characterizing BLPs was conducted based on knowledge of the 
fuzzy rule base. 

Keywords-bioluminescent proteins; feature selection; fuzzy 
rules; genetic algorithm; knowledge acquisition; 
physicochemical properties. 

I.  INTRODUCTION 

Bioluminescence of organisms occurs in diverse forms 
of morphology, with various mechanisms of light emission. 
Then the cited state of the emitter will emit light with a very 
short lifetime. After releasing the energy in the form of a 
photon, the reaction time just keep a few nanoseconds. At 
quite another situation, fluorophore is another substance, 
which can generate light. It can acquire its excitation energy 
in bypassing excitation of primary emitter. For example, the 
green flurocense protein (GFP) usually use the covalently 
bond of fluorophore. In Aequorea GFP [1], the post-
translational reaction of cyclization, dehydration and 
oxidation of Ser65-Tyr66-Gly67 [2] because the emitting 
light and hence it can be easily expressed in eukaryotic and 
prokaryotic orgasms without losing its emitting function. No 
coelenterate-specific enzymes are needed to join the 

reaction. Understanding physicochemical properties of the 
bioluminescent proteins (BLPs) may help improve the 
applications of BLPs. 

The experimental methods [3][4] to identify the BLPs 
could be often time-consuming expensive and have very 
limited scopes due to some restrictions for many enzymatic 
reactions. Recently, researchers have interests in 
computational methods, which have been developed to 
predict BLPs. 

Kandaswamy et al. [5] first proposed a predictive 
method, as known as BLProt, based on support vector 
machine (SVM) and physicochemical properties to predict 
BLPs. The three different filter approaches, ReliefF, 
infogain, and mRMR were utilized to identify the most 
informative features. In 2011, Huang et al. [6] proposed a 
novel method using the physicochemical properties (PBLP). 
In that work PBLP, an efficient algorithm inheritable bi-
objective genetic algorithm (IBCGA) [7] was used to select 
significant features, which could discriminate the two 
classes of BLPs. Recently, Zhao et al. [8] developed a new 
computational method to predict BLPs using a model based 
on position specific scoring matrix and auto covariance 
(PSSM-AC). Their results showed that accuracy of PSSM-
AC model was higher than BLProt and PBLP. The existing 
methods [5][6][8] can predict BLPs but suffer from 
obtaining human-interpretable knowledge from sequences. 

In our previous work, PBLP [6] investigates the optimal 
design of predictors for predicting from amino acid 
sequence using both informative features and an appropriate 
classifier. Furthermore, we obtained a set of relevant 
physicochemical properties can advance prediction 
performance. The proposed PBLP identified m=15 features 
of properties for predicting BLPs with an independent test 
accuracy of 81.79%. Since the set of 15 physicochemical 
properties performs well, we would apply it to acquire the 
rule-based knowledge for predicting and analyzing BLPs. 

In this paper, we design an interpretable fuzzy rule 
classifier based on the 15 physicochemical properties as 
features [6]. The proposed classifier with an accurate and 
compact fuzzy rule base using a scatter partition of feature 
space for BLPs is named iFBPC. Because BLPs from 
database [6] have the property of natural clustering, fuzzy 
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classifiers using a scatter partition of feature spaces often 
have a smaller number of rules than those using grid 
partitions. The design of iFBPC has three objectives to be 
simultaneously optimized: maximal classification accuracy, 
minimal number of rules, and minimal number of used 
physicochemical properties. In designing iFBPC, the 
flexible membership function, fuzzy rule, and 
physicochemical properties selection are simultaneously 
optimized. Huang et al. [9] applied an intelligent genetic 
algorithm (IGA) [10] to efficiently solve the design problem 
with a large number of tuning parameters. 

The iFBPC built with 2 rules and 4 physicochemical 
properties have fine training accuracy of 73.67% and test 
accuracy of 74.82%. These results are suggested that iFBPC 
provides the interpretable and confidant rules that can will 
identify the BLPs. The results show that the membrane 
protein properties are most important to BLPs and the amino 
acids prone to locate at terminal of the alpha-helix are not 
preferred in BLPs. This is might be caused from the working 
environment of BLPs and these results would also give the 
biologists the considerations about the protein engineering 
examinations for altering the BLP stability. 

The rest of this paper is organized as follows. Section II 
describes the materials and methods used. Section III 
describes the results and performance, and Section IV 
addresses the conclusions of this paper. Finally, the 
acknowledgement closes the article. 

II. MATERIALS AND METHODS 
We propose a fuzzy rule-based knowledge acquisition 

system based on interpretable if-than fuzzy classifiers 
(iFBPC). The design of iFBPC is provided with an accurate 
and compact fuzzy rule base using a scatter partition of 
feature space for bioluminescent protein data analysis. The 
framework is presented in Fig. 1. 

A. Dataset 

The bioluminescent proteins (BLPs) were extracted from 
Kandaswamy et al. [5]. More details about this data set can 
be found by [5][6][8]. After all, a total 441 BLPs are kept as 
positive dataset. The statistic of the training and test sets is 
shown in Table I. 300 BLPs are random selected from the 
441 positive dataset and served as training dataset. The 
others are served as testing dataset. 300 non-BLPs are also 
randomly picked from seed proteins of Pfam protein families. 
These proteins, served as negative dataset, are unrelated to 
BLPs. The negative testing dataset is composed of the 141 
non-BLPs Pfam protein families and are different from 
training non-BLPs. Finally, the testing dataset is composed 
of 141 BLPs and 141 non-BLPs.  

TABLE I - THE STATISTIC OF THE TRAINING/TEST SETS. 

Dataset Number of BLPs Number of non-BLPs 
Training 300 300 
Test  141 141 

B. Feature set 

Considering the BLPs data set, the set of m=15 
informative properties (PCPs) identified by PBLP performs 
best where the best solution with accuracy of 84.11% is used 
[6]. The PBLP is a systematic approach to automatically 
identify a set of physicochemical and biochemical properties 
in the AAindex database to design SVM-based classifiers for 
predicting and analyzing BLPs. The set of m=15 PCPs is 
identified by PBLP, we would apply it to acquire the rule-
based knowledge for predicting and analyzing BLPs data set. 
The set of 15 PCPs is described in Table II.   

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. The framework of if-than fuzzy rule-based classifier for bioluminescent proteins (iFBPC). 
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TABLE II - THE PBLP INDENTED A SET OF M=15 

PHYSICOCHEMICAL PROPERTIES ON BLPs. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
An FGPMF  with a single fuzzy set is defined as 

C. Acquisition of the rule-based knowledge 

The performance of iFBPC mainly arises from two 
aspects. One is to simultaneously optimize all parameters in 
the design of iFBPC where all the elements of the fuzzy 
classifier design have been transformed into parameters of a 
large parameter optimization problem. The other is to use an 
efficient optimization algorithm IGA, which is a specific 
variant of the intelligent evolutionary algorithm [10]. The 
intelligent evolutionary algorithm uses a divide-and-conquer 
strategy to effectively solve large parameter optimization 
problems. IGA is shown to be effective in the design of 

accurate classifiers with a concise fuzzy rule base using an 
evolutionary scatter partition of feature space [11]. 

The proposed iFBPC design involves: 1) flexible generic 
parameterized membership functions (FGPMFs) and a 
hyperbox-type fuzzy partition of feature space, 2) 
determining a fuzzy reasoning method and fuzzy if-then 
rules corresponding to fuzzy regions, and 3) determining a 
fitness function and a chromosome representation for using 
IGA to optimize the system’s tuning parameters. 
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where x ∈ [0, 1] and a ≤ b ≤ c ≤ d. Some illuminations of 
FGPMF are shown in Fig. 2. The variables a, b, c and d 
determining the shape of a trapezoidal fuzzy set are the 
parameters to be optimized. This transformative scheme of 
training patterns and the encoded parameters of the IGA’s 
chromosomes have been described more detail in previous 
research [9].  

D. Fuzzy if–then rule and Fuzzy reasoning method 

The following fuzzy if–then rule base for n-dimensional 
classification problems are used in the design of iFBPC: 

Rj : If x1 is Aj1 and . . . and xn is Ajn then class CLj with 
CFj,  j = 1, . . . , N. 
where Rj is a rule label, xi denotes a variable of 
physicochemical property, Aji is an antecedent fuzzy set, C 
is a number of classes, CLj ∈ {1, . . ., C} denotes a 
consequent class label, CFj is a certainty grade of this rule in 
the unit interval [0, 1], and N is a number of initial fuzzy 
rules in the training phase. In this study, C=2 (two classes 
for BLPs and non-BLPs), n=15 (initial number in the feature 
set to be selected), and N=3C (initial number in the rule set 
to be selected). 

To enhance interpretability of fuzzy rules, linguistic 
variables in fuzzy rules can be used. Each variable xi has a 
linguistic set U = {S (small), SM (small medium), M 
(medium), ML (medium large), L (large)}. Each linguistic 
value of xi equally represents 1/5 of the domain [0, 1]. 
Examples of linguistic antecedent fuzzy sets are shown in 
Fig. 3. 

 
 
 

Feature ID AAindex ID Description 
8 BHAR880101 Positional flexibilities of amino acid 

residues in globular proteins 
13 BROC820102 The isolation of peptides by high-

performance liquid chromatography 
using predicted elution positions 

18 BUNA790103 1H-nmr parameters of the common 
amino acid residues measured in 
aqueous solutions of the linear 
tetrapeptides H-Gly-Gly-X-L-Ala-OH

95 FINA910104 Physical reasons for secondary 
structure stability: alpha-helices in 
short peptides 

107 GEIM800111 Amino acid preferences for secondary 
structure vary with protein class 

202 NAKH920101 The amino acid composition is 
different between the cytoplasmic and 
extracellular sides in membrane 
proteins 

223 PALJ810101 Protein secondary structure 
310 RACS820111 Differential geometry and polymer 

conformation. 4. Conformational and 
nucleation properties of individual 
amino acids 

380 VENT840101 Hydrophobicity parameters and the 
bitter taste of L-amino acids 

439 PARS000102 Protein thermal stability: insights from 
atomic displacement parameters (B 
values) 

473 MITS020101 Amphiphilicity index of polar amino 
acids as an aid in the characterization 
of amino acid preference at membrane-
water interfaces 

475 TSAJ990102 The packing density in proteins: 
standard radii and volumes 

489 PUNT030101 A knowledge-based scale for amino 
acid membrane propensity 

491 GEOR030101 An analysis of protein domain linkers: 
their classification and role in protein 
folding 
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Figure 2. Illuminations of FGPMF: (a) a>0 and d< 1; (b) a<0<b, (c) b≦0; (d) b≦0 and c≧1. 

 

 
Figure 3. Examples of an antecedent fuzzy set Aji with linguistic values (L: low, ML: medium low, M: medium, MH: medium high, H: high): (a) Aji 

represents {ML, M, MH}; (b) Aji represents {ML, M, MH, H}, i.e., not Low; (c) Aji represents {L, ML, M, MH, H} or ALL. 

In the training phase, all the variables CLj and CFj are 
treated as parametric genes encoded in a chromosome and 
their values are obtained using IGA. The following fuzzy 
reasoning method is adopted to determine the class of an 
input pattern xp = (xp1, xp2, . . ., xpn) based on voting using 
multiple fuzzy if–then rules: 
Step 1: Calculate score SClassv (v = 1, . . . , C) for each class as 

follows: 
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where FC denotes the fuzzy classifier, and μji(·) 
represents the membership function of the antecedent 
fuzzy set Aji. 

Step 2: Classify xp as the class with a maximal value of SClassv. 
Notably, xp is classified into the BLP or non-BLP 

class for one iFBPC. The final classification of xp is 
determined using the proposed classifier iFBPC in the study. 

E. IGA to optimize the system’s tuning parameters 

A GA-chromosome consists of control GA-genes for 
selecting useful features and significant fuzzy rules, and 
parametric GA-genes for encoding the membership functions 
and fuzzy rules. The control GA-gene comprises two types 
of parameters. One is parameter rj, j=1,…N, represented by 
one bit for eliminating unnecessary fuzzy rules. The other is 
parameter fi, i=1,…N, represented by one bit or eliminating 
useless features. The parametric genes determine variables of 

three types:
 

t
jiV ∈ [0, 1], t=1, …, 5, for determining the 

antecedent fuzzy set Aji, CLj for determining the consequent 
class label of rule Rj, and CFj ∈ [0, 1] for determining the 
certainty grade of rule Rj , where j=1, …, N and i=1, …, n. A 
rule base with N fuzzy rules is represented as an individual. 
The detailed explanation of the chromosome representation 
and implementation can be referred to [9]. The design of an 
efficient fuzzy classifier is formulated as a large parameter 

optimization problem. Once the solution of IGA is obtained, 
an accurate classifier with a concise fuzzy rule base can be 
obtained. 

We define the fitness function of IGA for designing 
iFBPC as follows: 

max Fit(FC) = ACC − WrNr − WfNf                        (3) 
where Wr and Wf are positive weights. In this study, the 

fitness function is used to optimize the three objectives:  
1) to maximize the classification accuracy ACC,  
2) to minimize the number Nr of fuzzy rules, and  
3) to minimize the number Nf of selected features.  
The trade-off between prediction accuracy and conciseness 
of the rule base can be determined by tuning the weights Wr 
and Wf. For obtaining an easily-interpretable and compact 
knowledge rule base with concise iFBPC, the small values of 
Nr and Nf are preferred. Therefore, we used large values of 
penalty weights Wr = 0.6 and Wf = 0.1. If the high accuracy 
of an individual iFBPC is the most important objective, 
small values of penalty weights are preferred. The simulation 
results show that the weights Wr and Wf are not very 
sensitive to the accuracy of the obtained solutions using IGA. 
To further advance the prediction accuracy of predicting 
BLP is utilized. 

III. RESULTS 

The parameter settings of IGA [10] are Npop = 20, Pc = 
0.7, Ps =1−Pc, Pm = 0.01 and α = 15. Because the search 
space of the optimal design of iFBPC is proportional to the 
number Np of parameters to be optimized, the stopping 
condition is suggested to use a fixed number 100Np of fitness 
evaluations. 

A. Prediction performance evaluation 

The training samples with 15 properties in the dataset 
BLPs are represented as 15-dimensional feature vectors. This 
set of 15 physicochemical properties is identified by PBLPs 
[12]. Due to the non-deterministic characteristic of genetic 
algorithms, the average performance of 30 independent 
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iFBPC is given in Table III. The top six of high selected 
frequency PCPs in the 30 runs are shown in Table IV. 
 

TABLE III. THE AVERAGE VALUES OF 30 INDEPENDENT RUNS 
OF THE PROPOSED iFBPC. 

 
Training Test 

Accuracy. (%) Feature no. Rule no. Accuracy (%) 
73.67 3.67 2 74.82% 

 
TABLE IV. THE TOP SIX OF HIGH SELECTED FREQUENCY PCPs 

IN THE 30 RUNS. 
 
 
 
 
 
 
 
 
 
 

 

B. Rule-based knowledge 

We selected one iFBPC1 with best training accuracy in 
the independent 30 runs, to illustrate the rules for 
bioluminescent proteins mechanism. The iFBPC1 has 
training accuracies of 73.67%, the test accuracies of 74.82%, 
the feature numbers Nf of 4, and the rule numbers Nr of 2, 
respectively. The selected physicochemical properties are 
BHAR880101 (Protein linker), GEIM800111 (Structure), 
PUNT030101 (Membrane Protein) and FINA910104 
(Nucleation), shown in Fig 4. The fuzzy rules are 
linguistically interpretable as follows: 

Fuzzy Classifier iFBPC1: 
R1: if BHAR880101 is ALL, GEIM800111 is {medium, 

large}, PUNT030101 is {small, medium} and 
FINA910104 is {small, medium}, then BLPs with 
CF=0.714. 

R2: if BHAR880101 is ALL, GEIM800111 is ALL, 
PUNT030101 is {medium, large} and FINA910104 
is {medium, large}, then non- BLPs with CF= 0.267. 

 

 
Figure 4. Fuzzy rules of the selected 4 PCPs, the training ACC is 73.67% and testing ACC is 74.82%. Class: 1 for BLPs and 0 for non-BLPs. 

 

C. The physicochemical properties of BLPs 

The 15 informative PCPs are further classed into 5 
categories that are structures, hydrophobicity, protein 
linkers, nucleation and membrane proteins. The importance 
of bioluminescence protein versus protein linker, 
hydrophobicity, structure is documented in previous work 
[11][12]. The BLPs works, sometimes they will meet a 
hydrophobic environment that caused by the luciferin, a 
quite hydrophobic substance [13]. The rules, which could 
stabilized the structures of BLPs at hydrophobic 
environments, of membrane protein folding could be also 
considered. 

From the fuzzy rules, the BHAR880101, the structure of 
flexibility, and GEIM800111, aperiodic indices for 
alpha/beta-proteins, should be considered both in BLPs or 
non-BLPs. PUNT030101, a membrane protein properties, 
and FINA910104, the helix termination parameter at 

position, show reversed results in BLP and non-BLPs. In 
BLPs, the property, PUNT030101, should be small to 
medium. In original study [14] of this properties, the authors 
defined that a negative value indicated a high membrane 
propensity. This can be interpreted that the BLPs would 
have some properties that membrane proteins also have as 
mentioned in previous study [6].  

It is interesting that the FINA910104 also shows reversed 
results in BLPs and non-BLPs. This property, the index 
about the amino acids locate at the C-terminal of alpha-helix, 
is driven from the nucleus structure study. From previous 
study, some proteins mainly composed of beta-sheets will 
transform to alpha-helices in partial organic solvent 
suggesting that this kind of solvent could keep the alpha-
helical structure [15]. Forming the C-Capping will increase 
in alpha-helicity [16] and would cause the BLPs to form 
alpha-helix from native structures, which are not alpha-helix 
in such partial organic solvent. The BLPs would use the 

 BHAR880101 GEIM800111 PUNT030101 FINA910104 Class CF 

R1 1 0.714

R2 0 0.267

Freq.  Feature 
No. 

AAindex No.  Category 

20  489  PUNT030101  Membrane Protein 
17  202  NAKH920101 Membrane Protein
12  491  GEOR030101  Protein linker 
10  223  PALJ810101 Structure
10  475  TSAJ990102  Structure 
10  502  ZHOH040103 Hydrophobicity
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strategy that to avoid being composed of the amino acids, 
which favors to locate at the alpha-helix terminal and often 
forms the C-Capping structure to escape alpha-helixes. This 
can keep the original structure of BLPs away from the 
structural transformation and would maintain the biological 
function of BLPs. 

IV. CONCLUSION 

The iFBPC is a high performance sequence-based 
classifier for identifying the BLPs based on fuzzy-rule 
classifier. It provides a high confident fuzzy rule that could 
identify the BLPs well and also provide some useful 
knowledge. In BLPs, the membrane properties are important 
because BLPs work at the partial organic solvent, which will 
change the folding nature of proteins and make the proteins 
lose their functions. BLPs would use the strategy that 
avoiding being composed of the amino acids favoring to 
locate at the terminal of alpha-helices. This strategy could 
provide the protein engineers a new though for protein 
engineering. 
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